{ "metadata": { "name": "", "signature": "sha256:f1e32f78d016d65eaf62d619ce157e62f2d402e55bfc70a9a046c3e8d919d007" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 11 : Pumping Machinery" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.1 Page No : 223" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variables\n", "\n", "import math \n", "h= 75. \t#ft\n", "e= 0.75\n", "k= 0.01\n", "Q= 3000. \t#gal/min\n", "k1= 1.2\n", "N= 1500.\n", "g= 32.2 \t#ft/sec**2\n", "D= 0.836 \t#ft\n", "\n", "#CALCULATIONS\n", "W= h/e\n", "v1= math.sqrt((W-h)/k)\n", "Q1= Q/374.06\n", "f1= Q1/(k1*D**2)\n", "u1= math.pi*D*N/60\n", "w1= W*g/u1\n", "B= math.degrees(math.atan((f1/(u1-w1))))\n", "\n", "#RESULTS\n", "print 'Diameter of impeller = %.3f ft '%(D)\n", "print ' Blade angle at outlet edge of impeller = %.f degrees '%(B)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Diameter of impeller = 0.836 ft \n", " Blade angle at outlet edge of impeller = 30 degrees \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.3 Page No : 226" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#initialisation of variables\n", "V= 150. \t#ft**3/sec\n", "A1= 750. \t#r.p.m\n", "di= 21. \t#in\n", "do= 30. \t#in\n", "v= 50. \t#ft/sec\n", "A= 70. \t#degrees\n", "w= 4.\t#in\n", "p= 30. \t#per cent\n", "p1= 25. \t#per cent\n", "sv= 12.8 \t#ft**3/lb\n", "g= 32.2 \t#ft/sec**2\n", "\n", "#CALCULATIONS\n", "u= A1*2*math.pi*di/(24*60)\n", "u1= A1*2*math.pi*do/(24*60)\n", "f1= V/(math.pi*(do/12)*(1./3))\n", "w1= u1-f1*1/math.tan(math.radians((A)))\n", "v1= math.sqrt(f1**2+w1**2)\n", "P= (u1**2+v**2-(f1**2/(math.sin(math.radians(A)))**2))/(2*g)\n", "h= 30*v1**2/(100*2*g)\n", "Nh= v1**2/(20*2*g)\n", "Prt= P+Nh\n", "W= u1*w1/g\n", "e= Prt*100/W\n", "Power= Prt*V/(sv*550)\n", "\n", "#RESULTS\n", "print 'Total pressure rise = %.1f ft of air'%(Prt)\n", "print ' manometric efficiency = %.1f percent'%(e)\n", "print ' Power = %.2f hp '%(Power)\n", "\n", "#The answer is a bit different due to rounding off error in textbook\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Total pressure rise = 137.9 ft of air\n", " manometric efficiency = 58.5 percent\n", " Power = 2.94 hp \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.4 Page No : 228" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#initialisation of variables\n", "g= 32.2 \t#ft/sec**2\n", "u1= 90. \t#ft/sec\n", "w1= 70. \t#ft\n", "e= 0.8\n", "h1= 10. \t#ft\n", "h2= 16. \t#ft\n", "h3= 5. \t#ft\n", "k= 2./5\n", "f1= 20. \t#ft/sec\n", "f= 18. \t#ft/sec\n", "a= 45. \t #degrees\n", "x1= 164.4 \t#ft\n", "\n", "#CALCULATIONS\n", "Hm= u1*w1/g\n", "Hm1= e*Hm\n", "lh= Hm-Hm1-h1-h2-h3\n", "vg= k*math.sqrt(f1**2+w1**2)\n", "pr= ((f**2+u1**2-f1**2/(math.sin(math.radians(a)))**2)/(2*g))-h2\n", "pr1= x1-pr\n", "ge= pr1*g*2*100/(vg/k)**2\n", "\n", "#RESULTS\n", "print 'manometer Head = %.1f ft '%(Hm1)\n", "print ' outlet velocity from guides = %.1f ft/sec '%(vg)\n", "print ' Pressure rise through impeller only = %.1f ft '%(pr)\n", "print ' Guide balde efficiency = %.f per cent '%(ge)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "manometer Head = 156.5 ft \n", " outlet velocity from guides = 29.1 ft/sec \n", " Pressure rise through impeller only = 102.4 ft \n", " Guide balde efficiency = 75 per cent \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.6 Page No : 231" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#initialisation of variables\n", "D1= 7.5 \t#in\n", "Q1= 850. \t#gal/min\n", "p1= 62.4 \t#lb/ft**3\n", "N1= 1800.