{ "metadata": { "name": "Chapter11" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": "Chapter 11:SOLVED EXAMPLES" }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 1, Page No:404" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n# variable declaration\nF = 10*10**9; # radar operating frequency in Hz\nVo = 3*10**8; # vel in m/s\nG = 20; # antenna gain in dBi\nR = 20*10**3; # distance of radar reflected signal from target\nPt = 10*10**3 # Tx power in watts\nCS = 10; # cross sectional area in m^2\n\n# Calculations\n\nGain = 10**(G/10) # G = 10log(Gain) ==>gain - antilog(20/10)\nGr = Gain; # gain of tx antenna and Rx antenna\nGt = Gain;\nlamda = float(Vo)/F;\nPr = (lamda*lamda*Pt*Gt*Gr*CS)/((4*4*4*math.pi*math.pi*math.pi)*(R**4)); #received power in watts\n\n# result\n\nprint'Received signal Power is %3.5g' %Pr;\nprint'Note : Calculation error in Textbook';\n\n\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Received signal Power is 2.8346e-15\nNote : Calculation error in Textbook\n" } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 2, Page No:405" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nVo = 3*10**8; #velocity of EM wave in m/s\nt = 20*10**-6; #echo time in sec\n\n# calculations\n\nR = (Vo*t)/2; #distance b/n target and Radar in m\n\n# Output\nprint'Distance of Target from the Radar is ', R/1000,'km' ;\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Distance of Target from the Radar is 3.0 km\n" } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 3,Page No:405" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n# variable declaration\n\nVo = 3*10**8; #velocity of EM wave in m/s\nF = 0.8*10**3; #pulse repetitive frequency\nTp = 1.2*10**-6; #pulse width in sec\n\n# calculations\nRmax = Vo/(2*F); # maximum Range of Radar in m\nRmin = (Vo*Tp)/2; # minimum Range of radar in m\n\n# Output\n\nprint'Maximum Range of Radar is ',Rmax/1000,'Km';\nprint'Minimum Range of the Radar is',Rmin,'m';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Maximum Range of Radar is 187.5 Km\nMinimum Range of the Radar is 180.0 m\n" } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 4,Page No:405" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n# variable declaration\n\nPW = 1.5*10**-6; #pulse width in sec\nPRF = 2000; #per second\n\n# calculations\nDc = PW*PRF; #duty cycle\n\n# Output\nprint'Duty Cycle is %3.4e' %Dc; ", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Duty Cycle is 3.0000e-03\n" } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 5,Page No:406" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n# variable declaration\n\nPW = 2*10**-6; #pulse width in sec\nPRF = 1000; #pulse repetitive frequency \nPp = 1*10**6; #peak power in watts\n\n# Calculations\nDc = PW*PRF; # duty cycle\nAvgTp = Pp*Dc; # average transmitted power in watts\n\n# Output\nprint'Average Transmitted power is ',AvgTp/1000,'KW';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Average Transmitted power is 2.0 KW\n" } ], "prompt_number": 38 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 6,Page No:406" }, { "cell_type": "code", "collapsed": false, "input": "import math \n\n#variable declaration\n\nPW = 2*10**-6; #pulse width in sec\nVo = 3*10**8; #velocity of EM wave in m/s\n\n#Calculations\n\nRR = (Vo*PW)/2; #Range Resolution in m\n\n# result\nprint'Range Resolution is ',RR,'m';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Range Resolution is 300.0 m\n" } ], "prompt_number": 41 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 7,Page No:406" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n# variable declaration\n\nt = 50*10**-6; #echo time in sec\nVo = 3*10**8; #velocity of EM wave in m/s\n\n# Calculations\n\nR = (Vo*t)/2; #Range in m\n\n# result\n\nprint'Target Range is ',R/1000,'Kms';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Target Range is 7.5 Kms\n" } ], "prompt_number": 44 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 8,Page No:406" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n# variable declaration\n\nTvel = 1000; #target speed in kmph\nF = float(10*10**9); #radar operating frequency in hz\nVo = 3*10**8; #velocity of EM wave in m/s\n\n#Calculations\n\nVr = 1000*(5/float(18)); #target speed in m/s\nFd = float(2*Vr*F)/float(Vo); #Doppler Frequency shift in Hz\n\n#result\nprint'Doppler Frequency shift Caused by aircraft is %g' %(Fd/1000),'KHz';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Doppler Frequency shift Caused by aircraft is 18.5185 KHz\n" } ], "prompt_number": 178 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 9,Page No:407" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n# variable declaration\n\nF = 6*10**9; # Transmitting Frequency of Radar\nVr = 250; # velocity of automobile in Kmph\nVo = 3*10**8; #velocity of EM wave in m/s\n\n#Calculations\n\nVa = Vr*(5/float(18)); #velocity of automobile in m/s\nFd = (2*Va*F)/float(Vo); #Doppler Frequency shift in Hz\n\n#result\nprint'Doppler Frequency shift is %3.3f ' %(Fd/10**3),'KHz';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Doppler Frequency shift is 2.778 KHz\n" } ], "prompt_number": 196 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 10,Page No:407" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n# variable declaration\n\nF = 9*10**9; #Transmitting Frequency of Radar\nVr = 800; #velocity of aircraft in Kmph\nVo = 3*10**8; #velocity of EM wave in m/s\n\n#Calculations\n\nVa = Vr*(5/float(18)); #velocity of aircraft in m/s\nFd = (2*Va*F)/float(Vo); #Doppler Frequency shift in Hz\nFr = F+Fd; #frequency of reflected echo in Hz\n\n#result\nprint'Doppler Frequency shift is %3.2e'%Fd,'Hz';\nprint'frequency of reflectedecho is %4e'%(Fr/1000),'Khz';\nprint'Note: doppler frequency shift wrongly printed in Text Book as 1333.3 