{ "metadata": { "name": "", "signature": "sha256:46bc70330d4213802afb03e252b2ad32eb9319ed4cc2a32fe2c16df97a5f1978" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 2 Particle nature of Radiation; The origin of Quantum theory" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2 Page no-12" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "E=40 #W\n", "lembda=6000*10**-10 #m\n", "h=6.63*10**-34 #Js\n", "c=3*10**8 #m/s\n", "\n", "#Calculation\n", "n=(E*lembda)/(h*c)\n", "\n", "#Result\n", "print\"No. of photons emitted per second are given by \",round(n*10**-19,2),\"*10**19\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "No. of photons emitted per second are given by 12.07 *10**19\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.3 Page no-12" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "a=3.2 #ev\n", "energy=3.8 #ev\n", "e=1.6*10**-19\n", "\n", "#Calculation\n", "c=energy-a\n", "Energy=c*e\n", "\n", "#Result\n", "print\"Kinetic energy of the photoelectron is given by \",Energy,\"Joule\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Kinetic energy of the photoelectron is given by 9.6e-20 Joule\n" ] } ], "prompt_number": 31 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.4 Page no-12" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "W=3.45 #ev\n", "h=6.63*10**-34 #Js\n", "c=3*10**8 #m/s\n", "e=1.6*10**-19\n", "\n", "#Calculation\n", "lembda=(h*c)/(W*e)\n", "\n", "#Result\n", "print\"Maximum wavelength of photon is \",round(lembda*10**10,0),\"A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum wavelength of photon is 3603.0 A\n" ] } ], "prompt_number": 193 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.5 Page no-12" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "W=3 #ev\n", "h=6.63*10**-34\n", "e=1.6*10**-19\n", "lembda=3.0*10**-7 #m\n", "c=3*10**8 #m/s\n", "\n", "#Calculation\n", "v0=(W*e)/h\n", "v=c/lembda\n", "E=h*(v-v0)\n", "E1=(h*(v-v0))/(1.6*10**-19)\n", "V0=E/e\n", "\n", "#Result\n", "print\"(a) Threshold frequency \",round(v0*10**-15,2),\"*10**15 HZ\"\n", "print\"(b) Maximum energy of photoelectron \",round(E1,2),\"eV\"\n", "print\"(c) Stopping potential \",round(V0,2),\"V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Threshold frequency 0.72 *10**15 HZ\n", "(b) Maximum energy of photoelectron 1.14 eV\n", "(c) Stopping potential 1.14 V\n" ] } ], "prompt_number": 197 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.6 Page no-13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "v0=6*10**14 #s**-1\n", "h=6.63*10**-34\n", "e=1.6*10**-19\n", "V0=3\n", "\n", "#Calculaton\n", "W=h*v0\n", "W0=(h*v0)/e\n", "V=(e*V0+h*v0)/h\n", "\n", "#Result \n", "print\"work function is given by \",round(W0,3),\"ev\"\n", "print\"frequency is given by \",round(V*10**-15,2),\"*10**15 s-1\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "work function is given by 2.486 ev\n", "frequency is given by 1.32 *10**15 s-1\n" ] } ], "prompt_number": 88 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.7 Page no 13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "lembda=6800.0*10**-10 #m\n", "h=6.6*10**-34\n", "W=2.3 #ev\n", "c=3*10**8 #m/s\n", "\n", "#Calculation\n", "E=((h*c)/lembda)/1.6*10**-19\n", "\n", "#Result\n", "print\"Energy is \",round(E*10**38,2),\"ev\"\n", "print\"since the energy of incident photon is less then the work function of Na, photoelecrticemession is not possible with the given light.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Energy is 1.82 ev\n", "since the energy of incident photon is less then the work function of Na, photoelecrticemession is not possible with the given light.\n" ] } ], "prompt_number": 200 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.8 Page no 14" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "lembda=3500*10**-10 #m\n", "h=6.6*10**-34\n", "c=3*10**8 #m/s\n", "\n", "#calculation \n", "E=((h*c)/lembda)/1.6*10**-19\n", "\n", "#Result\n", "print\"Energy is \" ,round(E*10**38,2),\"ev\"\n", "print\"1.9 ev < E < 4.2 ev,only metal B will yield photoelectrons\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Energy is 3.54 ev\n", "1.9 ev < E < 4.2 ev,only metal B will yield photoelectrons\n" ] } ], "prompt_number": 201 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.9 Page no 14" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "lembda=6.2*10**-6\n", "W=0.1 #ev\n", "h=6.6*10**-34 #Js\n", "c=3*10**8 #m/s\n", "e=1.6*10**-19\n", "\n", "#Calculation\n", "E=((h*c)/(lembda*e))-W\n", "\n", "#Result\n", "print\"Maximum kinetic energy of photoelectron \",round(E,1),\"ev\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum kinetic energy of photoelectron 0.1 ev\n" ] } ], "prompt_number": 112 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.10 Page no 14" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "e=1.60*10**-19 #C\n", "slope=4.12*10**-15 #Vs\n", "\n", "#Calculation\n", "h=slope*e\n", "\n", "#Result\n", "print\"Value of plank's constant \",h,\"Js\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Value of plank's constant 6.592e-34 Js\n" ] } ], "prompt_number": 114 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.11 Page no 15" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "W=2.26*1.6*10**-19 #ev\n", "v=10**6 #m/s\n", "m=9*10**-31\n", "\n", "#Calculation\n", "V=((1/2.0)*m*v**2+W)/h\n", "\n", "#Result\n", "print\"frequency of incident radiation \",round(V*10**-15,2),\"*10**15 HZ\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "frequency of incident radiation 1.23 *10**15 HZ\n" ] } ], "prompt_number": 118 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.12 Page no 15" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "V1=.82 #volts\n", "V2=1.85 #volts\n", "lembda1=4.0*10**-7 #m\n", "lembda2=3.0*10**-7\n", "e=1.6*10**-19\n", "c=3.0*10**8 #m/s\n", "\n", "#Calculation\n", "lembda=(1/lembda2)-(1/lembda1)\n", "h=(e*(V2-V1))/(c*lembda)\n", "\n", "#Result\n", "print\"(a) plank's constant \",h,\"Js\"\n", "print\"(b) no, because the stopping potentialdepends only on the wavelength of light and not on its intensity.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) plank's constant 6.592e-34 Js\n", "(b) no, because the stopping potentialdepends only on the wavelength of light and not on its intensity.\n" ] } ], "prompt_number": 202 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.13 Page no 16" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "h=6.62*10**-34 #Js\n", "c=3*10**8 #m/s\n", "lembda=4560.0*10**-10 #m\n", "p=1*10**-3 #W\n", "a=0.5/100\n", "e=1.6*10**-19\n", "\n", "#calculation\n", "E=(h*c)/lembda\n", "N=p/E #Number of photons incedent on the surface\n", "n=N*a\n", "I=n*e\n", "\n", "#result\n", "print\"Photoelectric current \",round(I*10**6,2),\"*10**-6 A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Photoelectric current 1.84 *10**-6 A\n" ] } ], "prompt_number": 131 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.14 Page no 22" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "m0=9.1*10**-31 #Kg\n", "c=3*10**8 #m/s\n", "h=6.6*10**-34 #Js\n", "v1=2.0*10**-10 #m\n", "\n", "#Calculation\n", "import math\n", "v= (h/(m0*c))*(1-(math.cos(90))*3.14/180.0)\n", "v2=v+v1\n", "v0=v2-v1\n", "E=(h*c*(v0))/(v1*v2)\n", "b=(1/(math.sin(90)*3.14/180.0))*((v2*10**-10/v1)-math.cos(90)*3.14/180.0)\n", "angle=3.14/2.0-math.atan(b)\n", "\n", "#Result\n", "print \"(a) the wavelength of scattered photon is \",round(v2*10**10,3),\"A\"\n", "print\"(b) The energy of recoil electron is \",round(E*10**17,2),\"*10**-17 J\"\n", "print\"(c) angle at which the recoil electron appears \",round(angle,2),\"degree\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) the wavelength of scattered photon is 2.024 A\n", "(b) The energy of recoil electron is 1.19 *10**-17 J\n", "(c) angle at which the recoil electron appears 1.11 degree\n" ] } ], "prompt_number": 278 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.15 Page no 23" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given \n", "E=0.9 #Mev\n", "a=120 #degree\n", "m=9.1*10**-31 #Kg\n", "c=3*10**8 #m/s\n", "\n", "#calculation\n", "b=((m*c**2)/1.6*10**-19)*10**32\n", "energy=E/(1+2*(E/b)*(3/4.0))\n", "\n", "#Result\n", "print \"energy of scattered photon \",round(energy,3),\"Mev\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "energy of scattered photon 0.247 Mev\n" ] } ], "prompt_number": 142 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.16 Page no 24" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "v1=2.000*10**-10 #m\n", "v2=2.048*10**-10 #m\n", "a=180 #degree\n", "a1=60 #degree\n", "h=6.6*10**-34\n", "c=3*10**8\n", "\n", "#Calculation\n", "import math\n", "b=(v2-v1)/(1-math.cos(a*3.14/180.0))\n", "V=v1+b*(1-math.cos(60*3.14/180.0))\n", "E=(h*c*(V-v1))/(V*v1)\n", "\n", "#Result\n", "print\"(a) wavelength of radiation scattered at an angle of 60 degree \",round(V*10**10,3),\"A\"\n", "print \"(b) Energy of the recoiul electron is \",round(E*10**18,2),\"*10**-18 J\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) wavelength of radiation scattered at an angle of 60 degree 2.012 A\n", "(b) Energy of the recoiul electron is 5.9 *10**-18 J\n" ] } ], "prompt_number": 277 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.17 Page no 24" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "E=4*10**3*1.6*10**-19\n", "m0=9.1*10**-31\n", "b=6.4*10**-16\n", "d=102.39*10**-16\n", "h=6.3*10**-34\n", "c=3*10**8\n", "\n", "#Calculation\n", "import math\n", "p=math.sqrt(2*m0*E)\n", "d=b+d\n", "lembda=(2*h*c)/d\n", "\n", "#Result\n", "print\"Wavelength of incident photon is \", round(lembda*10**10,2),\"A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Wavelength of incident photon is 0.35 A\n" ] } ], "prompt_number": 233 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.19 Page no 26" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "E=1.02 #Mev\n", "b=0.51\n", "\n", "#Calculation\n", "import math\n", "alpha=E/b\n", "a=1/(math.sqrt(2*(alpha+2)))\n", "angle=2*(math.asin(a)*180/3.14)\n", "e=E/(1.0+alpha*(1-(math.cos(angle*3.14/180.0))))\n", "\n", "#Result\n", "print\"(a) Angle for symmetric scattering is \", round(angle,1),\"degree\"\n", "print \"(b) energy of the scattered photon is \",round(e,2),\"Mev\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Angle for symmetric scattering is 41.4 degree\n", "(b) energy of the scattered photon is 0.68 Mev\n" ] } ], "prompt_number": 263 } ], "metadata": {} } ] }