{ "metadata": { "name": "", "signature": "sha256:54b93ceee4137049e1ed8024ecd6ba8e7f6645f46f71063561c8d2f8b4589ff2" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 10 : Hydraulic Prime Movers" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.1 Page No : 188" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "#initialisation of variables\n", "v= 231. \t#ft/sec\n", "g= 32.2 \t#ft/sec**2\n", "vc= 0.97\n", "r= 0.47\n", "p= 85. \t#per cent\n", "A= 170. \t#degrees\n", "p1= 88. \t#per cent\n", "l= 950. \t#ft\n", "\n", "#CALCULATIONS\n", "H= v**2/(vc**2*2*g)\n", "u= r*v\n", "vr= v-u\n", "vr1= p*vr/100\n", "w1= u-vr1*math.cos(math.radians(180-A))\n", "W= u*(v-w1)/g\n", "he= W*100/H\n", "W1= p1*W/100\n", "oe= W1*100/l\n", "\n", "#RESULTS\n", "print 'hydraulic efficiency = %.f percent'%(he)\n", "print ' overall efficiency = %.1f percent'%(oe)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "hydraulic efficiency = 86 percent\n", " overall efficiency = 70.2 percent\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.2 Page No : 189" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "#initialisation of variables\n", "d= 1. \t#in\n", "v= 95. \t#ft/sec\n", "F= 173.2 \t#lb\n", "A= 163. \t#degrees\n", "H= 500. \t#ft\n", "Cv= 0.97\n", "d1= 1.33 \t#ft\n", "r= 0.47\n", "w= 62.4 \t#lb/ft**3\n", "g= 32.2 \t#ft/sec**2\n", "\n", "#CALCULATIONS\n", "Q= w*math.pi*v/(144*4)\n", "k= (F-v)/(v*math.cos(math.radians(180-A)))\n", "v1= Cv*math.sqrt(2*g*H)\n", "W= v1*w*d**2*math.pi/(4*144)\n", "N= 60*r*v1/(math.pi*d1)\n", "whp= (v1-v)*(1+k*math.cos(math.radians(180-A)))*v1*2/550\n", "Ns= N*whp**0.5/H**1.25\n", "\n", "#RESULTS\n", "print 'specific speed = %.2f r.p.m'%(Ns)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "specific speed = 4.75 r.p.m\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.4 Page No : 192" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#initialisation of variables\n", "D= 2. \t#ft\n", "f= 0.005\n", "l= 10000. \t#ft\n", "g= 32.2 \t#ft/sec**2\n", "H= 1000. \t#ft\n", "w= 62.4 \t#lb/ft**3\n", "\n", "#CALCULATIONS\n", "d= (2*D**5/(f*l))**0.25\n", "v= math.sqrt(8*g*H*D**5/(f*l*d**4+4*D**5))\n", "HP= w*math.pi*d**2*v**3/(2*g*550*4)\n", "Q= math.pi*d**2*(HP/67)/4\n", "\n", "#RESULTS\n", "print 'Quantity flowing = %.f cusecs'%(Q)\n", "\n", "# rounding off error\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Quantity flowing = 185 cusecs\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.5 Page No : 193" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "#initialisation of variables\n", "pl= 122.5 \t# ft\n", "Hw= 1225 \t#ft\n", "g= 32.2 \t#ft/sec**2\n", "Cd= 0.98\n", "Cd1= 0.45\n", "N= 500. \t#r.p.m\n", "P= 6800. \t#h.p\n", "n= 0.86\n", "w= 62.4 \t#lb/ft**2\n", "l= 5450. \t#ft\n", "f= 0.005\n", "A= 18. \t#ft**2\n", "\n", "#CALCULATIONS\n", "Ah= Hw-pl\n", "js= Cd*math.sqrt(2*g*Ah)\n", "bs= Cd1*js\n", "D= bs*60*2/(N*2*math.pi)\n", "a= P*2*g*550*144/(n*w*js**3*2)\n", "vp= math.sqrt(pl*2*g/(4*f*l))\n", "dp= (js*2*4*A/(math.pi*144*vp))**(2./3)\n", "dp=2.495 \t#ft\n", "\n", "#RESULTS\n", "print 'diameter of bucket circle D = %.1f ft'%(D)\n", "print ' area of jet = %.f in**2'%(a)\n", "print ' diameter of pipe = %.1f ft'%(dp)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "diameter of bucket circle D = 4.5 ft\n", " area of jet = 18 in**2\n", " diameter of pipe = 2.5 ft\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.6 Page No : 194" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "#initialisation of variables\n", "u= 10.