{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 11: Film Formation" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.1 Page 371" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variable\n", "from math import *\n", "M1=28.9;#mass\n", "M2=60.08;#mass\n", "d1=2.33;#density of Si\n", "d2=2.21;#density of SiO2\n", "\n", "#calculation\n", "V1=M1/d1;#volume\n", "V2=M2/d2;#volume\n", "T=V1/V2;#thickness\n", "\n", "#result\n", "print\"thickness of Si consumed per 100nm of SiO2 layer is\",round(T*100,2),\"nm\"\n", "print\"(answer differ slightly due to approximation)\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "thickness of Si consumed per 100nm of SiO2 layer is 45.63 nm\n", "(answer differ slightly due to approximation)\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.2 Page 386" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variable\n", "from math import *\n", "a=.5;#width\n", "l=1;#length\n", "K=2.7;#dielectric constant\n", "t=.5;#thickness\n", "R=2.7;#resistivity\n", "E=8.85*10**-14;#constant\n", "\n", "#calculation\n", "Rc=R*l/a**2*E*K*l/t/2;#intrinsic RC\n", "\n", "#result\n", "print\"intrinsic RC is\",round(Rc*10**12,2),\"ps\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "intrinsic RC is 2.58 ps\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.3 Page 387" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variable\n", "from math import *\n", "C=40;#capacitance\n", "A=1.28;#cell size\n", "k1=3.9;#dielectric constant\n", "k2=25;#dielectric constant\n", "\n", "#calculation\n", "Ae=k1/k2*A;#cell size\n", "\n", "#result\n", "print\"equivalent cell size is\",round(Ae,2),\"micro-m^2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "equivalent cell size is 0.2 micro-m^2\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.4 Page 394 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variable\n", "from math import *\n", "T=500;#temperature\n", "t=30;#min\n", "ZL=16;\n", "Z=5;\n", "H=1;\n", "D=2*10**-8;#cm^2/sec\n", "S=.8;#%\n", "Dr=1.16;#density ratio\n", "\n", "#calculation\n", "d=2*(D*t*60)**.5*Z*H/ZL*S*Dr;#depth\n", "\n", "#result\n", "print\"depth is\",round(d*100,2),\"micro-m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "depth is 0.35 micro-m\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.5 Page 396" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variable\n", "from math import *\n", "k1=3.9;#dielectric constant for SiO2\n", "k2=2.6;#dielectric constant for CuAl\n", "r1=2.7;#resistivity of Al\n", "r2=1.7;#resistivity of Cu\n", "\n", "#calculation\n", "P=r2/r1*k2/k1*100;\n", "\n", "#result\n", "print\"reduction of RC time is\",round(P,0),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "reduction of RC time is 42.0 %\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.6 Page 398" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variable\n", "from math import *\n", "R1=1;\n", "R2=.1;\n", "T=5.5;#time\n", "t1=1;#layer1\n", "t2=.01;#layer2\n", "\n", "#calculation\n", "r=((t1/R1)+(t2/R2))/T;#removal rate\n", "\n", "#result\n", "print\"removal rate is\",round(r,2),\"micro-m/min\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "removal rate is 0.2 micro-m/min\n" ] } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.7 Page 400" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variable\n", "from math import *\n", "R=.6;#resistance\n", "r=18;#resistivity\n", "\n", "#calculation\n", "t=r/R;#thickness\n", "\n", "#result\n", "print\"film thickness is\",round(t*10,2),\"nm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "film thickness is 300.0 nm\n" ] } ], "prompt_number": 3 } ], "metadata": {} } ] }