Hz';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Doppler Frequency shift is 1.33e+04 Hz\nfrequency of reflectedecho is 9.000013e+06 Khz\nNote: doppler frequency shift wrongly printed in Text Book as 1333.3 Hz\n" } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 11,Page No:407" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\n\nF = 2*10**9; #Transmitting Frequency of Radar\nVr = 350; #velocity of sports Car in Kmph\nVo = 3*10**8; #velocity of EM wave in m/s\n\n#Calculations\n\nVa = Vr*(5/float(18)); #velocity of aircraft in m/s\nFd = (2*Va*F)/float(Vo); #Doppler Frequency shift in Hz\n#Car moving away from Radar\n\nFr = F-Fd; #frequency of reflected signal in Hz\n\n#result\n\nprint'Doppler Frequency shift is %g'%Fd,'Hz';\nprint'frequency of reflected echo is %3.3g'%(Fr/10**9),'GHz','-',Fd,'Hz';\nprint'Note: doppler frequency shift wrongly printed in Text Book as 129.6 Hz\\nVr is printed as 9.72 m/s instead of 97.2 m/s';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Doppler Frequency shift is 1296.3 Hz\nfrequency of reflected echo is 2 GHz - 1296.2962963 Hz\nNote: doppler frequency shift wrongly printed in Text Book as 129.6 Hz\nVr is printed as 9.72 m/s instead of 97.2 m/s\n" } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 12,Page No:408" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nPRF = 2000; #pulse repetition frequency per second\nPW = 1*10**-6; #pulse width in sec\nPp = 500*10**3; #Peak power in watts\n\n#Calculations\n\nDc = PW*PRF; #Duty Cycle\nPav = Pp*Dc; #average power in watts\npavdB = 10*math.log10(Pav);\n\n#result\n\nprint'Average power is ',Pav/1000,'KW';\nprint'Average Power is ',pavdB,'dB';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Average power is 1.0 KW\nAverage Power is 30.0 dB\n" } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 13,Page No:408" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\n\nPRF = 1000; #pulse repetition frequency per second\nPW = 0.8*10**-6; #pulse width in sec\nPp = 10*10**6; #Peak power in watts\nVo = 3*10**8; #velocity of EM wave in m/s;\n\n#Calculations\n\nDc = PW*PRF; #Duty Cycle\nPav = Pp*Dc; #average power in watts\nRmax = Vo/(2*PRF);\n\n\n#result\nprint'Average power is ',Pav/1000,' KW';\nprint'Maximum Radar Range is ',Rmax/1000,'Km';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Average power is 8.0 KW\nMaximum Radar Range is 150 Km\n" } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 14,Page No:409" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n# variable declaration\n\nRmax = 500*10**3; #maximum Range of Radar in ms\nVo = 3*10**8; #Velocity of EM wave in m/s\n\n#Calculations\n\nPRF = Vo/(2*Rmax); #pulse repetitive frequency in Hz\n\n#result\n\nprint'Pulse repetive frequency required for the range of 500km is ',PRF,'Hz';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Pulse repetive frequency required for the range of 500km is 300 Hz\n" } ], "prompt_number": 37 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 15,Page No:409" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\n\nTe = 0.2*10**-3; #echo time in sec\nPRF = 1000; #pulse repetitive Frequency in Hz\nVo = 3*10**8; #Velocity of EM wave in m/s\n\n#Calculations\n\nR = (Vo*Te)/2; #Range of the target in m\nRunamb = (Vo/(2*PRF)); #Maximum unambiguous Range in m\n\n#result\n\nprint'Target range is ',R/1000,' Km';\nprint'Maximum Unambiguous Range is ',Runamb/1000,'Km';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Target range is 30.0 Km\nMaximum Unambiguous Range is 150 Km\n" } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 16,Page No:409" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\n\nF = 10*10**9; #operating frequency of radar in Hz\nVo = 3*10**8; #Velocity of EM wave in m/s\nVr = 100; #velocity of car in kmph\n\n#Calculations\n\nlamda = Vo/float(F); #wavelength in m\nVc = Vr*(5/float(18)); #velocity of car in m/s\nFd = (2*Vc)/float(lamda); #doppler shift in Hz\n\n#result\n\nprint'Doppler Shift is %3.2f '%(Fd/1000),' KHz';\nprint'Frequency of the Received echo when car is approaching radar is %g'%(F/10^9),'Ghz','+',Fd/1000,' Khz';\nprint'Frequency of the Received echo when car is moving away from radar is %g '%(F/10^9),'Ghz','-',Fd/1000,'Khz';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Doppler Shift is 1.85 KHz\nFrequency of the Received echo when car is approaching radar is 1e+09 Ghz + 1.85185185185 Khz\nFrequency of the Received echo when car is moving away from radar is 1e+09 Ghz - 1.85185185185 Khz\n" } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 17,Page No:410" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\n\nD = 200; #azimuth distance between two radars\nR = 10*10**3; #Range of radar\n\n\n#Calculations\nBWdB = (float(D)/R)*(180/math.pi); #3dB beam width in degrees\n\n#result\nprint'Maximum 3db beamwidth of radar resolving the target is %3.3f'%BWdB, 'degrees';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Maximum 3db beamwidth of radar resolving the target is 1.146 degrees\n" } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 18,Page No:410" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\n\nF = 10*10**9; #operating frequency of radar in Hz\nVo = 3*10**8; #Velocity of EM wave in m/s\nVr1 = 100; #velocity of one aircraft in m/s\ntheta = 45; #angle b/n velocity vector and radar axis for second aircraft\nVr = 200; #vel in m/s\n\n#Calculations\n\nlamda = Vo/float(F); #wavelength in m\nFd1 = (2*Vr1)/float(lamda); #doppler shift due to 1st aircraft\nVr2 = Vr*math.cos(45*math.pi/180); #radial velocity of the second aircraft\nFd2 = (2*Vr2)/float(lamda); #doppler shift due to 2nd aircraft\nFd = Fd2-Fd1; #difference in doppler shift in Hz\nT = 1/float(Fd); #time required to resolve the aircraft in sec\n\n#result\nprint'Minimum time required to resolve