\n", "D2= 15. \t#in\n", "Q2= 12000. \t#gal/min\n", "p2= 64. \t#lb/ft**3\n", "N1= 1800. \t#r.p.m \n", "H1= 14. \t#lb/ft**2\n", "\n", "#CALCULATIONS\n", "N2= Q2*N1*(D1)**3/(Q1*D2**3)\n", "P1= p1*H1/144\n", "P2= P1*N2**2*D2**2*p2/(N1**2*p1*D1**2)\n", "\n", "#RESULTS\n", "print 'N2 = %.f r.p.m '%(N2+4)\n", "print ' P2 = %.f lb/in**2 '%(P2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "N2 = 3180 r.p.m \n", " P2 = 78 lb/in**2 \n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.8 Page No : 234" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#initialisation of variables\n", "r= 5.\n", "\n", "#CALCULATIONS\n", "sr= r**2\n", "sr1= r**2/r\n", "\n", "#RESULTS\n", "print 'Corresponding ratio = %.f '%(sr)\n", "print ' Corresponding ratio = %.f '%(sr1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Corresponding ratio = 25 \n", " Corresponding ratio = 5 \n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.9 Page No : 236" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#initialisation of variables\n", "e= 0.88\n", "w= 1.25 \t#in\n", "d= 10. \t#in\n", "q= 630. \t#gal/min\n", "a= 40. \t#degrees\n", "g= 32.2 \t#ft/sec**2\n", "e1= 0.83\n", "\n", "#CALCULATIONS\n", "Q= q/(6.24*60)\n", "f1= Q/(e*math.pi*(d/12)*(w/12))\n", "u1= 1000*(w*4/12)*2*math.pi/60\n", "w1= u1-f1*1/math.tan(math.radians(a))\n", "W= u1*w1/g\n", "lr= (f1**2+u1**2-f1**2/(math.sin(math.radians(a)))**2)/(2*g)\n", "mh= e1*W\n", "p= mh-lr\n", "v1= math.sqrt(f1**2+w1**2)\n", "ke= v1**2/(2*g)\n", "pke= p*100/ke\n", "me= 100*lr/W\n", "\n", "#RESULTS\n", "print 'Velocity of flow = %.f ft/sec'%(f1)\n", "print ' Work done = %.1f ft-lb/lb'%(W)\n", "print ' manometric efficiency = %.1f ft'%(mh)\n", "print ' Pressure recovered = %.1f ft head'%(p)\n", "print ' Kinetic energy discharge = %.f ft-lb/lb'%(ke)\n", "print ' Percentage of kinetic energy recovered = %.1f per cent'%(pke)\n", "print ' manometric efficiency = %d percent'%(me)\n", "\n", "#The answer is a bit different due to rounding off error in textbook\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Velocity of flow = 7 ft/sec\n", " Work done = 47.8 ft-lb/lb\n", " manometric efficiency = 39.7 ft\n", " Pressure recovered = 11.2 ft head\n", " Kinetic energy discharge = 20 ft-lb/lb\n", " Percentage of kinetic energy recovered = 55.7 per cent\n", " manometric efficiency = 59 percent\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.10 Page No : 239" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#initialisation of variables\n", "W1= 7640. \t#gal/min\n", "W2= 11400. \t#gal/min\n", "Hm= 63. \t#ft\n", "Hm1= 80. \t#ft\n", "ep1= 72. \t#per cent\n", "ep2= 76. \t#per cent\n", "\n", "#CALCULATIONS\n", "whp1= W1*Hm/(60*550)\n", "whp2= W2*Hm1/(60*550)\n", "bhp1= whp1*100/ep1\n", "bhp2= whp2*100/ep2\n", "w1= W2/10\n", "\n", "#RESULTS\n", "print 'For both pumps discharge = %.f gal/min against an 80-ft head'%(W2)\n", "print ' delivery from