*math.pi \t#ft/sec\n", "u1= 5.*math.pi \t#ft/sec\n", "a= 20. \t#degrees\n", "A= 300. \t#r.p.m\n", "v= 10. \t#ft/sec\n", "g= 32.2 \t#ft/sec**2\n", "wi= 2. \t#ft\n", "d= 6. \t#in\n", "w1= 62.4 \t#lb/ft**3\n", "\n", "#CALCULATIONS\n", "w= v/math.tan(math.radians(a))\n", "a1= math.degrees(math.atan((v/(u-w))))\n", "b= math.degrees(math.atan((v/u1)))\n", "W= u*w/g\n", "A1= math.pi*wi*d/12\n", "Q= A1*v\n", "WHP= W*Q*w1/550\n", "\n", "#RESULTS\n", "print 'Blade angle at inlet is given by = %.2f degrees'%(a1)\n", "print ' Blade angle at inlet is given by = %.2f degrees'%(b)\n", "print ' Water horse power = %.1f h.p'%(WHP)\n", "\n", "# rounding off error" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Blade angle at inlet is given by = 68.49 degrees\n", " Blade angle at inlet is given by = 32.48 degrees\n", " Water horse power = 95.5 h.p\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.7 Page No : 196" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#initialisation of variables\n", "g= 32.2 \t#ft/sec**2\n", "H= 100. \t#ft\n", "a= 25. \t#degrees\n", "a1= 20. \t#degrees\n", "r1= 9./8\n", "r2= 0.2\n", "u= 6.63 \t#ft/sec\n", "w= 62.4 \t#lb/ft**3\n", "h1= 34. \t#ft\n", "h2= 100. \t#ft\n", "r= 0.1\n", "\n", "#CALCULATIONS\n", "f= math.sqrt(H*g/((r1*1/math.tan(math.radians(a))*1/math.tan(math.radians(a1)))+r1*0.5+(r1*0.5**2*0.2/(math.sin(math.radians(a)))**2)+0.1/(math.sin(math.radians(a1+10)))**2))\n", "W= u*f**2/g\n", "q= a*H*550/(10*W*w)\n", "q1= q/w\n", "A= q/f\n", "dh= h1+h2-((1+r)*f**2/((math.sin(math.radians(a1)))**2*2*g))\n", "\n", "#RESULTS\n", "print 'f = %.1f ft/sec'%(f)\n", "print ' Work Done = %.1f ft-lb/lb'%(W)\n", "print ' Quantity flow = %.1f cusecs'%(q)\n", "print ' Area form guides = %.3f ft**2'%(A)\n", "print ' Pressure at entry of level = %.1f ft of water'%(dh)\n", "\n", "#The answer is a bit different due to rounding off error in textbook\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "f = 20.2 ft/sec\n", " Work Done = 83.9 ft-lb/lb\n", " Quantity flow = 26.3 cusecs\n", " Area form guides = 1.302 ft**2\n", " Pressure at entry of level = 74.5 ft of water\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.8 Page No : 199" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "#initialisation of variables\n", "d= 8. \t#in\n", "w= 2. \t#in\n", "di= 12. \t#in\n", "wi= 3. \t#in\n", "a= 24. \t#degrees\n", "p= 88. \t#per cent\n", "a1= 85. \t#degrees\n", "a2= 30. \t#degrees\n", "p1= 94. \t#per cent\n", "h= 180. \t#ft\n", "d1= 18. \t#in\n", "Cd= 0.92\n", "g=32.2\n", "n1= 111. \t#rpm\n", "\n", "#calculations\n", "r1= 1./math.tan(math.radians(a))\n", "r2= (1./math.tan(math.radians(a1)))+r1\n", "r3= 2*r2/3\n", "r4= (1/math.tan(math.radians(a2)))-r3\n", "a3= math.tan(math.radians(1/r4))\n", "r5= math.sin(math.radians(a3))\n", "f= math.sqrt(g*h*(p/100.)