{ "metadata": { "name": "", "signature": "sha256:b24ac6268abeb9e8ceafeb2b8fcac357229b810faa15684921ddb633803d3d99" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 4 Wave nature of matter and the need for a wave function" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.1 Page no 58" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given \n", "V=100 #volts\n", "\n", "#Calculation \n", "import math\n", "wavelength=12.3/(math.sqrt(V))\n", "\n", "#Result\n", "print\"de Broglie wavelength of electrons \", wavelength,\"A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "de Broglie wavelength of electrons 1.23 A\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.2 Page no 58" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "K=100 #ev\n", "h=6.63*10**-34\n", "m=9.1*10**-31\n", "e=1.6*10**-19\n", "\n", "#Calculation\n", "import math\n", "v=h/(math.sqrt(2*m*K*e))\n", "\n", "#Result\n", "print\"de broglie wavelength of electrons \",round(v*10**10,1),\"A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "de broglie wavelength of electrons 1.2 A\n" ] } ], "prompt_number": 109 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.3 Page no 58" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "m=1.675*10**-27 #mass of neutron in kg\n", "v=1.4*10**-10 #de broglie wavelength in m\n", "h=6.63*10**-34 #Js\n", "\n", "#Calculation \n", "K=(h**2/(2*m*(v**2)))/(1.6*10**-19)\n", "\n", "#Result\n", "print\"Kinetic energy of neutron is \", round(K*10**2,2),\"*10**-2 ev\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Kinetic energy of neutron is 4.18 *10**-2 ev\n" ] } ], "prompt_number": 113 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.4 Page no 58" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "E=-3.4 #total energy in ev\n", "h=6.63*10**-34 #Js\n", "m=9.1*10**-31\n", "e=1.6*10**-19 \n", "\n", "#Calculation\n", "import math\n", "K=-E\n", "v=h/(math.sqrt(2*m*K*e))\n", "\n", "#Result \n", "print\"(a) Kinetic energy \",K,\"ev\"\n", "print\"(b) de broglie wavelength of the electron is \",round(v*10**10,3),\"A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Kinetic energy 3.4 ev\n", "(b) de broglie wavelength of the electron is 6.663 A\n" ] } ], "prompt_number": 64 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.5 Page no 59" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "m=1.672*10**-27 #mass of neutron in kg\n", "h=6.60*10**-34 #Js\n", "v=1.0*10**-10 #de broglie wavelength in m\n", "\n", "#Calculation\n", "K=(h**2/(2.0*m*v**2))/(1.6*10**-19)\n", "\n", "#Result\n", "print\"Kinetic energy of a neutron is \", round(K*10**2,2),\"*10**-2 ev\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Kinetic energy of a neutron is 8.14 *10**-2 ev\n" ] } ], "prompt_number": 116 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.6 Page no 59" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "m=10*10**-3 #mass of a ball in kg \n", "v=1 #Speed in m/s\n", "h=6.63*10**-34 #Js\n", "\n", "#Calculation\n", "V=h/(m*v) #Wavelength\n", "\n", "#Result\n", "print \"de broglie wavelength is \",V,\"m\"\n", "print\"This wavelength is negligible compared to the dimensions of the ball. therefore its effect can not be observed.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "de broglie wavelength is 6.63e-32 m\n", "This wavelength is negligible compared to the dimensions of the ball. therefore its effect can not be observed.\n" ] } ], "prompt_number": 87 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.7 Page no 59" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "T=27 #temperature in degree c\n", "K=1.38*10**-23 #boltzmann constant in J/K\n", "h=6.63*10**-34 #Js\n", "m=1.67*10**-27\n", "\n", "#Calculation\n", "import math\n", "T1=T+273\n", "v=h/(math.sqrt(2*m*K*T1))\n", "\n", "#Result\n", "print\"de broglie wavelength is \",round(v*10**10,2),\"A\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "de broglie wavelength is 1.78 A\n" ] } ], "prompt_number": 94 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.10 Page no 64" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "V=100 #ev\n", "a=10 #degree\n", "n=1\n", "\n", "#Calculation\n", "import math\n", "v=12.3/(math.sqrt(V)) #De broglie wavelength\n", "d=v/(2*math.sin(a*3.14/180.0))\n", "n=(2*d)/v\n", "\n", "#Result\n", "print\"(a) Spacing between the crystal plane is \", round(d,2),\"A\"\n", "print\"(b) Peaks in the interference pattern is \",round(n,2)\n", "print\"the largest possible value of n is 5\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Spacing between the crystal plane is 3.54 A\n", "(b) Peaks in the interference pattern is 5.76\n", "the largest possible value of n is 5\n" ] } ], "prompt_number": 117 } ], "metadata": {} } ] }