one pump = %.1f h.p '%(bhp1)\n", "print ' delivery from two pumps = %.1f h.p '%(bhp2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "For both pumps discharge = 11400 gal/min against an 80-ft head\n", " delivery from one pump = 20.3 h.p \n", " delivery from two pumps = 36.4 h.p \n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.11 Page No : 241" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#initialisation of variables\n", "h= 94. \t#ft\n", "w= 62.4 \t#lb/ft**3\n", "e= 0.58\n", "p= 73.5 \t#per cent\n", "\n", "#CALCULATIONS\n", "WHP= h*e*w/550\n", "BHP= WHP/(p/100)\n", "\n", "#RESULTS\n", "print 'W.H.P= %.2f h.p'%(WHP)\n", "print ' Brake horse power= %.1f'%(BHP)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "W.H.P= 6.19 h.p\n", " Brake horse power= 8.4\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.12 Page No : 243" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#initialisation of variables\n", "sl= 12. \t#ft\n", "l= 20. \t#ft\n", "d= 4. \t#in\n", "dp= 6. \t#in\n", "lst= 18. \t#in\n", "k= 0.025\n", "H= 32. \t#ft\n", "g= 32.2 \t#ft/sec**2\n", "pf= 6. \t#ft\n", "a= 33.83 \n", "a1= 9.53\n", "\n", "#CALCULATIONS\n", "A= math.sqrt((H-sl-d)*g/a)*a1\n", "Q= 2*math.pi*(dp/12)**2*lst/(12*4*60)\n", "v= Q/(math.pi*(d/12)**2/4)\n", "kh= v**2/(2*g)\n", "fh= k*l*v**2*12/(2*g*d)\n", "N= math.sqrt((H-sl-pf)/(kh+fh))\n", "\n", "#RESULTS\n", "print 'premissible speed = %.1f r.p.m'%(A)\n", "print ' maximum premissible speed = %.1f r.p.m'%(N)\n", "\n", "#The answer is a bit different due to rounding off error in textbook\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "premissible speed = 37.2 r.p.m\n", " maximum premissible speed = 168.8 r.p.m\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.13 Page No : 245" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#initialisation of variables\n", "b= 6. \t#in\n", "s= 12. \t #in\n", "d= 4. \t #in\n", "a1= 30. \t#degrees\n", "a2= 90. \t#degrees\n", "a3= 120. \t#degrees\n", "N= 120. \t#r.p.m\n", "n= 4.\n", "#calculations\n", "A= 2*math.pi*N/60\n", "V= math.pi*(b/12)**2*n/4\n", "v= (b/12)**2*A*(b/12)/(d/12)**2\n", "Q1= v*math.pi*(d/12)**2*math.sin(math.radians(a1))/4\n", "Q2= v*math.pi*(d/12)**2*math.sin(math.radians(a2))/4\n", "Q3= v*math.pi*(d/12)**2*math.sin(math.radians(a3))/4\n", "Q4= V-Q1\n", "Q5= Q2-V\n", "Q6= Q3-V\n", "a4= math.degrees(math.asin(V/(v*math.pi*(d/12)**2)))+a1\n", "A= 180-a4\n", "\n", "#RESULTS\n", "print 'rate of flow at a1 = %.3f cuses'%(Q4)\n", "print ' rate of flow at a2 = %.3f cuses'%(Q5)\n", "print ' rate of flow at a3 = %.3f cuses'%(Q6)\n", "print ' crak angle = %.1f degrees'%(a4)\n", "print ' crak angle = %.1f degrees'%(A)\n", "\n", "#The answer is a bit different due to rounding off error in textbook\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "rate of flow at a1 = 0.169 cuses\n", " rate of flow at a2 = 0.448 cuses\n", " rate of flow at a3 = 0.283 cuses\n", " crak angle = 39.2 degrees\n", " crak angle = 140.8 degrees\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.14 Page No : 247" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "#initialisation of variables\n", "n= 2. \t#strokes/sec\n", "dp= 6. \t#in\n", "ds= 18. \t#in\n", "ds1=4. \t#in\n", "l= 