the aircrafts is %g'%(T*10**6),'usec';\nprint'Note: in textbook there is a mistake in the calculation of doppler shift Fd1';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Minimum time required to resolve the aircrafts is 362.132 usec\nNote: in textbook there is a mistake in the calculation of doppler shift Fd1\n" } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 19,Page No:410" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declareation\n\nPp = 100*10**3; #peak power in watts\nPav = 100; #average power in watts\n\n#Calculations\n\nPdB = 10*math.log10(Pp); #peak power in dB\nPavdB = 10*math.log10(Pav); #average power in dB;\nDCC = PdB-PavdB; #Duty Cycle Correction factor\n\n#result\nprint'Duty Cycle Correction Factor is ',DCC, 'dB';\nprint'Note: In question given peak power is 100KW but while solving 1KW is taken instead of 100KW';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Duty Cycle Correction Factor is 30.0 dB\nNote: In question given peak power is 100KW but while solving 1KW is taken instead of 100KW\n" } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 20,Page No:411" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nPp = 1*10**6; #peak power in watts\nPW = 1*10**-6; #pulse width in sec\nNPd = 20; #pulses in one dwell period\nPRF = 1000; #pulse repetitive frequency\n\n#calculations\nPE = Pp*PW; #pulse energy in joule\nPED = NPd*PE; #pulse energy in one dwell period\nD = PW*PRF; #Duty cycle\nPav = Pp*D; #average power in watts\n\n#output\nprint'Average Power is ',Pav,'watts';\nprint'Duty Cycle is %2.2e'%D;\nprint'Pulse Energy is ',PE,' Joules';\nprint'Pulse Energy in one Dwell Period is ',PED,'Joules';\nprint'Note: In textbook Values of PRF and pulses in one dwell period are varied from given values in question while solving ' ;", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Average Power is 1000.0 watts\nDuty Cycle is 1.00e-03\nPulse Energy is 1.0 Joules\nPulse Energy in one Dwell Period is 20.0 Joules\nNote: In textbook Values of PRF and pulses in one dwell period are varied from given values in question while solving \n" } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 21,Page No:411" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nNoise_power = -50; #noise power in dBm\nFl = 1*10**6;#lower cutoff frequency in Hz\nFh = 21*10**6;#upper cutoff frequency in Hz\n\n#calculation\nBW = Fh-Fl;#bandwidth\nNP =10**-8;#noise power in watts; -50dBm = 10log10(NP) =>10^-5 mwatts\nNPSD = NP/BW;#noise power spectral density in W/Hz\n\n#result\nprint'Noise Power Spectral Density is %3.0e'%NPSD,' W/Hz';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Noise Power Spectral Density is 5e-16 W/Hz\n" } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 22,Page No: 411" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\n\nRa = 1000; #Range of target A in Kms\n\n#Calculations\nRb =Ra*math.cos(45*math.pi/180); #range of target B in kms\n\n#result\nprint'Range of target B is %g '%Rb,'Kms';\nprint'Note:value of cos(45) is incorrectly taken as 1/2 in textbook';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Range of target B is 707.107 Kms\nNote:value of cos(45) is incorrectly taken as 1/2 in textbook\n" } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 23,Page No:412" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\n\nAz = 60; #azimuth angle of the target in degrees\nHeight = 10;#height of target in kms\n\n#Calculations\nR = 10/math.sin(Az*math.pi/180);\n\n#result\n\nprint'Range of the Target is %g '%R,'Kms';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Range of the Target is 11.547 Kms\n" } ], "prompt_number": 35 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 24,Page No:412" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nF = 10*10**9; #MTI radar operating Frequency\nVo = 3*10**8; #velocity of EM wave in m/s;\nPRF = 2*10**3; #pulse repetitive frequency in hz\nn=1; #for lowest blind speed\n\n#Calculations\n\nlamda = Vo/float(F); #wavelength in m\nBS =((n*lamda)/float(2))*PRF; #blind speed\n\n#result\nprint'Lowest Blind Speed is ',BS,'m/s';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Lowest Blind Speed is 30.0 m/s\n" } ], "prompt_number": 210 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 25,Page No:412" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n# variable declaration\n\nPRF = 2*10**3; # pulse repetitive frequency in Hz\nVo = 3*10**8; #velocity of EM wave in m/s\nprint'f1 = first operating frequency of MTI Radar\\n';\nprint' f2 = second operating frequency of MTI Radar\\n';\nprint' 2nd blind speed of 1st radar = (2Vo/2f1)*PRF\\n 5th blind speed of 2nd radar = (5Vo/2f2)*PRF\\n';\nprint' PRF(V0/f1) = (5/2)*(Vo/f2)*PRF\\n';\nprint' (f2/f1) = 5/2\\n';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "f1 = first operating frequency of MTI Radar\n\n f2 = second operating frequency of MTI Radar\n\n 2nd blind speed of 1st radar = (2Vo/2f1)*PRF\n 5th blind speed of 2nd radar = (5Vo/2f2)*PRF\n\n PRF(V0/f1) = (5/2)*(Vo/f2)*PRF\n\n (f2/f1) = 5/2\n\n" } ], "prompt_number": 58 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 26,Page No:413" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n\nprint'(PRF1) = 2(PRF2)\\n';\nprint' Vb3 = 4Vb5\\n';\nprint' (3Vo/2F1)(PRF1)) = 4(5Vo/2F2)(2PRF2)\\n';\nprint' 3/2F1 = 20/F2\\n';\nprint' Ratio of operating frequencies is F2/F1 = 40/3\\n';\n\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "(PRF1) = 2(PRF2)\n\n Vb3 = 4Vb5\n\n (3Vo/2F1)(PRF1)) = 4(5Vo/2F2)(2PRF2)\n\n 3/2F1 = 20/F2\n\n Ratio of operating frequencies is F2/F1 = 40/3\n\n" } ], "prompt_number": 59 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 27,Page No:413" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nPW = 5; #FM pulse width before compression in us\nFl = 40; #lower cut off