/(r1*r2+r3*r4+(r5**2/2)))\n", "A= r2*f/(d/12)\n", "N= (A*60/(2*math.pi))-n1\n", "W= (r1*r2+r3*r4)*f**2/g\n", "Q= math.pi*(d1/12)*(w/12)*Cd*f*62.08\n", "whp= W*Q/550\n", "bhp= p1*whp/100\n", "\n", "#RESULTS\n", "print 'Speed = %.f rpm'%(N)\n", "print ' output horsepower = %.f hp'%(bhp)\n", "\n", "# slightly change in r1,r2,r3 and that leads to some error in answer. Please check manually." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Speed = 905 rpm\n", " output horsepower = 369 hp\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.9 Page No : 201" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "#initialisation of variables\n", "N= 428.6 \t#r.p.m\n", "D= 5. \t#ft\n", "w= 62.4 \t#lb/ft**3\n", "hp= 16800. \t#hp\n", "Qw= 435. \t#cuses\n", "g= 32.2 \t#ft/sec**2\n", "v= 32. \t#ft/sec\n", "v1= 24. \t#f/sec\n", "H= 200. \t#ft\n", "lh1= 0.32 \t#ft lb/lb\n", "\n", "#CALCULATIONS\n", "u= math.pi*D*N/60\n", "W= hp*550/(Qw*w)\n", "w= W*g/u\n", "a= math.radians(math.tan(v/w))\n", "va= math.sqrt(w**2+v**2)\n", "b= math.radians(math.tan(v/(u-w)))\n", "B= 180-b\n", "vew= va**2/(2*g)\n", "ve1w= v1**2/(2*g)\n", "LH= H+vew-ve1w-W+lh1\n", "\n", "#RESULTS\n", "print ' Absolute velocity at entry to runner = %.1f ft/sec'%(va)\n", "print ' Loss of head in runner = %.2f ft lb/lb'%(LH)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Absolute velocity at entry to runner = 102.8 ft/sec\n", " Loss of head in runner = 15.05 ft lb/lb\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.10 Page No : 203" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "\n", "#initialisation of variables\n", "A1= 25. \t#degrees\n", "A2= 80. \t#degrees\n", "H1= 100. \t#ft\n", "H2= 13. \t#ft\n", "g= 32.2 \t#ft/sec**2\n", "v= 8. \t#ft/sec\n", "d= 3.5 \t#in\n", "de= 15.4 \t#in\n", "b= 1.5 \t#in\n", "w= 62.4 \t#lb/ft**3\n", "\n", "#CALCULATIONS\n", "W= H1-H2-(v**2/(2*g))\n", "f= math.sqrt(W*g/(1/math.tan(math.radians(A1))*(1/math.tan(math.radians(A1))-1/math.tan(math.radians(A2)))))\n", "u= f*(1/math.tan(math.radians(A1))-1/math.tan(math.radians(A2)))\n", "V= d*u/7.7\n", "r= math.degrees(math.atan(f/V))\n", "N= 60*u*12/(math.pi*de)\n", "Q= math.pi*de*f*b/144\n", "HP= Q*w*W/550\n", "Ns= N*math.sqrt(HP)/H1**1.25\n", "di= math.sqrt(Q*4*144/(math.pi*f))\n", "\n", "#RESULTS\n", "print 'angle = %.f degrees'%(r)\n", "print \" Angular speed = %.1f rpm\"%(Ns)\n", "print ' inlet diameter to draft tube = %.2f in'%(di)\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "angle = 48 degrees\n", " Angular speed = 26.6 rpm\n", " inlet diameter to draft tube = 9.61 in\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.12 Page No : 207" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#initialisation of variables\n", "H= 82.1 \t#ft\n", "h= 90. \t#ft\n", "k= 0.00646\n", "k1= 0.00454\n", "vd= 11. \t#ft/sec\n", "P= 0.53 \t#hp\n", "\n", "#CALCULATIONS\n", "Q= math.sqrt((1/k))*math.sqrt(h-H)\n", "Qu= Q/math.sqrt(H)\n", "Q1= math.sqrt(vd/k1)\n", "hf= Q1**2*k\n", "Qu1= Q1/math.sqrt(h-hf)\n", "Pu= P*(h-hf)**1.5\n", "\n", "#RESULTS\n", "print 'Qu = %.2f cuses'%(Qu)\n", "print ' Q = %.1f cuses'%(Q1)\n", "print ' power Developed = %.f hp'%(Pu)\n", "\n", "\n", "# rounding off error" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Qu = 3.86 cuses\n", " Q = 49.2 cuses\n", " power Developed = 340 hp\n" ] } ], "prompt_number": 7 } ], "metadata": {} } ] }