{ "metadata": { "name": "raju chapter 1" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": "Chapter 1:Introduction to Radar, Radar Parameters and their Definitions" }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 1, Page No:34" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nPRF= 1000; #pulse repetitive frequency in Hz\nPW = 2*10**-6; #pulse width 2us\nPav=100; #average power in watts\n\n#Calculations\n\nPpeak = (Pav)/float((PW*PRF)); #Peak power in watts\nD = Pav/float(Ppeak); #Duty cycle\n\n#result\nprint' Peak power is ',Ppeak/1000,' KW';\nprint' Duty cycle is %3.1e'%D;\n\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": " Peak power is 50.0 KW\n Duty cycle is 2.0e-03\n" } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 2, Page No:35" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nPRF = 1.2*10**3; #pulse repetitive frequency in Hz\nPI = 0.6*10**-3; #pulse interval in sec\n\n#Calculations\n\nPRT = 1/float(PRF); #pulse repetition frequency in Hz\nPW = PRT-PI; #pulse width in sec;\n\n#result\nprint'Pulse repetitive time is %2.3g'%(PRT*1000),'ms';\nprint'Pulse width is %2.3g'%(PW*1000),'ms';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Pulse repetitive time is 0.833 ms\nPulse width is 0.233 ms\n" } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 3,Page No:35" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nD = float(0.001); #Duty Cycle\nPpeak =500*10**3; #Peak Power in Watts\n\n#Calculations\n\nPav = D * Ppeak; # D=averagepower/Peakpower;\n\n#result\nprint'Average power is %g'%Pav,' Watts';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Average power is 500 Watts\n" } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 4:Page No:35" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\n\nPRF = 1000; # pulse repetitive frequency in Hz\nPpeak = 10*10**6; # peak power in watts\nPav = 100*10**3; # average power in watts\n\n#Calculations\n\nD = Pav/float(Ppeak); #Duty cycle\nPRT = 1/float(PRF); #pulse repetitive time;\n\n#result\n\nprint'Duty cycle is %g'%D;\nprint'Repetitive time is %g'%(PRT*1000),'ms';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Duty cycle is 0.01\nRepetitive time is 1 ms\n" } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 5, Page No:36" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n#variable declaration\nF = 6*10**9; #frequency in Hz\nVo = 3*10**8; #velocity in m/s;\nVr = 200; #Radial velocity in kmph\n\n#Calculations\n\nlamda = Vo/float(F); #wavelength = vel/freq;\nFd = (2*Vr/float(lamda))*(5/float(18)); #doppler frequency in Hz\n\n#5/18 is multiplied to convert kmph to m/s\n\n#result\nprint'Doppler Frequency is %3.3g'%(Fd/1000),'KHz';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Doppler Frequency is 2.22 KHz\n" } ], "prompt_number": 15 } ], "metadata": {} } ] }