Frequency in Mhz\nFh = 60; #upper cut off Frequency in Mhz\n\n#Calculations\nBW = Fh-Fl; #bandwidth of signal in Mhz\nCPW = 1/float(BW); #Compression pulse width in us\nCR = PW/float(CPW); #compression ratio\n\n#result\nprint'Compression ratio is %g'%CR;\nprint'Compression Pulse Width is %g'%CPW,'us';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Compression ratio is 100\nCompression Pulse Width is 0.05 us\n" } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 28,Page No:413" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nBW = 100; #band width in Mhz\nPW = 4; #pulse width in us\n\n#Calculations\n\nCPW = 1/float(BW); #compressed pulse width in us\nCR = PW/float(CPW); #compression ratio\n\n#result\nprint'compressed pulse width is %g'%CPW,' us';\nprint'compression ratio is %g'%CR;\nprint'Note: In textbook compression ratio is wrongly printed as 40';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "compressed pulse width is 0.01 us\ncompression ratio is 400\nNote: In textbook compression ratio is wrongly printed as 40\n" } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 29,Page No:414" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\n\nCR = 50; #compression ratio\nPW = 2; #pulse width in us\n\n#Calculations\n\nCPW = PW/float(CR); #compression pulse width in us\nBW = 1/float(CPW); # compression band width in Mhz\n\n#result\nprint'compressed pulse width is %g'%CPW,'us';\nprint'compression Bandwidth is %g'%BW,'MHz'", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "compressed pulse width is 0.04 us\ncompression Bandwidth is 25 MHz\n" } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 30,Page No:414" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nPW = 1*10**-6; #transmitted pulse width in sec\nVo = 3*10**8; #velocity of EM wave in m/s\n\n#Calculations\nRR = (Vo*PW)/2;\n#result\nprint'Range Resolution is ',RR,' m';\nprint'As the targets are separated by 100m it is possible to resolve';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Range Resolution is 150.0 m\nAs the targets are separated by 100m it is possible to resolve\n" } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 31,Page No:414" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n# variable declaration\nF = 10*10**9; #operating frequency in Hz\nPRF = 1000; #pulse repetitive frequency in Hz\nFm = PRF; #modulating frequency\n#Calculations\nFc1 = float(F+Fm); #closest frequency in Hz\nFc2 = float(F-Fm); #closest frequency in Hz\n#result\nprint'Closest Frequencies are %3.3f'%(Fc1/10**6),' Mhz';\nprint'Closest Frequencies are %3.3f'%(Fc2/10**6),' Mhz';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Closest Frequencies are 10000.001 Mhz\nClosest Frequencies are 9999.999 Mhz\n" } ], "prompt_number": 33 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 32,Page No:414" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nF1 = 490; #freq shift lower limit in Mhz\nF2 = 510; #freq shift upper limit in Mhz\n\n#calculations\n\nSC = (F1+F2)/2; #Spectrum Centre in Mhz\nBW = F2-F1; #bandwidth in Mhz\nCPW = float(1)/BW; #compressed bandwidth in us\n\n#result\nprint'Spectrum centre is %g'%SC,' MHz';\nprint'BandWidth is %g'%BW,' MHz';\nprint'Compressed pulse Width is %3.2f'%CPW,'us';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Spectrum centre is 500 MHz\nBandWidth is 20 MHz\nCompressed pulse Width is 0.05 us\n" } ], "prompt_number": 36 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 33,Page No:415" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nF = 9; #Noise figure in dB\nBW = 2*10**6; # Bandwidth\nTo = 300; # Temperature in kelvin\nK = 1.38*10**-23; # Boltzman constant\n\n#Calculations\n\nF1 = 10**(F/float(10)); #antilog calculation\nPmin = (K*To*BW)*(F1-1); #minimum receivable power\n\n#result\nprint'Minimum receivable power Pmin %3.3e'%Pmin,' W';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Minimum receivable power Pmin 5.749e-14 W\n" } ], "prompt_number": 217 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 34,Page No:415" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nPt = 500*10**3; #peal pulse power in watts\nPmin = 1*10**-12; #minimum receivable power\nAc = 5; #area of capture in m^s\nRCS = 16; #radar cross sectional area in m^2\nF = 10*10**9; #radar operating frequency\nVo = 3*10**8; #vel of Em wave in m/s;\n\n#calculations\nlamda = Vo/float(F); #wavelength\n\nRmax = ((Pt*Ac*Ac*RCS)/float((4*math.pi*lamda*lamda*Pmin)))**0.25;\n\n#result\nprint'Maximum Radar range of the Radar system is %g'%(Rmax/1000),' Kms';\nprint'Note:Calculation mistake in textbook instead of RCS,RCS^2 is calculated';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Maximum Radar range of the Radar system is 364.665 Kms\nNote:Calculation mistake in textbook instead of RCS,RCS^2 is calculated\n" } ], "prompt_number": 38 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 35,Page No:415" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\n\nlamda = 0.03; #wavelength in m\nRCS = 5; # Radar cross section in m^2\nD = 1; # antenna diameter in m\nF = 5; # noise figure in dB\nRmax = 10*10**3 # Radar range\nBW = 500*10**3; # bandwidth\n\n#Calculation\nF1 = 10**(F/float(10)); # antilog calculation\n\n#Rmax = 48*((Pt*D**(4*RCS))/float((BW*lamda*lamda(F-1))))**(0.25);\n\nPt = ((Rmax/float(48))**(4))*((BW*lamda*lamda*(F1-1))/float(((D**4)*RCS)));\n\n#result\nprint'Peak Transmitted Power is %e' %Pt;\nprint'Note: Antilog Calculation error in textbook at F'", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Peak Transmitted Power is 3.665971e+11\nNote: Antilog Calculation error in textbook at F\n" } ], "prompt_number": 42 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 36,Page No:416" }, { "cell_type": "code", "collapsed": false, "input": "import math;\n\n# variable Declaration\nPt = float(20*10**6); #peak pulse power in watts\nRCS = 1; # radar cross sectional area in m^2\nf = 3*(10**9); #radar operating frequency\nVo = 3*(10**8); #vel of Em wave in m/s;\nD = 50; #diameter of antenna in m\nF = 2; #receiver noise figure \nBW = 5000; #receiver bandwidth\n\n# calculations\n\nlamda = float(Vo)/float(f) # wavelength in m\nRmax = 48*((Pt*(D**4)*RCS)/(BW*lamda*lamda*(F-1)))**0.25;\n\n\n# output\nprint 'Maximum Radar range of the Radar system is %f kms' %(Rmax/1000);\nprint 'Note:In textbook All values are correctly substituted in calculating Rmax but incorrect final answer is printed in the book'\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Maximum Radar range of the Radar system is 60.356805 kms\nNote:In textbook All values are correctly substituted in calculating Rmax but incorrect final answer is printed in the book\n" } ], "prompt_number": 60 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 37,Page No:417" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nlamda = 6*10**-2; #Wavelength in m\nPRF = 800; #Pulse Repetitive frequency in Hz\nn1 = 1 ; #n value for first blind speed\nn2 = 2 ; #n value for first blind speed\nn3 = 3 ; #n value for first blind speed\n\n#Calculations\n\n#Vb = (n*lamda/2)*PRF; Blind speed of the Radar\n\n#For n = 1\n\nVb1 = ((n1*lamda)/float(2))*PRF; #Blind speed of the Radar in m/s\nVb2 = ((n2*lamda)/float(2))*PRF; #Blind speed of the Radar in m/s\nVb3 = ((n3*lamda)/float(2))*PRF; #Blind speed of the Radar in m/s\n\n#multiply by 18/5 to convert from m/s to kmph\n\n#result\nprint'The lowest Blind speeds are %3.1f' %(Vb1*(18/float(5))),'Km/hr';\nprint'The lowest Blind speeds are %3.2f' %(Vb2*(18/float(5))),'Km/hr';\nprint'The lowest Blind speeds are %3.2f' %(Vb3*(18/float(5))),'Km/hr';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "The lowest Blind speeds are 86.4 Km/hr\nThe lowest Blind speeds are 172.80 Km/hr\nThe lowest Blind speeds are 259.20 Km/hr\n" } ], "prompt_number": 61 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 38,Page No:417" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n# variable declaration\n\nPt = 500*10**3; # Peak pulse power in Watts\npt = 50; # peak power transmitted by beacon in watts\nf = 2500*10**6; # Radar Operating frequency in Hz\nlamda = 0.12; # wavelength in m\nD = 64; # antenna diameter in m\nBW = 5000; # Radar Bandwidth\nAb = 0.51;\nk = 1.38*10**-23; # Boltzmann constant\nF = 20 # Noise figure \nFb = 1.1 # Noise figure of beacon\nTo = 290; # Temperature in kelvin\n \n#Calculations\n\nAr = (0.65*math.pi*D*D)/float(4);\nRmax = math.sqrt((Ar*Pt*Ab)/float((lamda*lamda*k*To*BW*(F-1)))); # Max tracking range of radar\n\nRmax1 = math.sqrt((Ar*pt*Ab)/float((lamda*lamda*k*To*BW*(Fb-1)))); # Max tracking range of radar if Fb = 1.1\n\n#result\nprint'Maximum Tracking Range of Radar is %3.3e'%(Rmax/1000),' Km';\nprint'Range of beacon if noise figure is 1.1 %3.3e'%(Rmax1/1000),'Km';\nprint'Note: Calculation mistake in textbook in calculating Range of beacon instead of 1.36*10^9 km range is wrongly printed as 136*10^6 km';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Maximum Tracking Range of Radar is 9.869e+09 Km\nRange of beacon if noise figure is 1.1 1.360e+09 Km\nNote: Calculation mistake in textbook in calculating Range of beacon instead of 1.36*10^9 km range is wrongly printed as 136*10^6 km\n" } ], "prompt_number": 62 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 39,Page No:417" }, { "cell_type": "code", "collapsed": false, "input": "import math;\n\n# Variable Declaration\nlamda = 0.06; # wavelength in m\nVr = 100 ; # Radial velocity of target in kmph\n\n#Calculations\nVr1 = Vr*(float(5)/18); #Radial vel. in m/s\nfd = (2*Vr1)/lamda; #doppler shift\n\n#Output\n\nprint 'Doppler Shift is %3.3f Khz' %(fd/1000);", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Doppler Shift is 0.926 Khz\n" } ], "prompt_number": 63 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 40,Page No:418" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nF = 9.5*10**9; #radar operating frequency in Hz\nVo = 3*10**8; #vel in m/s;\nG = 20; #antenna gain in dBi;\nR = 50*10**3; #distance of radar reflected signal from target\nPt = 10*10**3 #Tx power in watts\nCS = 10; #cross sectional area in m^2\n\n#Calculations\nGain = 10**(G/float(10)); #G = 10log(Gain) ==>gain - antilog(20/10);\nGr = Gain; #gain of tx antenna and Rx antenna\nGt = Gain\nlamda = float(Vo)/F\nPr= (lamda*lamda*Pt*Gt*Gr*CS)/((4*4*4*math.pi*math.pi*math.pi)*(R**4))\n#result\nprint'Received signal Power is %g'%Pr,' Watts';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Received signal Power is 8.04055e-17 Watts\n" } ], "prompt_number": 65 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 41,Page No:418" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\n\nVo = 3*10**8; #vel of EM wave m/s;\nt = 10*10**-6; # time taken to rx echo\n\n#Calculations\n\nR = (Vo*t)/2; #Distance of the Target\n\n#result\n\nprint'Distance of the target is ',R/1000,' Km';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Distance of the target is 1.5 Km\n" } ], "prompt_number": 60 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 42,Page No:419" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n# variable declaration\nPW = 10**-6; # Pulse Width in sec\nPRF = 1000; #Pulse Repetitive Freq in Hz \nVo = 3*10**8; # vel of EM wave m/s;\n\n#Calculations\n\nRmax = Vo/(2*PRF); #max range of radar\nRmin = (Vo*PW)/2 ; # min range of radar\n\n#result\nprint'Maximum Range of radar is %e'%Rmax,' m';\nprint'Minimum Range of radar is ',Rmin,'m';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Maximum Range of radar is 1.500000e+05 m\nMinimum Range of radar is 150.0 m\n" } ], "prompt_number": 66 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 