20. \t#ft\n", "l1= 20. \t#ft\n", "f= 0.008\n", "la= 5. \t#ft\n", "A= 60. \t#r.p.m\n", "f= 0.008\n", "w= 62.4 \t#lb/ft**3\n", "g=32.2\n", "\n", "#CALCULATIONS\n", "V= math.pi*(ds/12)*n*(dp/12)**2/4\n", "vmp= 2*math.pi*A*(ds/24)/60\n", "vmp1= vmp*(dp**2/ds1**2)\n", "hfmax= 4*f*(l-la)*vmp1**2/(2*g*ds1/12)\n", "H1= round(2*hfmax/3,1)\n", "H2= H1*13\n", "Wls= (H1+H2)*w*math.pi/16*1.5*2\n", "mv= V/(math.pi*(ds1/12)**2/4)\n", "lh= round(4*f*(l-la)*mv**2/(2*g*(ds1/12)),2)\n", "lhf= 12*lh\n", "Wls1= (lh+13.21)*w*math.pi*1.5/16 *2 \n", "WS= Wls-Wls1\n", "\n", "#RESULTS\n", "print 'Work lost per second= %.f ft lb/sec'%(Wls)\n", "print ' Work saved per second = %.f ft-lb/sec'%(WS)\n", "\n", "#The answer is a bit different due to rounding off error in textbook\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Work lost per second= 875 ft lb/sec\n", " Work saved per second = 352 ft-lb/sec\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.15 Page No : 248" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#initialisation of variables\n", "d= 7.5 \t#in\n", "s= 15. \t#in\n", "l= 36. \t#ft\n", "h1= 34. \t#ft\n", "h2= 12. \t#ft\n", "L= 10. \t #ft\n", "g= 32.2 \t#ft/sec**2\n", "f= 0.008\n", "l1= 20. \t#ft\n", "d1= 4. \t#in\n", "h3= 110. \t#ft\n", "w= 62.4 \t#lb/ft**3\n", "l2= 180. \t#ft\n", "\n", "#CALCULATIONS\n", "Q= (math.pi/4)*(d)**2*(s/12)*2*(l/60)/144\n", "v= Q/((math.pi/4)*(d1/12)**2)\n", "a= (d/4)**2*(d/12)*(l*2*math.pi/60)**2\n", "H= h1-h2-(L*a/g)-(v**2*0.5/g)-(4*f*l1*v**2/(2*g*(d1/12)))\n", "H1= h1+h3+(L*a/g)+(v**2*0.5/g)+(4*f*l2*v**2/(2*g*(d1/12)))\n", "dh= (H1-H)*w/144\n", "NP= dh*(math.pi/4)*d**2\n", "\n", "#RESULTS\n", "print 'Head at piston = %.2f ft of water absolute'%(H)\n", "print ' Head at piston = %.2f ft of water absolute'%(H1)\n", "print ' Difference on head of piston = %.f lb/in**2'%(dh)\n", "print ' Net load on piston = %.f lb'%(NP)\n", "\n", "#The answer is a bit different due to rounding off error in textbook\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Head at piston = 11.04 ft of water absolute\n", " Head at piston = 161.59 ft of water absolute\n", " Difference on head of piston = 65 lb/in**2\n", " Net load on piston = 2882 lb\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.16 Page No : 250" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "from numpy import *\n", "from numpy.linalg import *\n", "\n", "#initialisation of variables\n", "f= 0.009\n", "dc= 3.5 \t#in\n", "ds= 6. \t#in\n", "r= 0.25\n", "sl= 8. \t#ft\n", "d= 2.5 \t#in\n", "l= 14. \t#ft\n", "el= 8. \t#ft\n", "ed= 22.5 \t#in\n", "ph= 4. \t#ft\n", "g= 32.2 \t#ft/sec**2\n", "f= 0.009\n", "\n", "#CALCULATIONS\n", "BC= el+l\n", "v= math.sqrt(BC*g/(l*(d/2)*(r)*(dc/d)**2))*9.55\n", "vec=roots([2,1/r,-1])\n", "H1= 77\n", "MV= math.sqrt(BC*g/(l*(d/2)*(r)*(dc/d)**2))*r*(math.sin(math.radians(H1))+(math.sin(math.radians(2*H1))/8))\n", "mvp= MV*dc**2/d**2\n", "hf= 4*f*(sl+l)*mvp**2/(2*g*(d/12))\n", "\n", "#RESULTS\n", "print 'pump speed = %.1f r.p.m'%(v)\n", "print ' Friction head = %.3f ft'%(hf)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "pump speed = 86.8 r.p.m\n", " Friction head = 1.240 ft\n" ] } ], "prompt_number": 15 } ], "metadata": {} } ] }