43,Page No:419" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nVr = 100; # speed of car in kmph\nf = 10*10**9; # Radar operating frequency\nVo = 3*10**8; # vel. of EM wave\n\n#Calculations\n\nVr1 = Vr*(5/float(18)); # kmph to m/s conversion\nfd = (2*Vr1*f)/float(Vo); # Doppler shift in Hz\n\n#result\nprint'Doppler shift %3.3g'%(fd/1000),'Khz';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Doppler shift 1.85 Khz\n" } ], "prompt_number": 68 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 44,Page No:420" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nVo = 3*10**8; # vel of EM wave m/s;\nt = 200*10**-6; # time taken to rx echo\n\n#Calculations\n\nR = (Vo*t)/2; # Distance of the Target\n\n\n#result\nprint'Distance of the target is ',R/1000,'Km';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Distance of the target is 30.0 Km\n" } ], "prompt_number": 235 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 45,Page No:420" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nPt = 100*10**3; # Peak tx. power \nPRF = 1000; # pulse repetitive freq. in Hz\nPW = 1.2*10**-6; # Pulse Width in sec\n\n#Calculations\nDC = PRF*PW # Duty cycle\nPav = Pt*DC # Avg. power\n\n#Output\nprint'Duty cycle is ',DC;\nprint'Average power is ',Pav,' Watts';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Duty cycle is 0.0012\nAverage power is 120.0 Watts\n" } ], "prompt_number": 69 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 46,Page No:420" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nRunamb = 300*10**3; # unambiguous range in m\nVo = 3*10**8; # Vel. of EM wave in m/s\n\n#Calculations\n\nPRF = Vo/(2*(Runamb)); # Pulse repetitive freq.\n\n#result\n\nprint'Pulse repetitive frequency ',PRF,'Hz';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Pulse repetitive frequency 500 Hz\n" } ], "prompt_number": 80 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 47,Page No:420" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declartation\nVo = 3*10**8; #vel of EM wave m/s;\nPRF = 1000; # pulse repetitive freq. in Hz\nPW = 10**-6; # Pulse width in sec\n\n#Calculations\n\nDC = PRF*PW; # Duty cycle\n\nRunamb = Vo/(2*PRF); # Distance of the Target\n\n#result\n\nprint'Duty cycle ',DC;\nprint'Maximum unambiguous range', Runamb/1000,'Km' ;", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Duty cycle 0.001\nMaximum unambiguous range 150 Km\n" } ], "prompt_number": 70 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 48,Page No:421" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nVo = 3*10**8; # vel of EM wave m/s;\nPRF = 1000; # pulse repetitive freq. in Hz\nPW = 4*10**-6; # Pulse width in sec\n\n#Calculations\n\nRunamb = Vo/(2*PRF); # Distance of the Target\nRR = (Vo*PW)/2; # Range Resolution\n\n#result\n\nprint'Maximum unambiguous range ',Runamb/1000,' Km';\nprint'Range Resolution ',RR,'m';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Maximum unambiguous range 150 Km\nRange Resolution 600.0 m\n" } ], "prompt_number": 71 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 49,Page No:421" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n# variable declaration\nf = 6*10**9; # Radar operating freq. in Hz\nVo = 3*10**8; # vel of EM wave m/s;\nPRF = 1000; # pulse repetitive freq. in Hz\nPW = 1.2*10**-6; # Pulse width in sec\nDC = 10**-3; # Duty Cycle\nSmin = 5*10**-12; # min. detectable signal\nR = 60*10**3; # Max. Range in m\nG = 4000; #power gain of antenna\nAe = 1 # effective area in m*2\nRCS = 2 # Radar cross sec. in m*2\n\n#Calculations\n\nlamda = Vo/float(f); # Wavelength in m\nPRT = PW/float(DC); # pulse repetitive time\nPRF = 1/float(PRT); # Pulse repetitive freq.\nPt = ((Smin*(4*math.pi*R*R)**2))/(float((Ae*G*RCS))); #Peak power\nPav = Pt*DC; # average power\n\nRunamb = Vo/float((2*PRF)); # Distance of the Target\nRR = (Vo*PW)/float(2); # Range Resolution\n\n#result\n\nprint' Operating Wavelength = %g'%lamda,' m';\nprint'\\n PRT %3.2f'%(PRT*1000),' ms';\nprint'\\n PRF %3.1f'%PRF,'Hz';\nprint'\\n Peak power %3.3f'%(Pt/1000),' KW';\nprint'\\n Average power %3.3f'%Pav,' Watts';\nprint'\\n unambiguous range %g'%(Runamb/1000),' Km';\nprint'\\n Range Resolution %g'%RR ,'m';\nprint '\\n Note: Calculation error in textbook for Pt and Pav';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": " Operating Wavelength = 0.05 m\n\n PRT 1.20 ms\n\n PRF 833.3 Hz\n\n Peak power 1279.101 KW\n\n Average power 1279.101 Watts\n\n unambiguous range 180 Km\n\n Range Resolution 180 m\n\n Note: Calculation error in textbook for Pt and Pav\n" } ], "prompt_number": 75 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 50,Page No:423" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nVo = 3*10**8; # vel of EM wave m/s;\nPRT = 1.4*10**-3; # pulse repetitive time. in sec\nPW = 5 *10**-6; # Pulse width in sec\nPt = 1000*10**3; #Peak power in watts\n\n#Calculations\n\nDC = PW/float(PRT); # Duty cycle\nPav = Pt*DC # avg. power in W\n\n#result\n\nprint'Duty cycle %3.3e'%DC;\nprint'Average power %g '%Pav,'W' ;", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Duty cycle 3.571e-03\nAverage power 3571.43 W\n" } ], "prompt_number": 76 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 51,Page No:423" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nF = 5; # Noise Figure in dB\nBW = 1.2*10**6; # Bandwidth in Hz\nT = 290; # Ambient temp in kelvin\nK = 1.38*10**-23; # boltzmann constant\n\n#Calculations\nF1 = 10**(5/float(10)) ; # antilog calc of noise figure\nPrmin = K*(F1-1)*T*BW; # min. rx. signal\n\n#result\nprint'Minimum Receivable signal %3.4e'%Prmin,' W\\n ';\nprint'Note:In textbook All values are correctly substituted in calculating Prmin.\\nbut incorrect final answer is printed in the book';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Minimum Receivable signal 1.0384e-14 W\n \nNote:In textbook All values are correctly substituted in calculating Prmin.\nbut incorrect final answer is printed in the book\n" } ], "prompt_number": 77 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 52,Page No:423" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nPt = 1*10**6; #peak pulse power in watts\nPmin = 1*10**-12; #minimum receivable power\nAe = 16; #effective area in m^s\nRCS = 4; #radar cross sectional area in m^2\nF = 9*10**9; #radar operating frequency\nVo = 3*10**8; #vel of Em wave in m/s;\nG = 5000; #Power gain of antenna\n\n#calculations\n\nRmax = ((Pt*G*Ae*RCS)/(16*math.pi*math.pi*Pmin))**(0.25);\n\n#result\nprint'Maximum Radar range of the Radar is %g'%(Rmax/1000),'Kms';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Maximum Radar range of the Radar is 212.169 Kms\n" } ], "prompt_number": 98 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 53,Page No:424" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nPt = 500*10**3; #peal pulse power in watts\nPmin = 1*10**-12; #minimum receivable power\nAc = 5; #area of capture in m^s\nRCS = 20; #radar cross sectional area in m^2\nF = 10*10**9; #radar operating frequency\nVo = 3*10**8; #vel of Em wave in m/s;\nlamda = 3*10**-2; # wavelength in cms\n\n#calculations\n\nRmax = ((Pt*Ac*Ac*RCS)/(4*math.pi*lamda*lamda*Pmin))**(0.25);\n\n#result\nprint'Maximum Radar range of the Radar system is %g'%(Rmax/1000),' Kms';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Maximum Radar range of the Radar system is 385.587 Kms\n" } ], "prompt_number": 102 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 54,Page no:425" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nf = 10*10**9; # operating freq. of radar in Hz\nVo = 3*10**8; #vel of Em wave in m/s;\nD = 5; #Diameter of antenna in m\n\n#calculations\nlamda = Vo/float(f); # wavelength in m\nBW = 70*(lamda/float(D)); # BeamWidth in degrees\n\n#result\nprint'Beamwidth = %3.3g'%BW,' degrees';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Beamwidth = 0.42 degrees\n" } ], "prompt_number": 242 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 55,Page No:425" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nPav = 200; #average power in watts\nPRF = 1000; #pulse repetitive frequency in Hz\nPW = 1*10**-6; #pulse width in sec\nPmin = 1*10**-12; #minimum receivable power\nAc = 10; #area of capture in m^s\nRCS = 2; #radar cross sectional area in m^2\nVo = 3*10**8; #vel of Em wave in m/s;\nlamda = 0.1; #wavelength in cms\n\n#calculations\nF = Vo/float(lamda); #operating frequency in hz\nPt = Pav/float(PRF*PW);\n\nRmax = ((Pt*Ac*Ac*RCS)/float((4*math.pi*lamda*lamda*Pmin)))**(0.25);\n\n#result\nprint'Operating frequency is %g'%(F/10**9),'Ghz';\nprint'Radar peak power is %g'%(Pt/1000),'KW';\nprint'Maximum Radar range of the Radar system is %g'%(Rmax/1000),' Km';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Operating frequency is 3 Ghz\nRadar peak power is 200 KW\nMaximum Radar range of the Radar system is 133.571 Km\n" } ], "prompt_number": 78 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 56,Page No:426" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nf = 9*10**9; # operating freq. of radar in Hz\nVo = 3*10**8; # vel of Em wave in m/s;\nfd = 1000; #doppler shift freq. in Hz\n\n#Calculations\nlamda = Vo/float(f); # Wavelength in m\nVr = lamda*fd/float(2); # radial velocity of target\n\n#result\nprint'Radial velocity of target Vr %g'%Vr,' m/s';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Radial velocity of target Vr 16.6667 m/s\n" } ], "prompt_number": 245 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 57,Page No:426" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nf = 10*10**9; # operating freq. of radar in Hz\nVr = 800; # radial ve. of of aircraft in kmph\nVo = 3*10**8; #vel of Em wave in m/s;\n\n#calculations\n\nlamda = Vo/float(f); # Wavelength in m\nVr1 = Vr*5/float(18); # kmph to m/s conversion\nfd = 2*Vr1/float(lamda); # Doppler shift freq, in Hz\n\n#result\nprint'Doppler shift frequency fd = %3.2e'%fd,' Hz';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Doppler shift frequency fd = 1.48e+04 Hz\n" } ], "prompt_number": 250 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 58,Page No:426" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nf = 6*10**9; # operating freq. of radar in Hz\nVr = 600; # radial ve. of of aircraft in kmph\nVo = 3*10**8; #vel of Em wave in m/s;\n\n#calculations\n\nlamda = Vo/float(f); # Wavelength in m\nVr1 = Vr*5/float(18); # kmph to m/s conversion\nfd = 2*Vr1/float(lamda); # Doppler shift freq, in Hz\n\nV = Vr1*math.cos((45*math.pi/float(180))); # vel in direction of radar if target direction changes by 45 deg\nfd1 = 2*V/float(lamda); #doppler shift freq. in Hz\n\n\n#result\nprint'Doppler shift frequency fd = %3.3g'%(fd/1000),'KHz';\nprint'Doppler shift frequency if the target changes its direction by 45deg %3.2f'%(fd1/1000),'KHz';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Doppler shift frequency fd = 6.67 KHz\nDoppler shift frequency if the target changes its direction by 45deg 4.71 KHz\n" } ], "prompt_number": 80 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 59,Page No:427" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nlamda = 3*10**-2; #Wavelength in m\nPRF = 1000; # Pulse Repetitive frequency in Hz\nn = 1; # n value for lowest blind speed\n\n#Calculations\nVb = (n*lamda/float(2))*PRF; #Blind speed of the Radar in m/s\n\n#result\nprint'Lowet blind speed %g'%Vb,'m/s';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Lowet blind speed 15 m/s\n" } ], "prompt_number": 254 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 60,Page No:427" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nPRF = 1000; # pulse repetitive frequency\nprint'V1b1 = (1* \u03bb1*PRF1)/2'; \nprint'V1b1 = (Vo*PRF1)/(2*f1)';\nprint'V2b3 = (3* \u03bb1*PRF2)/2'; \nprint'V2b3 = (3*Vo*PRF2)/(2*f2)';\nprint'But PRF1 = PRF2 and V1b1 = V2b3';\nprint'(Vo*PRF)/(2*f1) = (3*Vo*PRF)/(2*f2)' ;\nprint'f1/f2 = 1/3';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "V1b1 = (1* \u03bb1*PRF1)/2\nV1b1 = (Vo*PRF1)/(2*f1)\nV2b3 = (3* \u03bb1*PRF2)/2\nV2b3 = (3*Vo*PRF2)/(2*f2)\nBut PRF1 = PRF2 and V1b1 = V2b3\n(Vo*PRF)/(2*f1) = (3*Vo*PRF)/(2*f2)\nf1/f2 = 1/3\n" } ], "prompt_number": 123 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 61,Page No:428" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nPRF1 = 10*10**3; #pulse repetitive freq.1 \nPRF2 = 20*10**3; #pulse repetitive freq.2\nPav = 1000; # average tx. power\nPt = 10*10**3; # peak power\n\n#Calculations\nPRT1 = 1/float(PRF1); # pulse repetitive interval in sec\nPRT2 = 1/float(PRF2); # pulse repetitive interval in sec\nDC = Pav/float(Pt); # duty cycle\nPW1 = DC*PRT1 # pulse width for freq1\nPW2 = DC*PRT2 # pulse width for freq2\nE1 = Pt*PW1; # energy of first pulse\nE2 = Pt*PW2; # energy of second pulse\n\n#result\nprint'PW1 = ',PW1*1000,' ms';\nprint'PW2 =',PW2*1000,' ms';\nprint'Pulse Energy for PRF 10KHz is ',E1,' Joules';\nprint'Pulse Energy for PRF 20KHz is ',E2 ,' Joules';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "PW1 = 0.01 ms\nPW2 = 0.005 ms\nPulse Energy for PRF 10KHz is 0.1 Joules\nPulse Energy for PRF 20KHz is 0.05 Joules\n" } ], "prompt_number": 81 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 62,Page No:428" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nRunamb = 150*10**3; # unambigiuous range in m\nBW = 10**6; # bandwidth in Hz\nVo = 3*10**8; #vel of Em wave in m/s;\n\n#Calculations\nPRF = Vo/float((2*Runamb)) ; #pulse repetitive freq. in Hz \nPRT = 1/float(PRF); # pulse repetition interval\nRR = Vo/float((2*BW)); # Range Resolution\nPW = (2*RR)/float(Vo); #Pulse width in sec\n\n#result\nprint'PRF = %3.2f' %PRF,'Hz';\nprint'pulse repetition interval %3.3g'%(PRT*1000),' ms';\nprint'Range Resolution = %d' %RR,'m';\nprint'PulseWidth = %3.2f' %(PW*10**6),'us';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "PRF = 1000.00 Hz\npulse repetition interval 1 ms\nRange Resolution = 150 m\nPulseWidth = 1.00 us\n" } ], "prompt_number": 84 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 63,Page No:429" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nVr = 300; # Velocity of radar in m/s\nVair = 200; # velocty of aircraft in m/s\nf = 10*10**9; # Radar operating frequency\nVo = 3*10**8; # vel of Em wave in m/s;\n\n#Calculations\n\nlamda = Vo/float(f); # wavelength in m\nVrel = Vr+Vair; #relative radial vel. b/w radar and aircraft when approaching each other\nfd = (2*Vrel)/float(lamda); #Doppler frequency\n\n#result\nprint'Doppler frequency = %3.2f'%(fd/1000),'KHz';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Doppler frequency = 33.33 KHz\n" } ], "prompt_number": 259 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 64,Page No:429" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nPt = 2*10**6; # Peak power in Watts\nG = 45; # antenna gain in dB\nf = 6*10**9; # operating frequency \nTe = 290; # effective temp in kelvin\nSNRmin = 20; # min SNR in dB\nPW = 0.2*10**-3 # pulse width in sec\nF = 3; # Noise Figure\nB = 10*10**3; # bandwidth in KHz\nRCS = 0.1; # Radar cross section in m^2\nK = 1.38*10**-23; # boltzman constant\nVo = 3*10**8; #vel of Em wave in m/s;\n\n#antilog acalculations\nG1 = 10**(45/float(10)); # antilog conversion of gain\nSNR = 10**(20/float(10)); # antilog conversion of SNRmin\nF1 = 10**(3/float(10)); # antilog conversion of Noise Figure\n\nlamda = Vo/float(f); #wavelength in m\nRmax = ((Pt*G1*G1*lamda*lamda*RCS)/float(((64*math.pi*math.pi*math.pi)*(K*Te*B*F1*SNR))))**(0.25);\n#pt1 = 10*log10(Pt)\n#lamda1 = 10*log10(lamda^2)\n#G2 = 2*G\n#KTB = 10*log10(K*Te*B)\n#RCS1 = 10*log10(RCS)\n#p = 10*log10((4*%pi)^3)\n#R4max = [pt1+G1+lamda1+RCS1-p-KTB-F-SNRmin];\n\n#result\nprint'Maximum Range of the Radar is %3.2f'%(Rmax/100),'Km';\nprint'\\n Note: Calculation error is Textbook in multiplying K*Te*B';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Maximum Range of the Radar is 4214.69 Km\n\n Note: Calculation error is Textbook in multiplying K*Te*B\n" } ], "prompt_number": 262 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 65,Page No:430" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nG = 50; # antenna gain in dB\nf = 6*10**9; # operating frequency \nTe = 1000; # Noise temp in kelvin\nSNR = 20; # min SNR in dB\nL = 10; # Losses in dB\nF = 3; # Noise Figure in dB\nRCS = -10; # Radar cross section in dB\nK = 1.38*10**-23; # boltzman constant\nVo = 3*10**8; # vel of Em wave in m/s;\nDC = 0.3; # Duty cycle\nR = 300*10**3; # Range in kms\nPav = 1000; # Average power in watts\nSV = 20; # search volume\nTs = 3; # Scan time\n\n#calculations\n\nPav1 = 10*math.log10(Pav) #conversion to dB\nKT = 10*math.log10(Te*K) #conversion to dB\nR4 = 10*math.log10(R**4) #conversion to dB\nTs1 = 10*math.log10(Ts) #conversion to dB\n#SNR = (Pav*A*RCS*Ts)/(16*R**(4)*KT*L*F*SV));\nA = (SNR-Pav1-Ts-RCS+16+R4+KT+L+F+SV); #aperture\nPt = Pav/DC; #peak ower in watts\n#A1 =10^(A/10); # antilog calculation\n\n#result\nprint'A = %3.4g' %A,'dB';\nprint'Peak power Pt = %3.2f'%(Pt/1000),'KW';\nprint'Note: calculation error in textbook at KT';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "A = 66.48 dB\nPeak power Pt = 3.33 KW\nNote: calculation error in textbook at KT\n" } ], "prompt_number": 90 }, { "cell_type": "code", "collapsed": false, "input": "", "language": "python", "metadata": {}, "outputs": [], "prompt_number": 147 }, { "cell_type": "code", "collapsed": false, "input": "", "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }