{ "metadata": { "name": "", "signature": "sha256:0f5ebffba7421842791b4539c2f380869e20570438cc6f427747cc5e01bc6228" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 6 : pumping of liquids\n" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 6.1 page no : 115" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math \n", "from numpy import *\n", "\n", "# Initialization of Variable\n", "atp = 100.2*1000.\n", "g = 9.81\n", "rho_w = 996.\n", "rho_toluene = 867.\n", "vap_pre_toluene = 4.535*1000\n", "viscosity_toluene = 5.26/10000\n", "\n", "#calculation\n", "m = (atp-vap_pre_toluene)/rho_toluene/g\n", "print \"Max. height of toluene supported by atm. pressure (in m): %.4f\"%m\n", "\n", "#part(1)\n", "hopw = 0.650 #head of pump in terms of water\n", "hopt = hopw*rho_w/rho_toluene #head of pump in terms of toluene\n", "Q = 1.8*10**-3 #flow in m**3/s\n", "d = 2.3*10**-2 #diameter of pipe\n", "pi = 3.14127\n", "\n", "#u = 4*Q/pi/d**2\n", "#substituting this for reynolds no.\n", "Re = 4*Q*rho_toluene/pi/d/viscosity_toluene #reynolds no.\n", "print \"reynolds no : %.4f\"%Re\n", "phi = 0.0396*Re**-0.25\n", "\n", "\n", "#since both LHS and RHS are function of x(max. ht. ab. toluene) \n", "#we define a new variable to solve the eqn\n", "#y = (atp/rho_toluene/g)-(vap_pre_toluene/rho_toluene/g)-(4*phi*16*Q**2*x/pi**2/d**5/g)-hopt\n", "#y = x \n", "#these are two equations\n", "\n", "b = array([0,((atp/rho_toluene/g)-(vap_pre_toluene/rho_toluene/g)-hopt)])\n", "A = array([[1, -1],[1, 4*phi*16*Q**2/pi**2/d**5/g]])\n", "x = linalg.solve(A ,b)\n", "print \"the maximum height above toulene in the tank the pump can be \\\n", "located without risk while flow rate is 1.80dm**3/s (in m): %.4f\"%x[0]\n", "\n", "#solution of part(2)\n", "l = 9. #length \n", "u = math.sqrt(((atp/rho_toluene/g)-(vap_pre_toluene/rho_toluene/g)-hopt-l)*d*g/4/phi/l) #fluid velocity in pipes\n", "Q = pi*d**2*u/4\n", "print \"Maximum delivery rate if pump is located 9m above toluene tank(in m**3/s) %.4f\"%Q\n", "\n", "#solution of part(3)\n", "#clubing d together we get\n", "Q = 1.8/1000.\n", "a = (atp/rho_toluene/g)-(vap_pre_toluene/rho_toluene/g)-hopt-l\n", "b = a*pi**2*g/4./9./16./Q**2/0.0396/(4*Q*rho_toluene/pi/viscosity_toluene)**-0.25\n", "d = (1./b)**(1./4.75)\n", "print \"minimum smooth diameter of suction pipe which will have flow \\\n", "rate as (1.8 dm**3/s) for pump kept at 9 m high (in m):\",d\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Max. height of toluene supported by atm. pressure (in m): 11.2477\n", "reynolds no : 164260.3512\n", "the maximum height above toulene in the tank the pump can be located without risk while flow rate is 1.80dm**3/s (in m): 6.3463\n", "Maximum delivery rate if pump is located 9m above toluene tank(in m**3/s) 0.0009\n", "minimum smooth diameter of suction pipe which will have flow rate as (1.8 dm**3/s) for pump kept at 9 m high (in m): 0.0306728431855\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 6.2 pageno : 118" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math \n", "# Initialization of Variable\n", "Q1 = 24.8/1000 #flow in pump 1\n", "d1 = 11.8/100 #diameter of impeller 1\n", "H1 = 14.7 #head of pump 1\n", "N1 = 1450. #frequency of motor 1\n", "Q2 = 48/1000. #flow in pump 2\n", "\n", "#calculation\n", "H2 = 1.15*H1 #head of pump 2\n", "specific_speed = N1*Q1**0.5/H1**0.75\n", "N2 = specific_speed*H2**0.75/Q2**0.5 #frequency of motor 2\n", "print \"frequency of motor 2 in rpm %.4f\"%N2 \n", "d2 = math.sqrt(N2**2*H1/H2/N1**2/d1**2)\n", "print \"diametr of impeller 2 (in m) %.4f\"%(1/d2 )\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "frequency of motor 2 in rpm 1157.4350\n", "diametr of impeller 2 (in m) 0.1585\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 6.3 page no : 120" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "from matplotlib.pyplot import *\n", "import math \n", "%matplotlib inline\n", "\n", "# Initialization of Variable\n", "Q = [0, 0.01, 0.02, 0.03 ,0.04, 0.05] #discharge\n", "effi_hyd = [65.4 ,71, 71.9, 67.7, 57.5, 39.2]\n", "effi_over = [0 ,36.1, 56.0, 61.0, 54.1, 37.0]\n", "H_sys = [0 ,0, 0, 0, 0, 0]\n", "d = 0.114 #diameter of pipe\n", "d_o = 0.096 #diameter of impeller\n", "h = 8.75 #elevation\n", "g = 9.81 #acc. of gravity\n", "rho = 999. #denisity of water\n", "l = 60. #length of pipe\n", "theta = 0.611 #angle in radians\n", "B = 0.0125 #width of blades\n", "pi = 3.1412\n", "mu = 1.109/1000 #viscosity of water\n", "omega = 2*pi*1750/60.\n", "H_theor = []\n", "# calculation\n", "for i in range(6):\n", " if i == 0:\n", " H_sys[i] = h\n", " else:\n", " H_sys[i] = h+8.*Q[i]**2./pi**2/d**4/g*(1+8*l*0.0396/d*(4*rho*Q[i]/pi/d/mu)**-0.25)\n", " H_theor.append(omega**2*d_o**2/g-omega*Q[i]/2/pi/g/B/math.tan(theta))\n", "\n", "#H_theor = omega**2*d_o**2/g-omega*Q/2/pi/g/B/math.tan(theta)\n", "#print (H_sys\"head of system (in m)\")\n", "#print (H_theor)\n", "H_eff = [0,0,0,0,0,0]\n", "for i in range(6):\n", " H_eff[i] = effi_hyd[i]*H_theor[i]/100.\n", "\n", "#print (H_eff)\n", "plot(Q,effi_hyd, 'r--d')\n", "plot(Q,effi_over, 'g')\n", "plot(Q,H_eff,'k')\n", "plot(Q,H_theor)\n", "plot(Q,H_sys ,'c-')\n", "title('system characteritics')\n", "ylabel('Head(m)or Efficiency(%)')\n", "xlabel('volumetric flow rate(m**3/s)')\n", "show()\n", "\n", "#calculation of power\n", "#at intersecting point using datatrip b/w H_sys &H_eff\n", "Q = 0.0336\n", "effi_over = 59.9\n", "H_eff = 13.10\n", "P = H_eff*rho*g*Q/effi_over/10\n", "print \"Power required to pump fluid at this rate(in KW): %.4f\"%P \n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] }, { "output_type": "stream", "stream": "stderr", "text": [ "WARNING: pylab import has clobbered these variables: ['draw_if_interactive', 'pi', 'new_figure_manager']\n", "`%pylab --no-import-all` prevents importing * from pylab and numpy\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEXCAYAAACpuuMDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdYU9f/B/B3QIYoAmE7EBRBhhutuIgDra0VJ+ACq9W2\nVm21/aFttaC2itUuZ611+1VEraNqHQhx4EDEBYiiCKiAioDslZzfH5FI2CObz+t58mTd3PuJ475z\nzj3nXg5jjIEQQgh5S0PRBRBCCFEuFAyEEEIkUDAQQgiRQMFACCFEAgUDIYQQCRQMhBBCJFAwEFIO\nj8fDtm3bFF2GVKxatQqzZs2q9v3//e9/GDFihBwrIqqCQ/MYiDLQ0NDAo0eP0KFDB4XWMXjwYEyb\nNg0zZsxQaB3Tp09Hu3btsGLFCqmsLzExER06dEBpaSk0NOj3IKkZ/QshSkPdfqMIhUKFbVsgEFT5\nurr9GRPZoGAgDbJ69Wq0bdsWrVq1QufOnREWFoa0tDS0aNECGRkZ4uWioqJgZmYGgUCAR48ewc3N\nDYaGhjA1NcWkSZMAAIMGDQIAdOvWDfr6+jh48CAA4MSJE+jevTuMjIzQv39/3Lt3T7xea2trrF27\nFl27doW+vj5mzpyJFy9eYOTIkTAwMIC7uzuysrKqrf/YsWPo3r07DAwMYGtri7Nnz4rfS0xMxIAB\nA9CqVSuMGDECr1+/Fr83ceJEWFpawtDQEG5uboiNjRW/N336dHz++ef44IMP0LJlS/D5fJw8eRI9\nevSAgYEBrKyssGzZMok6Ll++jH79+sHIyAhWVlbYtWsXtm7din379uHnn3+Gvr4+PDw8AAApKSkY\nP348zMzM0KFDB6xfv168noCAAEyYMAHTpk2DgYEBdu7ciYCAAEybNk3iz9jQ0BCtWrXCtWvXsHPn\nTgwcOFC8jpiYGLi7u8PY2BgWFhZYtWoVACAiIgIuLi4wMDCAhYUFvv766+r/YRD1wAipp7i4ONau\nXTuWmprKGGMsKSmJPX78mDHG2AcffMA2b94sXvarr75i8+fPZ4wx5u3tzVauXMkYY6yoqIiFh4eL\nl+NwOOJ1MMZYVFQUMzMzYxEREUwoFLJdu3Yxa2trVlxczBhjzNramrm6urKXL1+y58+fMzMzM9aj\nRw92+/ZtVlhYyIYMGcKWLVtWZf3Xr19nBgYGLCQkhDHG2PPnz1lcXBxjjDE3NzfWsWNHFh8fzwoK\nChiPx2OLFy8Wf3bHjh0sNzeXFRcXs6+++op1795d/J6vry8zMDBgV65cYYwxVlhYyPh8PouOjmaM\nMXb37l1mbm7Ojh49yhhjLDExkenr67OgoCBWWlrKXr9+zW7fvs0YY2z69Ols6dKl4nULBALWs2dP\ntmLFClZSUsISEhJYhw4d2JkzZxhjjPn7+zMtLS127NgxxhhjBQUFLCAggE2dOlW8LQ6HwwQCgcR3\nGTBgAGOMsezsbGZhYcF+/fVXVlRUxHJyclhERARjjLG+ffuyvXv3MsYYy8vLY9euXavyz5WoD2ox\nkHrT1NREUVERYmJiUFJSAisrK/GxAR8fH+zduxeAqDsjKChI/KtVW1sbiYmJeP78ObS1tdGvX79q\nt/HXX3/h008/Re/evcHhcODj4wMdHR1cu3ZNvMy8efNgamqK1q1bY+DAgXB1dUW3bt2go6ODsWPH\n4tatW1Wue9u2bZg5cyaGDh0KAGjdujXs7e0BABwOBzNmzICtrS10dXXh6emJ27dviz87ffp0tGjR\nAlpaWvD398edO3eQk5Mjfn/MmDFwdXUFAOjo6MDNzQ1OTk4AgC5dusDb2xsXLlwAAOzbtw/u7u7w\n8vKCpqYmuFwuunXrJl4XK9ftc+PGDaSnp2PJkiVo1qwZbGxs8MknnyAoKEi8TL9+/TB69GgAgK6u\nrsTnWS1dSCdOnEDr1q2xYMECaGtro2XLlujduzcA0d9bfHw80tPToaenh/fee6/GdRHVR8FA6s3W\n1ha///47AgICYG5ujkmTJiE1NRUA4OHhgdjYWCQmJuLcuXMwMDCAi4sLAODnn38GYwx9+vSBs7Mz\nduzYUe02kpKS8Msvv8DIyEh8e/bsGVJSUsTLmJubix83b95c4rmuri5yc3OrXPezZ8/QsWPHardt\nYWEhsd6y9QgEAixevBi2trYwMDCAjY0NACA9PR2AKFTatWsnsa7r169j8ODBMDMzg6GhIbZs2SLu\nmnr69GmdD7YnJSUhJSVF4s9j1apVePnypXiZtm3b1mldVamplm3btuHhw4dwcHBAnz59cPLkyQZv\nh6gGCgbSIJMmTcKlS5eQlJQEDoeDRYsWARDtkCdOnIi9e/di79698PHxEX/G3Nwcf/31F54/f44t\nW7Zgzpw5SEhIqHL9VlZW+P7775GZmSm+5ebmwsvLq9qaavtVXKZdu3Z49OhRPb6tyL59+3D8+HGc\nP38eb968wZMnT2rd7uTJkzFmzBg8e/YMWVlZ+Oyzz8TLW1lZ4fHjx1V+jsPhSDy3srKCjY2NxJ9H\ndnY2Tpw4IV6+4mfKP6/4XkVWVlbV/l3Y2tpi3759ePXqFRYtWoQJEyagoKCgxvUR1UbBQOrt4cOH\nCA0NRVFREXR0dKCrqwtNTU3x+z4+PtixYweOHz8u7kYCgIMHD+LZs2cARAdBORyOeOikubm5xE5y\n1qxZ+PPPPxEREQHGGPLy8nDy5MlqWwH1MXPmTOzYsQOhoaEQCoV4/vw5Hjx4IH6/uh19bm4udHR0\nwOVykZeXh++++07i/ao+l5ubCyMjI2hrayMiIgL79u0Tvzd58mSEhITg4MGDKC0txevXr3Hnzh0A\noj+P8jvqPn36QF9fHz///DMKCgogEAgQHR2NyMjIardd/jVTU1NoaGhUG0QffvghUlNT8ccff6Co\nqAg5OTmIiIgAAOzduxevXr0CABgYGEj8vRH1RH+7pN6Kiorw7bffwtTUFJaWlkhPTxePYAGA/v37\nQ0NDA7169ZLoWomMjETfvn3FI23WrVsHa2trAKJRNb6+vjAyMsKhQ4fQq1cvbN26FXPnzgWXy0Wn\nTp2we/fuGn/5VvyFXN2yvXv3xo4dO7BgwQIYGhqCx+MhOTm51vX4+Pigffv2aNOmDZydneHq6lrr\nNjdt2oQffvgBrVq1wooVKyRaPFZWVjh16hR++eUXGBsbo0ePHrh79y4AUXjFxsbCyMgI48aNg4aG\nBk6cOIHbt2+jQ4cOMDU1xezZs5GdnV3ttsu/pqenh++//x79+/cHl8vF9evXJd7X19fHuXPn8O+/\n/8LS0hJ2dnbg8/kAgDNnzsDZ2Rn6+vpYsGABgoKCoKOjU+3fA1F9NMGNyMSwYcMwefJkhU8UI4TU\nn0xbDKtWrYKTkxO6dOmCyZMno6ioCBkZGXB3d4ednR2GDx9e41hzoppu3LiBqKioGo8HEEKUl8yC\nITExEVu3bkVUVBTu3bsnHroYGBgId3d3PHz4EEOHDkVgYKCsSiAK4OvrC3d3d/z+++9o0aKFossh\nhDSAzIKhVatW0NLSQn5+PkpLS5Gfn4/WrVvj+PHj8PX1BSDaiRw9elRWJRAF2LVrF7KysiRGIxFC\nVIvMgoHL5eLrr7+GlZUVWrduDUNDQ7i7u+PFixfi8ebm5uZ48eKFrEoghBDSAM1kteLHjx/j999/\nR2JiIgwMDMRj28uraeRIbeOuCSGEVK2xY4pk1mKIjIxEv379YGxsjGbNmmHcuHG4evUqLCwskJaW\nBgBITU2FmZlZtetgjKntzd/fX+E10Hej70ffT/1u0iCzYOjcuTOuXbuGgoICMMYQEhICR0dHfPTR\nR9i1axcAUX/0mDFjZFUCIYSQBpBZV1K3bt3g4+MDFxcXaGhooGfPnpg9ezZycnLg6emJbdu2wdra\nGsHBwbIqgRBCSAPILBgAwM/PD35+fhKvcblchISEyHKzKoHH4ym6BJlR5+8G0PdTder+/aRBaWc+\nczgcqfWXEUJIUyGNfSedK4kQQogECgZCCCESKBgIIYRIoGAghBAigYKBEEKIBAoGQgghEigYCCGE\nSKBgIIQQIoGCgRBCiAQKBkIIIRIoGAghhEigYCCEECKBgoFIVVFREb7w8kJRUZGiSyGENBAFA5Gq\nlbNmYfzhw1g1e7aiSyGENBAFA5GaI9u3o8fx4xgiEKDbsWM4sn27oksihDQABYMCqE13S3Ex8PIl\n8OQJEk6exJ2lSzHmzRsAwNg3b3B7xQo8efxYwUUSQuqLLtSjAP4+PnDbtw8Xp0xBwNvrX8uMUAjk\n5QG5ue/uDQ0Ba+vKy169Chw+XHn5UaOA+fMrL79pE+DvD7RogS9ev8bq3Fy0LPd2DoDFI0di46lT\nohcYAzgcGXxJQkgZaew7KRjk7Mj27eAsXIgxb97giIEB8OuvGDtjBlBSItoR5+UBWlqAmVnlD9+9\nC/z3n+ROOy8PGDQI+PTTystv2QJ8/jmgpwe0bAm0aCG6nzIFqHDJVQBAZCQQFvZuubL7Dh2ATp1q\n/F4Jjx5h9/DhCHjyRPyav7U1poeEwKZjR9ELCxYAoaFAnz6iW+/egLMz0EymV5glpElR+mB48OAB\nvL29xc8TEhKwYsUKTJ06FV5eXkhKSoK1tTWCg4NhaGgoWZgaBkOVO08OB9M1NWEjFL7bGfv6AqtW\nVV7B1avAkSOSO+0WLQAHB6BXr8rLCwSiX+ga8ukxPLJ9O7BwIca+DT3Ob79hzMcfv1ugqEgUbhER\notuNG0Bysug7ubvLpUZC1J3SB0N5QqEQbdq0QUREBNavXw8TExP4+flh9erVyMzMRGBgoGRh6hAM\nycnAmTNAZibg54cvPvgAq//7r3J3y/Dh2Hj6tFp0s/j7+GDQvn24VNdusjdvRC0kPb3K7+3YIWo5\n9e5ddQuKEFKJVPadTE7OnDnDBgwYwBhjzN7enqWlpTHGGEtNTWX29vaVlpdjadJTUsLYmTOMLVjA\nmIMDYyYmjE2ezFhwMGOMscfx8czfxoYxUW87YwD7wdqaJTx6pODCpaewsJDN8fRkRUVFjV/ZypWM\nubszZmjIWPv2jE2cyNiaNYzl5TV+3YSoKWnsO+XWYpgxYwZcXFwwZ84cGBkZITMzsyyYwOVyxc/L\nqGSLobAQ+OADYMgQYMQIoGdPQFNTYpFau1tIZUIh8OiRqOspMhJYs6bq4xIlJaLWByFNmMp0JRUX\nF6NNmzaIjY2FqampRDAAAJfLRUZGhmRhHA78/f3Fz3k8Hng8nqxLrV12NnD+PMDjAUZGDVpFvbtb\nSO1evBAdJO/a9d3B7T59AFtbteiiI6Q6fD4ffD5f/HzZsmWqEQzHjh3D5s2bcfr0aQBA586dwefz\nYWFhgdTUVAwePBhxcXGShSlLi0EoBG7fBk6fFt1u3QJcXYH16wF7+watsqioCAt9fPDbnj3Q1taW\ncsFNWE4OEBX17uB2RARgZQVcuqToygiRG5VpMXh7e2PkyJHw9fUFAPj5+cHY2BiLFi1CYGAgsrKy\nlPfg8/z5ogPI778vurm5VX2glCinvDzRyK2K7twRBX2fPqIRXa1a1Wl1ZaH+6+7d0NHRkXKxhDSe\nSgRDXl4e2rdvjydPnkBfXx8AkJGRAU9PTyQnJyvHcNWSEiA9HbC0rPxecTFAv+rVT0wMsG2bqFVx\n+7aoZdGnDzB5MjB8eLUfk+vkREIaQCWCoaFkHgxlQ0lPnxYdM5g8WTSTlzQ9JSWioIiIEM0IryoY\nsrNx5OBBcL7+uvLkREKUCAVDQyQliUYOvXwp2gG8/77o3txc+tsiaiNh+nTs3r0bAeX+TVaa2U2I\nEqBgaIjSUtEB5F695DYjmKi+GicnnjmjqLIIqUQa+0712jNmZwNHjwKffQbY2AApKZWXadZMNJOW\nQoHUw9fr1mGtjY3Ea2tbtsQ3v/6qoIoIkR2l3jvW+bTU27aJRgu1aQNs3gzY2QEnT1Z9MJmQBuhg\na4tuS5aIji0AOGJggB7r1sHGyUnBlREifUodDHW+CpihIbB4sWiS05kzwMKFgKMjTWwiUjV2xgzc\nHj0a5zU1ccfDo/oZ6/HxogPahKgopT7G8I+BAbB2LcZ27iwaPdSpk+jMo4QoSJ0mJ86aJRrp9sMP\nwNSpdFpxIlfqf/AZb09L3bkzbDw8gIkTRecfIkTZXbggCobUVNHFjLy9K503ixBZaBLBUOkqYISo\nCsZEFyZauhSwsAD++UfRFZEmoEkEA40VJyqPMdHMelNTRVdCmgC1H656xMAAPX74gUKBqDYOh0KB\nqBSlDoYaR34Qoury8oBRo4CzZ0WtCkKUhFJ3JRUVFdFpqYn6EgqBgweBgADAxARYvhwYPFjRVREV\np/7HGJSzNEKkSyAA9u8Hli0D2rUD1q6l0XekwSgYCFEnpaXAnj2imfv9+yu6GqKiKBgIIYRIUPtR\nSYSQt9LTgbt3FV0FaSIoGAhRBbGxouuGeHqKHhMiQxQMhKiCQYOAx48BFxeAxwOmTAEePlR0VURN\nUTAQoipatAD8/EQB4egIDBgAPHum6KqIGqrx4HNJSQnOnj2LixcvIjExERwOB+3bt8egQYMwYsQI\nNKvDWSOzsrLwySefICYmBhwOBzt27ECnTp3g5eWFpKQkWFtbIzg4GIaGhpKF0cFnoiSKSotw/fl1\n8BP54CfykVuciwmOE+Dl5IX2hu0VV1hBAdC8ueK2T5SSTEclrVixAocPH4arqyv69OmD1q1bQygU\nIjU1FREREbh27RomTJiAJUuW1LgBX19fuLm5YcaMGSgtLUVeXh5++uknmJiYwM/PD6tXr0ZmZiYC\nAwOl/uUIaYiKQRDxPAKOpo7gWfPAs+ZBR1MHB2IO4J/7/8DexB7eTt6Y6DQRFi0tFF06IbINhuPH\nj+Ojjz4Cp5qL3QiFQpw4cQKjR4+uduVv3rxBjx49kJCQIPF6586dceHCBZibmyMtLQ08Hg9xcXGS\nhVEwEDmpLQj6t+sPA12DSp8rFhTj3ONzCIoJwr8P/oVLaxd4O3tjnMM4cJtzFfBN3po/X3Tp2sWL\nRWd1JU2K3OcxFBYWori4GK1atarT8rdv38ann34KR0dH3LlzB7169cLvv/+Otm3bIjMzEwDAGAOX\nyxU/FxfG4cDf31/8nMfjgcfj1bVUQqrV0CCoSUFJAU7Gn0RQdBDOJZzDoPaD4O3kDY/OHmip3VJG\n36QaaWlAYCCwezcwc6bouASdxE9t8fl88Pl88fNly5bJLxj+/vtvHDp0CAKBAC4uLli1alWtn4mM\njISrqyuuXLmC3r1746uvvoK+vj42bNggEQRcLhcZGRmShVGLgUiJLIKgJtlF2Tj+4DiCooNwKfkS\nRnQcAW9nb3zQ6QPoNtOV2nZq9fw5sHKl6HQb8+aJTrlB1J5MWwzHjh2Dh4eH+LmXlxcOHDgAAOja\ntSvu1mGyTVpaGlxdXfHkyRMAwOXLl7Fq1SokJCQgLCwMFhYWSE1NxeDBg6kriUiNvIOgJq/zX+Of\n+/8gKCYIUalRGG0/Gt5O3hjWYRi0NLXkUgOSk4HLl4HJk+WzPaJQMg2GH3/8EREREVi+fDm6d++O\nn376CQkJCeBwOMjPz8e+ffvqtIFBgwbh77//hp2dHQICApCfnw8AMDY2xqJFixAYGIisrCw6+Ewa\nTJmCoCapOak4GHsQQdFBiM+Ix3iH8fB29sZAq4HQ1FCOy36WXdP61927oaOjo+hySAPI/BhDamoq\nfvjhBzDG8OOPPyInJwcFBQXo2rVrnTdw584dfPLJJyguLkbHjh2xY8cOCAQCeHp6Ijk5mYarknpT\nlSCoSWJWIg5EH0BQTBBe5r2Ep5MnvJ280adNn2oHfMhEcDDw4YeiORIA/H184LZvHy5OmYKAXbvk\nVweRGpkHQ05ODjQ0NBAfH48ffvgBLi4u8PPzg66u7PtJKRhIGXUIgprcf3UfB2IOYH/0fhQLiuHt\n7I1JzpPQxayLbEOipASYNg3g8wE/PxzR0wNn8WKMefMGRwwMgF9/xdgZM2S3fSITMg2G77//Hjdu\n3EBJSQlGjx6NBQsW4NixY/jjjz8wffp0+Pj4NGrDtRZGwdBk1RYEA6wGoJVO3UbGqRLGGG6n3UZQ\nTBCCooPQQqsFvJ294e3sDTtjO9lt+N49JHz9NXaHhiJAIBC/TNdbV00yDYZu3brhzp07EAqF6NWr\nF27dugVANBt606ZN+PLLLxu14VoLo2BoMppqENSEMYZrz65hf/R+BMcEo02rNvB28oaXsxesDKyk\nvr0vPvgAq//7D+UH1uYAWDxyJDaeOiX17RHZkWkwTJkyBXp6eigoKICpqSl+++23Rm2o3oVRMKgt\nCoL6EQgFuJB0Afuj9+Of+//AwcQB3s7emOg4EeYtzaWyjYRHj7B7+HAEvB1BCFCLQVXJ/BjD3bt3\noa2tjc6dOzdqIw1BwaA+KAikp2y29f7o/Tjx8AR6t+kNbyfRbGuj5kaNWveR7duBhQsx9u0xBs5v\nv2HMxx9LqXIiLzINhgsXLsDNza3GD4eFhWGwjC5eTsGguigI5CO/JB+n4k9hf/R+hCSEwK29G7yd\nvTHafnSDZ1v7+/hg0L59uESjklSWTIPhm2++wcWLFzFs2DC4uLjA0tISQqEQaWlpiIyMREhICAYP\nHoyff/65UQVUWxgFg0o6GncUvkd9YW9sT0EgR9lF2TgWdwxBMUG4nHwZ79u+D28nb4zsNLJes63L\n5jH8tmcPtLW1RS++eAHExQG1/FAkykEuw1WPHTuG8PBwJCUlAQDat2+PAQMGwMPDAy1byu4cMBQM\nqufI/SP47ORnODX5FHq17qXocpqs9Px00Wzr6CDcTrstmm3t7I2hNkMbNtv6+nXgo4+AjRuBiROl\nXzCRKrmcRK+0tLRO112QNgoG1fLP/X8w5+QcnJpyCj0teyq6HPJWSk4KDsYcRFBMEB5nPMZ4x/Hw\ndvLGwPYDocGpx3W67twBPvgAWLIE+Pxz2RVMGk0uwdChQweMHz8eH3/8MRwdHRu1sfqgYFAdh2MP\n44tTX+C/Kf+hh2UPRZdDqvEk8wkOxBxAUHQQXuW/gpeTF7ydvdG7de+6TaRLSBBdd9rHB1i6FJDn\nDG1SZ3IJhuzsbAQFBWHnzp0QCASYMWMGJk2aVOdTbze4MAoGlXAo9hDmnpqL01NPo7tFd0WXQ+ro\n/qv7CIoJwv57+yFgAtFEOidvOJs51xwSaWnAyJGiM7XWcC0Wojhyvx4Dn8/HlClTkJmZiYkTJ2Lp\n0qWwtbVtVAHVFkbBoPQOxhzEvP/m4czUM+hm0U3R5ZAGKJttvT96P4Kig6Cvo48AtwBMdKrhWEJe\nHqCnRy0GJSW3YwwnT57Ejh07kJiYCB8fH0yePBmXL1/Gd999h4cPHzaqgGoLo2BQasExwfjy9Jc4\nPeU0hYKaEDIhLiZdhO9RX8zqOQvfD/xevif0I1Iht2MMPB4Pn3zyCfr16yfx3rx587B+/fpGFVBt\nYRQMSutA9AF8deYrnJl6Bl3N636mXaIaUnNSMTpoNBxNHfHXqL+g04xOv61K5BIMubm5Mh2WWh0K\nBuUUFB2EBWcW4OzUs+hi3kXR5RAZySvOw7Qj0/C64DWOeB2p/RrWycmieyvpn8eJ1I809p21jlf7\n4osvkJWVJX6ekZGBGXQq3iZp/739WHhmIc5NO0ehoOZaaLfAIc9D6NOmD/r+3Rfxr+Nr/kBoKDBg\nAHD/vnwKJDJV6wSFO3fuSFxEh8vlIioqSqZFEeWz794+fHP2G5yddhbOZs6KLofIgQZHA2vc16AT\ntxMG7hiIgxMPYmD7gVUvPH06oKkJDB4MHDsGvPeeXGsl0lVri4ExhoyMDPHzjIwMCMqds52ov//d\n/R++OfsNzk07R6HQBM3uNRu7x+7G+ODx2Ht3b/ULTpsGbNsGjBoFnDkjvwKJ1NXaYvj666/h6uoK\nT09PMMZw8OBBfP/99/KojSiBvXf3YlHIIoT4hMDRVH4THIlyGd5xOMJ8wzBq/yg8yngEfzf/qkcs\nffghcPQoMG6cqHvJyUn+xZJGq9M8hpiYGISGhoLD4WDIkCFymQFNB58Vb8+dPVh8fjFCpoXAwdRB\n0eUQJfAi9wU8gjxgy7XFttHbqh+xlJICWFrSXAcFkNsEN4FAgLS0NJSWlop/JVjVcfSBtbU1WrVq\nBU1NTWhpaSEiIgIZGRnw8vJCUlISrK2tERwcLHEcA6BgULRdt3fhu9DvKBRIJQUlBfA56oO03DQc\n8ToCEz0TRZdEypFLMKxfvx7Lli2DmZkZNDU1xa/fu3evThuwsbHBzZs3weW+G+7m5+cHExMT+Pn5\nYfXq1cjMzERgYKBkYRQMCrPz9k4sCV2CEJ8QdDaR/0WaiPITMiG+D/0eB2MO4uTkk7A3sVd0SeQt\nqew7WS06dOjA0tPTa1usWtbW1pU+b29vz9LS0hhjjKWmpjJ7e/tKn6tDaUQGtkdtZ21+acPiXsUp\nuhSiAv6++TczW2PGwp6E1b5wUhJjhYUyr6mpk8a+s9aDz1ZWVo06YR6Hw8GwYcOgqamJTz/9FLNm\nzcKLFy9gbi66Vq25uTlevHhR5WcDAgLEj3k8Hng8XoPrILXbfms7fgj7Aed9ztMvQFInM3vOhLWh\nNTwPemKN+xr4dvetfuFffwXu3RMdnNbXl1+Rao7P54PP50t1nbV2Jc2YMQMPHz7Ehx9+KL6iE4fD\nwcKFC+u0gdTUVFhaWuLVq1dwd3fH+vXrMXr0aGRmZoqX4XK5EkNiy7ZRS2lEirZFbUPAhQCc9zkP\nO2M7RZdDVMz9V/cxav8oTHKehOWDl1d9rQeBAPjiCyAyEjh1CjAzk3+hTYBcZj5bWVlh2LBhKC4u\nRm5uLnJzc5GTk1PnDVhaWgIATE1NMXbsWERERMDc3BxpaWkARMFhRv9AFOrvqL8RcCEAoT6hFAqk\nQRxMHXBt5jWEPgnF5MOTUVhaWHkhTU1g82bRkNYBA4DERLnXSeqmzqfdzsvLQ4sWLeq18vz8fAgE\nAujr6yMvLw/Dhw+Hv78/QkJCYGxsjEWLFiEwMBBZWVl08FlBtt7cihUXVyDUNxS2XNmcQp00HYWl\nhZh+dDr1SVaLAAAgAElEQVSS3yTjmPcxmLYwrXrBDRuAwEDg7l2AW8t5mEi9yOXgc3h4OHNwcGBt\n27ZljDF2+/Zt9vnnn9fpAEZCQgLr1q0b69atG3NycmIrV65kjDH2+vVrNnToUNapUyfm7u7OMjMz\nK322DqWRRtoSuYW1+7Udi38dr+hSiBoRCAVsSegSZvO7DYt9GVv9gnfvyq+oJkQa+85aWwx9+vTB\noUOH4OHhgVu3bgEAnJycEBMT07hEqgW1GGTrz8g/seryKoT6hKIjt6OiyyFqaNftXfi/c/+H/eP3\nY2iHoYoup8mQyzEGoPJktmbNah3MRJTY5hubseryKoT5hlEoEJnx7e6L4InBmPzPZGyL2qbockg9\n1Ongc3h4OACguLgYa9euhYMDzYRVVZtubMLq8NUI8w1DB6MOii6HqDmeNQ8Xp19EYHggFocshpAJ\na/5Aerp8CiM1qrUr6dWrV/jyyy8REhICxhiGDx+OdevWwdjYWLaFUVeS1G2M2Ig1V9YgzDcMNkY2\nii6HNCHp+ekYe2AsLFpaYPeY3Wiu1bzqBYcNA1xcgFWr6DxLDSS3cyUpAgWDdG2I2IBfrv6CMN8w\nWBtaK7oc0gQVlRZh5vGZiM+Ix3Hv4zBvaV55odevRcNZnZyALVsA6rauN5kGw+rVq7Fo0SLMmzev\nyg2vW7euURuutTAKBqlZd30dfrv2G4UCUTjGGJZfWI6dd3bixKQTcDKr4rTcubnAhAmAjg4QFAQ0\nr6Z1QaokjX1ntXFcdmrtXr16SZx3nTFW9XnYiVL649of+OP6H+D78tHesL2iyyFNHIfDgT/PH7Zc\nWwzeNRj/G/c/uHd0l1yoZUvg+HHRVeFGjgRCQqjlIGfUlaTGfr/2O9ZdX4cw3zAKBaJ0LiVdwsSD\nE7F88HLM7jW78gJCIcDnA0OGyL02VSaX4aru7u7IysoSP8/IyMCIESMatVEie79d/Q3rI9aDP51a\nCkQ5DWw/EJdnXMYvV3/BN2e/qTxiSUODQkFBag2GV69eSVxEh8vlVns2VKIcfr36Kzbe2Ai+Lx9W\nBnW7oBIhimDLtcXVmVcRmRKJ8cHjkVecp+iSCOoQDJqamkhKShI/T0xMhIZGnebFEQVYe2UtNt3Y\nhDDfMLQzaKfocgipFbc5F2ennUUrnVZw2+mG1JzUmj9QWMUJ+ohU1bqH/+mnnzBw4EBMnToVU6dO\nxaBBg7By5Up51EbqaU34Gmy5uQX86XwKBaJStDW1sdNjJ8Z2Hou+2/ri7ou7VS9YUgL06CG6pgOR\nmTodfH716hWuXbsGDoeDvn37wsRE9td4pYPP9fNz+M/YGrUVfF8+2rRqo+hyCGmwoOggzP9vPnaN\n2YWRnUZWXuDmTWDUKOCnn4AZM+RfoJKT6TyG+/fvw8HBATdv3pTYUNlQ1Z49ezZqw7UWRsFQZ4GX\nA7H91naE+YZRKBC1cOXpFYwPHo+lg5ZiTu85lRd4+BAYMQL47DPAz49mSZcj02CYNWsWtm7dCh6P\nV+W8hbCwsEZtuNbCKBjqZNWlVdh5ZydCfUIpFIhaeZzxGKP2j8L7tu9jrftaaGpoSi6QkiIKh5Ej\ngZ9/VkyRSkimwRAcHAxPT08kJCSgQwf5n2yNgqF2Ky+txO47uxHqG4rW+q0VXQ4hUpdZkIkJByeg\nhVYL7Bu/Dy21W1ZYIBO4cAEYM0YxBSohmQZDz549ERUVJb6XNwqGmv148UfsvbsXYb5hsNS3VHQ5\nhMhMsaAYn5/8HLdSb+HfSf9Sy7gWMg2GYcOGgcPh4MaNGxg4cGClDR8/frxRG661MAqGaq24sAL7\novch1CeUQoE0CYwxrA5fjU03NuH4pOPobtFd0SUpLZkGQ3FxMaKiojBt2jT8/fffEhvicDhwc3Nr\n1IZrLYyCoUrLLyzH/uj9CPMNg0VLC0WXQ4hcHYw5iDmn5mCHxw6MshtV/YJCoWjmdBMk05PozZw5\nE3v27MGsWbNkHgKkbpbxl+FAzAHwfflVn7KYEDU30Wki2hm0w7gD47B4wGLMf29+5YVevQLc3YHg\nYMDOTv5FqoFqI/XmzZtISUnB3r17kZGRUelWVwKBAD169MBHH30EQHSuJXd3d9jZ2WH48OES52Ei\n1QvgByA4NhhhvmEUCqRJ69u2L67MvIItN7dg3n/zUCoslVzA1BSYNw9wcwMiIxVTpIqrNhg+++wz\nDB06FA8ePECvXr0q3erqjz/+gKOjo3jIa2BgINzd3fHw4UMMHToUgYGBjf8WaowxBn++Pw7FHkKo\nTyiFAiEArA2tET4jHA/SH8AjyAM5RTmSC8ycCWzeDHzwAXD+vPjloqIifOHlhaKiIjlXrGJYLT79\n9NPaFqnW06dP2dChQ1loaCgbNWoUY4wxe3t7lpaWxhhjLDU1ldnb21f52TqUpvaEQiFbGrqUOW9y\nZi9yXyi6HEKUTnFpMZv972zWbXM3lpyVXHkBPp8xU1PGDh5kjDH2w7Rp7LymJvP38ZFzpfIjjX1n\ntQefQ0NDMeTtKW+fPHkCG5t31wj+559/MG7cuFpDZ+LEifjuu++QnZ2NtWvX4t9//4WRkREyMzPL\nQglcLlf8vDwOhwN/f3/xcx6PBx6PV4/IU22MMSwNW4pjD44h1CcUpi1MFV0SIUqJMYZfrv6C36/9\njmPex9CrdYUejdu3gUePcCQ7G5yFCzHmzRscMTAAfv0VY9XglBp8Ph98Pl/8fNmyZY0fuFNdYnTv\n3r3Kx1U9r8q///7L5syZwxhjLCwsTNxiMDQ0lFjOyMioys/XUJraEwqF7Lvz37Eum7qwl7kvFV0O\nISrhcOxhZvKzCTt6/2il9x7HxzN/GxvGAPHtB2trlvDokQIqlS1p7Dtldr28K1eu4Pjx4zh16hQK\nCwuRnZ2NadOmwdzcHGlpabCwsEBqairMzMxkVYJKYozh+9DvcTL+JM77nKeWAiF1NM5hHNq1aocx\nB8bgceZjLOi7QHxs85f587H6yROJ5b9JTMTiefOw8dQpRZSr1GQ20HflypV4+vQpnjx5gqCgIAwZ\nMgR79uzB6NGjsWvXLgDArl27MIamsosxxvBd6Hc4FX+KQoGQBujdpjeuzryKnbd3Ys6pOeIRS1+v\nW4e15brDAWCttTW+Wb9eEWUqvWqPMRgYGMDNzQ2MMVy6dEli9vOlS5fqNcz0woUL+OWXX3D8+HFk\nZGTA09MTycnJsLa2RnBwsMQV4sSFNbEJbowxLD6/GGcencF5n/Mw1jNWdEmEqKzsomx4HfICYwzB\nE4PRSqcVjmzfDixciLFvjzFwfvsNYz7+WNGlSp1MZz6XP5hR1YZp5rP0MMawKGQRziWcQ8i0EAoF\nQqSgVFiK+f/Nx6XkSzgx6QTaG7aHv48PBu3bh0tTpiDgbc+FupFpMChaUwkGxhj8QvxwPuE8QnxC\nwG3OVXRJhKgNxhj+uP4H1lxZg6NeR9HVpCsW+vjgtz17oK2trejyZIKCQcUxxvDNuW/AT+Tj3LRz\nFAqEyMjxB8cx8/hM/PnhnxjvOF7R5cgUBYMKY4zh67Nf40LSBQoFQuQgKjUKHkEeCJ4QDNd2roou\nR2akse+scVSSQCDAN99806gNkMoYY1h4diEuJl1EyDTqPiJEHnpa9sStT2+hb9u+ii5F6dU4j0FT\nUxOXL18GY6zKy3uShvn67Ne4nHwZIT4hMNStPCKLECIbJnomii5BJdQ6wa179+7w8PDAxIkToaen\nB0DUVKnLKTFIZRcSL+Cf+//g9me3KRQIIUqp1mAoLCwEl8tFaGioxOsUDPUnZEJ8c+4brBq6ikKB\nEKK0ag2GnTt3yqGMpiEoOggccODl7KXoUgghpFq1nhLj6dOnGDt2LExNTWFqaorx48fj2bNn8qhN\nrRSWFuK7899h7fC10OA0zUsOEkJUQ617qI8//hijR49GSkoKUlJS8NFHH+FjNZxGLmvrrq9DD8se\nGNR+kKJLIYSQGtU6j6Fbt264c+dOra9JvTA1mseQnp8Oh40OCJ8RDjtjugYtIUR2ZD6PAQCMjY2x\nZ88eCAQClJaWYu/evTAxoSFf9bHi4gp4OXlRKBBCVEKtLYbExETMmzcP165dAwD069cP69evh5WV\nlWwLU5MWQ/zreLhuc8X9L+7TabQJITJHp8RQAeODx6N3695YPGCxokshhDQB0th31jhctaSkBGfP\nnsXFixeRmJgIDocDa2trDBw4ECNGjECzZjK7AJxauJx8GZEpkdg7dq+iSyGEkDqrtsWwYsUKHD58\nGK6urujTpw8sLS3BGENqaioiIiJw7do1TJgwAUuWLJFNYSreYmCMwXWbK+b2mYupXacquhxCSBMh\n0xZDt27dsGTJkirPkTRjxgwIhUKcOHGiURtXZwdjD6JEWILJXSYruhRCCKkXpT7GsGEDg5MT4OQE\nmKrQcdui0iI4bHTAttHbMNhmsKLLIYQ0ITI/xgAAN27cwMqVK5GYmIjS0lLxhu/evduoDdfF3bvA\n/v1AdDSgoyMKCGdnyfsqLhetcBtvbISTmROFAiFEJdXaYrCzs8PatWvh7OwMDY130x6sra1rXHFh\nYSHc3NxQVFSE4uJieHh4YNWqVcjIyICXlxeSkpJgbW2N4OBgGFaxdy+feowBKSmigIiJeXcfEyMK\nhoqB4egItGzZgD8NKcgoyID9BntcnH4RDqYOiimCENJkyWW4av/+/REeHt6glefn50NPTw+lpaUY\nMGAA1q5di+PHj8PExAR+fn5YvXo1MjMzERgYWLmwOnw5oRBITq4cGHFxgLl55cDo3Blo3rxBX6XO\nFp5ZiILSAmz+cLNsN0QIIVWQSzCcPXsWBw4cwLBhw8QXz67v9Rjy8/Ph5uaGnTt3Yvz48bhw4QLM\nzc2RlpYGHo+HuLi4yoU14ssJBEBCgmRYREcDjx4BbdtW7o6ytwekcV3whMwE9NnaBzFzYmDe0rzx\nKySEkHqSyzGGXbt24cGDBygtLZXoSqpLMAiFQvTs2ROPHz/G559/DicnJ7x48QLm5qKdprm5OV68\neFHt5wMCAsSPeTweeDxerdsEAE1NoFMn0W3MmHevl5QA8fHvguLQISAgAEhKAmxsKgeGrS1Qn6ka\n357/Fgv6LqBQIITIDZ/PB5/Pl+o6a20x2NvbIy4urlGX9nzz5g1GjBiBVatWYdy4ccjMzBS/x+Vy\nkZGRUbkwOc5jKCoCHjyo3CWVkiIKl7KgKAsNGxtAo8JZpq4+vQrPQ554MPcB9LT05FI3IYRUJJcW\nQ79+/RAbGwsnJ6cGb8TAwAAffvghbt68Ke5CsrCwQGpqKszMzBq8XmnR0QG6dhXdysvPB+7ffxcW\nf/0luk9PBxwcyh/sZvCPXYPlw1ZQKBBCVF6tLYbOnTvj8ePHsLGxgY6OjuhDdRiump6ejmbNmsHQ\n0BAFBQUYMWIE/P39cebMGRgbG2PRokUIDAxEVlZWgw8+K0p2NhAb+y4wwiJeICaGg+ZCUzg5cSod\n9LawABrR4CKEkDqTy8HnxMTEKl+vbbjqvXv34OvrC6FQCKFQiGnTpuH//u//kJGRAU9PTyQnJ9d5\nuKoyKxYUw3GjI/4c9Sd6Gg4TD6MtC43oaNHB8IrdUao2aY8QohpkGgw5OTnQ19ev8cN1WabBhalI\nMKy7vg6nH53GqSmnql3m5cvKI6RiYkQjoVRl0h4hRDXINBiGDRsGe3t7eHh4wMXFBVwuFwDw+vVr\nREZG4ujRo4iPj0dISEijCqi2MBUIhqzCLNhvsMd5n/NwNnOu12fLJu1VDIzYWMDAQLkm7RFCVIfM\nu5JCQ0Oxb98+hIeHIyUlBQDQunVrDBgwAFOmTKnz8NEGFaYCweB3zg+ZhZnY+tFWqa2zbNJe+e6o\nmBjRQXBFTdojhKgOulCPAiVmJaLXX70Q/Xk0LPUtZb49gQB48qRyd1R8PNCunWRgSHPSHiFEtcg0\nGG7evFnj3IWePXs2asO1UfZgmHx4MuyN7eHP81doHSUlohndFQMjMVE6k/YIIapFpsHA4/HA4XBQ\nUFCAmzdvouvbQf53796Fi4sLrl692qgN11qYEgfDjec3MObAGDyc+xAttFsoupwq1XXSXtl9VZP2\nCCGqRy5dSePGjcOyZcvQpUsXAEB0dDT8/f1x+PDhRm241sKUNBgYY+Dt4sGnqw9m9pyp6HLqrWzS\nXsXAeP1adLyiYmC0a0dzMAhRJXIJBkdHR8TGxtb6mrQpazAcizuGJWFLcPvT29DU0FR0OVJTcdJe\n2X1enmhEFE3aI0Q1yCUYvL290bJlS0ydOhWMMezbtw+5ubnYv39/ozZca2FKGAwlghI4b3bGH+//\ngfdt31d0OXKRkVF5hFTFSXvl701MFF0xIU2bXIKhoKAAmzdvxqVLlwAAgwYNwueffw5dXd1GbbjW\nwpQwGDZGbMSxB8dwZuqZRp1UUB28fFm5O6rsSnsVA4Mm7REiPzRcVY7eFL6B3QY7nJ16Ft0suim6\nHKVU8Up7NGmPEPmTSzA8fPgQ3333HWJjY1FQUCDecEJCQqM2XGthShYM357/Fi9yX2C7x3ZFl6Jy\nyk/aK9+6UOSV9ghRV3K7tOeyZcuwcOFCHD9+HDt37oRAIMCKFSsateFaC1OiYEh+k4weW3rg7md3\n0aZVG0WXozaqutJe2aQ9WV5pjxB1Jpdg6NmzJ6KiotClSxfcu3dP4jVZUqZg8DniA2tDaywfvFzR\npTQJNGmPkIaTy4V6dHV1IRAIYGtriw0bNqB169bIy8tr1EZVSVRqFM4lnMPDuQ8VXUqToaUluhCS\ngwMwceK71ytO2tuzR/T4+XPAzq5ylxRN2iOkYWptMURERMDBwQFZWVlYunQpsrOz4efnh759+8q2\nMCVoMTDGMGT3EHg7eeNTl08VWgupXsUr7ZXdV7zSXtk9Tdoj6kyuo5Ly8/Ohpye/y1YqQzCceHgC\nfuf8cPfzu2imQX0VqqaqSXsxMUBOjmhEVMUuKUtLCgyi+uQSDFeuXMEnn3yCnJwcPH36FHfu3MGW\nLVuwadOmRm241sIUHAylwlJ02dwFa93X4kO7DxVWB5G+zMzKrYuySXtVXTiJrrRHVIlcgqFPnz44\ndOgQPDw8cOvWLQCAk5MTYmJiGrXhWgtTcDBsidyC4NhghEwLafKT2ZqK6q60p6VV9aQ9IyNFV0xI\nZXI5+AwAVlZWkh9S8yEgOUU5CLgQgFOTT1EoNCFmZqLb4MHvXmMMSE19FxIREcD27aIuqlatKgeG\noyMgo6vdEiI3te7hraysEB4eDgAoLi7GunXr4ODgUKeVP336FD4+Pnj58iU4HA5mz56N+fPnIyMj\nA15eXkhKSoK1tTWCg4NhWMU5E27evAldXV3o6uqiefPm4se6urrQkOFwk5+v/Az3Du7oYdlDZtsg\nqoHDAVq3Ft2GD3/3ulAIPH36LjD4fGDjRtGkPVPTyoHh4ECT9ojqqLUr6dWrV/jyyy8REhICxhiG\nDx+OdevWwdjYuNaVp6WlIS0tDd27d0dubi569eqFo0ePYseOHTAxMYGfnx9Wr16NzMxMBAYGShbG\n4aBnz54oLCxEYWEhCgoKxI8LCwuhpaUlERQVg6Ohz3MEOfj09KfY770f1ibWVS4vy1Aiqq3sSnsV\nu6QqTtorCw2atEekTeXOlTRmzBjMnTsXc+fOxYULF2Bubo60tDTweDzExcVJFlbDl2OMobi4WCIo\nKgZHQ59HPY2CplATZtpm1S7frFkziaCobwjp6enB0tISbdu2Rdu2bdGmTRuZn5SQKFbZpL2KgVE2\naa/iQW+atEcaSqbBMG/evGo3xOFwsG7dunptKDExEW5uboiOjoaVlRUyMzMBiHbyXC5X/Lz8Nvz9\n3102k8fjgcfj1Wub9XUn7Q5G7B2Bh/MeopVOqyqXYYyhpKSkUUGUl5eH1NRUPHv2DM+ePcPz58/R\nqlUrcVBUdWvTpg1a0hnn1E7ZpL2KgUGT9khd8fl88Pl88fNly5bJLhh27twpDgR/f38sX75cvDEO\nhwNfX986byQ3Nxdubm5YunQpxowZAyMjI4kg4HK5yMjIkCxMzqOSGGMYvnc4xnYeizm958htuwAg\nFAqRnp4uDorqbjo6OjWGR9u2bdGqVSs6YK4Gqpq0FxMDvHpFk/ZIzeTWldSjRw/xUNX6KikpwahR\nozBy5Eh89dVXAIDOnTuDz+fDwsICqampGDx4cL26kmTh9KPT+Or0V7j3+T1oaWrJbbt1xRhDZmZm\njcHx9OlTAKg1PLhcLoWHisrJEY2IqjiklibtkTJKHwyMMfj6+sLY2Bi//fab+HU/Pz8YGxtj0aJF\nCAwMRFZWVpUHn+UVDKXCUnT/szt+GvITPDp7yGWbspKdnV1ry6OgoKDW8DA1NaWD7CqEJu2RMkof\nDJcvX8agQYPQtWtX8S/UVatWoU+fPvD09ERycnK1w1XlGQx/R/2NPXf3gO/LbxK/pPPy8vD8+fMa\nw+PNmzdo3bp1jeFhYWEBTU31ue61Oqpu0p62dtWBQVfaU30yDYaWLVuKd5IFBQVoXm4QNofDQXZ2\ndqM2XGthcgqG3OJc2K23wzHvY+jdprfMt6cqCgsLkZKSUmN4pKenw9zcXOIAedu2bdG+fXs4ODjA\nzs4O2jQWU+mUXWmv4vGLmBiatKcOVG64an3IKxgC+AGIz4jH/8b9T+bbUjclJSUSo6vKbk+ePMH9\n+/eRmJgIGxsbODk5iW+Ojo4UGEqq/JX2yoeGKk7aK2UMSYWFiC8oQHx+Ph4WFIgf7+jcGYPUuGlE\nwdBIqTmpcN7sjJuzb8La0Fqm22qKioqK8ODBA8TExCA2NhYxMTGIiYlBUlISOnToIA6KstDo1KkT\nBYYSKpu0V7E7qmzSXsUuKTs7QEdH9nUJGcPzoiKJnX7Z48TCQlhoa6NT8+bo1Lw57PT0xI9tdHWh\npcbHzygYGmnWv7NgpGuEn91/lul2iKTCwkI8fPhQHBRlwVE+MMq3MCgwlJM8Ju0xxvCipKTSr/6H\nBQV4XFAAw2bNJHb6ZY87Nm8OXTXe+deEgqER7r24h2F7huHB3Acw1FXfZqUqKSwsrLKF8fTpU3To\n0EGidVHWwtDSUr6hxU1dTZP2OnWq3CVlYwNkCUsQX1CAh/n5op3/28ePCgqgo6FR6Ve/nZ4ebJs3\nR0sa/FAJBUMjjPzfSIy0HYn5782X2TaIdJQPjPItjLLAKN+6oMBQXmk5pQi5X4AryQW4m5GPJyUF\nSNcpQLF5PjSaMRjl6qGdRnM46uuhT5vm6Nu2Oez0msOI/i7rhYKhgc49Poc5p+YgZk4MtDWpi0JV\nFRQUVNnCePbsGTp27FiphWFra0uBIWP5AgEelXX5VGgB5JSWolMV3T6WguZ4+VALMTEciVZGdrbk\nCQfL7mnSXs0oGBpAIBSg51894e/mj3EO46S+fqJ45QOjfAujLDAqtjAoMOqnWChEQmFhpW6f+IIC\npJeUwEZXt8p+/9ba2vWaJ1TdpL3S0spnqXVyEl1Lg1AwNMjO2zvxd9TfuPTxpSYxmY28U1BQgLi4\nOInWRUxMDJ4/fw5bW9tKLYyOHTs22cAoP9yzYgCkFBejnY5Olf3+7XR0oCnj/1c1XWmv4lX2nJwA\nLlem5SgdCoZ6yi/Jh916OxzyPIS+bftKdd1EdZUFRvnWRfnAqDis1tbWVuWvYihgDKnFxUgqLERS\nYSGSi4rEjxMKC1VuuGfFK+2Vn7inry/ZFTVqFGBuruiKZYeCoZ5+vPgj7r28hwMTDkh1vUQ95efn\nV2phxMbGIjU1Fd26dUPv3r3Ft06dOinVuaXyBQI8LbezT67wOKWoCMZaWmivqwsrHR3Rva4u2uvo\nwKZ5c9iqyXDPilfai44G/u//gC5dFF2Z7FAw1ENabhqcNjnhxqwb6GDUQWrrJU1PdnY2bt68iRs3\nbiAyMhI3btxARkYGevXqJREWVlZWMumuZIzhdWkpkt/u6JOKiio9zhYI0K5sh//2vvzjtjo60FGD\nHT+pjIKhHj478RlaaLfAL8N/kdo6CSnz6tUrcUiU3YRCoTgkXFxc0Lt3b5jXoQ+j9O2M3uS3O/qk\nwkLx47IA0NbQEO3sdXREv/QrPDbT0oIGHUNrkigY6ij2VSx4O3mImxsHbvMmdiSKKARjDM+fP5cI\nisjISOjr66OHqys69OsHc2dn6LRvj1caGuKunuTCQqQVF8NMW7tSF0/ZYysdHbRS8WMcRHYoGOro\no/0fYYj1ECxwXSCV9RFSHcYYXpWUSPTrl+/fT8zPR15pKVrk5YG9eIHcR49gUFSETgYG6NWmDdwc\nHDC8e3cY0GVcSQNRMNRB6JNQfHL8E9z/4j50msnhzF5ErRUJhUgpKqp0MLfs8dOiIuhpakp061Ts\n4zfV0hIfeygtLcX9+/clWhaxsbHo1KmTxPEKZ2dnOl8UqRMKhloImRAuf7lg8YDF8HTylFJlRN2U\nCIV4WVKCtOJivCgulryv8HqeQABLbW2JLp7yffztdHUbff6eoqIi3L17VyIsnjx5AmdnZ4mwsLe3\npwslkUooGGqx584ebLyxEVdnXqXJbE1MKWN4VcWOvaodf3ZpKUy0tGChrQ1zbW3J+wqvGzVrppB/\nS7m5uYiKipIYCfXy5Uv07NlT4uC2jY0N/Vtv4igYalBQUgD7DfbYP34/+lv1l2JlRFEEjOF1xR19\nNTv+zNJSGGtpVdqxV7XjN1bRETwZGRkSI6EiIyNRWFgoDomym6WlpaJLJXJEwVCDwMuBiEyJxCHP\nQ1KsikibkDFklJbW+Iu+7Hl6SQkMmzWr8Rd92b2JlpbMT82gjFJSUioNm9XV1ZUIChcXF3Cb2nki\nmhClD4YZM2bg5MmTMDMzw7179wCIfuV4eXkhKSkJ1tbWCA4OhmEVl9lrzJd7lfcKDhsdcO2Ta7Dl\n2jbqO5D6Y4whq7S0xl/0ZfevSkqgr6lZ4y/6suemWlpKdyoGZccYw5MnTyS6oKKiomBmZiYRFD17\n9jNsZyMAABPnSURBVERLGgmlFpQ+GC5duoSWLVvCx8dHHAx+fn4wMTGBn58fVq9ejczMTAQGBlYu\nrBFfbu6pudDU0MQf7//RqPqbKsYY8oRCZJWWim9vyj2u+Lzie1mlpWiuqVnjL/qyezMtLWjTzl6u\nBAIBHjx4INGqiI6Oho2NDXr37o333nsPAwYMgKOjo1Kd5oPUjdIHAwAkJibio48+EgdD586dceHC\nBZibmyMtLQ08Hg9xcXGVC2vgl3uQ/gADdgzA/S/uw0TPpNH1qyIBY8gRCOq8Y6+0oxcIoKuhAQNN\nTRg2aya+GZR7XNtzdTjPTlNSXFyM6Oho3LhxA1evXkV4eDjS09Ph6uqK/v37o3///ujTpw/09PQU\nXSqphUoGg5GRETIzMwGIfplyuVzxc4nCOBz4+/uLn/N4PPB4vFq3NyZoDPq364//6/9/0vkCClAs\nFOLN2x10Q3buuQIB9Js1a/CO3UBTk7psCF68eIErV67g8uXLCA8Px7179+Dk5CQOiv79+9OBbSXA\n5/PB5/PFz5ctW6bawQAAXC4XGRkZlQtrQOpdTLoInyM+iJsbB91muo0r/C3GGEoZQxFjKBYKUSQU\nopgxyXuhsF7vFwqFyBYIqt2xFzH2bmfdgJ27vqZmkzzwSmSroKAAN27cQHh4OMLDw3HlyhUYGRlJ\nBAV1PymeNFoMcj/hSlkXkoWFBVJTU2FWw2WX4vLz67zjLRQK8OuNf9HXdT1+epraqB13+feLhUJo\ncjjQ5nCgo6EBbQ0N6HA4onsNjXev1+N9w2bN0F5Xt9odewsNDRqLTpRO8+bNMWjQIAwaNAgAIBQK\nERcXJ25RrFmzBq9fv6buJzUg92AYPXo0du3ahUWLFmHXrl0YM2ZMtcuOiY6u8473SUY8SjVawM7U\nCdocDlpqaTV4x13xfVUc406IrGloaMDR0RGOjo6YPXs2ACAtLQ1XrlxBeHg4Fi9ejHv37sHZ2Vmi\nVWFhYaHgykltZNqVNGnSJFy4cAHp6ekwNzfH8uXL4eHhAU9PTyQnJ0ttuGphaSE6b+iM3WN3Y1D7\nQdL+GoSQBsrPz5fofrp69Sp1P8mYShx8bqj6fLk14WsQ/jQcR72PyrgqQkhjCIVC3L9/XxwU4eHh\neP36Nfr16ycOit69e1P3UyNQMABIz0+Hw0YHXP74MuxN7OVQGSFEmsq6n8qOVURHR1P3UyNQMAD4\n8vSXEAgF2PDBBjlURQiRtYrdT1euXAGXyxWHxIABA+Dg4EDdT9Vo8sEQ/zoerttccf+L+zBtYSqn\nyggh8lS++6msVZGZmSkx+om6n95p8sEwIXgCXFqLrrdACGk60tLSJI5TUPfTO006GMKTwzHp8CQ8\nmPsAzbWay7EyQoiyKet+KmtRXL16FcbGxhJB0VS6n5psMDDG4LrNFV/0/gLTuk2Tc2WEEGUnFAoR\nGxsr0aoo635avXo1nJ2dFV2izDTZYAiOCRZdb2F2JDQ46v8LgBDSeKmpqbhy5QoGDBgAc3NzRZcj\nM00yGIpKi+Cw0QF/j/4bQ2yGKKAyQghRXtIIBpX7ub3pxiY4mTlRKBBCiIzI/VxJjZFRkIFVl1fh\nwvQLii6FEELUlkq1GH669BPGOYyDg6mDokshhBC1pTIthoTMBOy8vRMxc2IUXQohhKg1lWkxfHv+\nWyzouwAWLZvmpBVCCJEXlWgxXHt2DeHJ4djhsUPRpRBCiNpT+hYDYwzfnP0GPw75EXpadC4UQgiR\nNaUPhiNxR5BbnItpXWmGMyGEyINSdyUVC4qxKGQRNn2wCZoamoouhxBCmgSlbjH8GfknbLm2cO/o\nruhSCCGkyVBYMJw+fRqdO3dGp06dsHr16iqX+enST1jjvkbOlckHn89XdAkyo87fDaDvp+rU/ftJ\ng0KCQSAQYO7cuTh9+jRiY2Oxf/9+3L9/v9Jyo+1Hw9lMPc+CqM7/ONX5uwH0/VSdun8/aVBIMERE\nRMDW1hbW1tbQ0tKCt7c3jh07Vmm55bzlCqiOEEKaNoUEw/Pnz9GuXTvx87Zt2+L58+eVlrPUt5Rn\nWYQQQqCg024fPnwYp0+fxtatWwEAe/fuxfXr17F+/fp3hXE48i6LEELUQmN36woZrtqmTRs8ffpU\n/Pzp06do27atxDJKepkIQghRewrpSnJxcUF8fDwSExNRXFyMAwcOYPTo0YoohRBCSAUKaTE0a9YM\nGzZswIgRIyAQCDBz5kw4ONCptAkhRBnIvcVQNn9h/vz5mDFjBh49eoRvv/1WYpn58+ejU6dO6Nat\nG27dulXpszXNfVC0utRY3febMWMGzM3N0aVLF3mVW28N/X5Pnz7F4MGD4eTkBGdnZ6xbt06eZddZ\nQ79fYWEh3nvvPXTv3h3/3965x0RxtWH8WfFWd/shbeS6VgQjce8rIrW6okY0VkikQmq1XmrEVm1M\nCWhrbWJtGttUjZKq0TSoTZOqcZsYWxSlVQsUCXJRm2ox1V0tdQVaQFzQysLz/UGYuFzWldEFmvP7\na2f2zHve58zseXfmnPeMRqPpdE33BeRcm0DbNHOz2YzExERfuPvEyNEXHh4Og8EAs9mMiRMn+srl\nJ0KOvvr6eiQnJ2PcuHHQaDQoKiryXBl9iMvlYmRkJG02Gx8+fEij0cgrV664lcnOzuacOXNIkkVF\nRYyNjfX62N5Gjj6SzMvLY1lZGXU6nU/99hY5+hwOB8vLy0mS9+7d49ixY/9z56+xsZEk2dzczNjY\nWObn5/vO+ccgVxtJbt++nQsXLmRiYqLP/PYWufrCw8P5zz//+NTnJ0GuviVLljArK4tk2/VZX1/v\nsT6f3jF4k79w/PhxLF26FAAQGxuL+vp63Llzx+vch95Ejj4AsFgsCAgI8Lnf3tJTfVVVVQgODobJ\nZAIAqFQqjBs3Drdv3/a5Bk/I0QcAw4a1rf778OFDtLS04IUXXvCtAA/I1VZZWYkTJ05gxYoVfXJi\niFx9QN+e8CJH3927d5Gfn4/ly5cDaHuU7+/v77E+nwYGb/IXuitz+/Ztr3IfehM5+voDPdVXWVnp\nVsZut6O8vByxsbHP1uEnRK6+lpYWmEwmBAUFYfr06dBoNL5x3AvkXptpaWnYunUrBgzom8urydWn\nUCgwc+ZMTJgwQZpG35eQc23abDaMGDECb731FsaPH4/U1FQ0NTV5rM+nZ9nb3IS+HLk90VN9/SVn\n42noczqdSE5ORmZmJlQq1VP1Ty5y9fn5+eHixYuorKxEXl5en1p6oafaSOKHH35AYGAgzGZzn/1t\nyu1bCgoKUF5ejpMnT2L37t3Iz89/mu7JRs616XK5UFZWhtWrV6OsrAxKpRKff/65Rzs+DQze5C90\nLFNZWQm1Wu3Vsb1NT/WFhYX5zEc5yNXX3NyM+fPn480338S8efN84/QT8LTOn7+/P+bOnYuSkpJn\n6/ATIEdbYWEhjh8/jtGjR+ONN97AmTNnsGTJEp/57g1yz11oaCgAYMSIEUhKSkJxcbEPvPYeOfrU\najXUajViYmIAAMnJySgrK/Nc4dMYGPGW5uZmRkRE0Gaz8d9//33sAMr58+elARRvju1t5Ohrx2az\n9dnBZzn6WltbuXjxYr733ns+99tb5OirqalhXV0dSbKpqYkWi4U//vijbwV44GlcmyR57tw5JiQk\n+MTnJ0GOvsbGRjY0NJAknU4nX3nlFZ46dcq3Ah6D3PNnsVhYUVFBkty0aRPXr1/vsT6fBgaSPHHi\nBMeOHcvIyEhu2bKFJLl3717u3btXKrNmzRpGRkbSYDCwtLTU47F9DTn6FixYwJCQEA4ePJhqtZr7\n9+/3uf+Po6f68vPzqVAoaDQaaTKZaDKZePLkyV7R4Ime6rt8+TLNZjONRiP1ej2/+OKLXvHfE3Ku\nzXbOnTvXJ2clkT3Xd/36dRqNRhqNRmq12v9k33Lx4kVOmDCBBoOBSUlJj52V1CtrJQkEAoGg79I3\npxgIBAKBoNcQgUEgEAgEbojAIBAIBAI3RGAQCAQCgRsiMAieCna7/Zkv/nfz5k0cOnSo2+9v376N\nlJQUr+39/vvvMJlMiI6Oxo0bN3ot4e7rr7+Gw+HwqmxGRkaPEuc2b97scd/NmzcRHR0Ns9kMrVaL\nzMxMt7KHDx/Gli1burRdVVWFV1999Yl9EvRdRGAQ9BtsNhu+/fbbLr9zuVwIDQ3F0aNHvbZ37Ngx\npKSkoLS0FBEREc80A721tbXb7w4ePOjVulH37t1DXl4epk2b5nW9O3fuxP79+9HY2IiPPvoIubm5\nXe4LDQ1FUVERysvLUVxcjB07drgtZZKTk4M5c+Z0WUdQUBACAgIenzQl6D88i/m2gv7PBx98wN27\nd0vbmzZt4rZt20iSGRkZ1Ol01Ov1PHLkCEn3xLwDBw7w3XfflY6dO3cuf/75Z5KkUqnkunXrqNVq\nOXPmTJ4/f55Tp05lREQEjx8/TrJtJcmMjAzGxMTQYDBw3759JMnY2Fj6+/vTZDJxx44dPHjwIBMT\nEzljxgxOmzaNdrudWq1WspGenk6dTkeDwcAvv/zSTV92djaDg4MZFhbGGTNmkCRVKhXJtmS8rjSu\nXr1a8nHevHlcvnw5STIrK4sbN27s1IZKpZLp6ek0Go0sKCjgJ598wpiYGOp0Oq5cuZIkefToUapU\nKkZFRdFsNvP+/fssKSlhXFwco6OjOXv2bDocDpLkN998ww0bNkj2R40axQ0bNtBkMjE6OpqlpaWM\nj49nZGSk29z2zz77jEOGDGFBQYHHfe3U1NRwzJgx0mqjra2tNBqNJNvyGNrzUMxmM51OJ0ny8OHD\nzMjI6GRL0D8RgUHQJeXl5YyLi5O2NRoNKysrabVaGR8fz9bWVlZVVfGll17inTt3PAaGhIQEKTAo\nFArm5OSQJJOSkhgfH0+Xy8VLly7RZDKRJPft28dPP/2UJPngwQNOmDCBNputU9btgQMHqFarpYzj\nR33Ys2cPU1JS2NLSQpKsra3tpPHjjz/m9u3bpe32wNCVRofDwcOHD3PdunUkyZiYGE6aNIkkuWzZ\nMp4+fbqTfYVCwaNHj0rbj/qwePFifv/99yTJadOmSclIDx8+5KRJk/j333+TbOtw2wPQ22+/ze++\n+06yER4eLgWAtLQ06vV6Op1O1tTUMCgoiCSZmZnJrKwsrlu3jhs3bmRubm6X+0jy1q1b1Ov1fO65\n59z+FJSWlnLp0qUkycTERBYWFpJsyxh2uVwkyRs3bnDixImd2kDQP+mVN7gJ+j4mkwnV1dVwOByo\nrq5GQEAAwsLCUFBQgIULF0KhUCAwMBBxcXEoLi72enxh8ODBmD17NgBAr9dj6NCh8PPzg06ng91u\nBwCcPn0av/76K6xWKwCgoaEBf/zxBwYOdL9cFQoFZs2aheHDh3eq56effsKqVauk1UC7W86cXeR3\ndqXxwoULsFgs2LlzJ65evQqtVistmV5UVIRdu3Z1suPn54f58+dL22fOnMHWrVvR1NSE2tpa6HQ6\nJCQkuPlRUVGB3377DTNnzgTQtmJr+zo+t27dQkhIiFsd7a/E1ev1aGxshFKphFKpxJAhQ9DQ0IC1\na9cCaBtP2LRpEwBIth/dBwAjR47E5cuX4XA4EBcXh1mzZmHMmDFuj5EmT56MtLQ0LFq0CK+99pq0\n1lBISIh0/gT9HxEYBN2SkpICq9WKO3fuYMGCBQDaOuOOnWnHZ/MDBw50e6b+4MED6fOgQYOkzwMG\nDMDgwYOlzy6XS/pu165diI+Pd7Pb1aBr+zsQuqKrTt8bOmokCYVCgdDQUNTX1yMnJwdTp05FbW0t\njhw5ApVKBaVS2cnO0KFDpbZ58OAB1qxZg9LSUoSFhWHz5s1u7dJejiS0Wi0KCwu79K3jWMWQIUMA\nuLdl+/aj7floAPC0D2jr5C0WCy5duoQxY8YgNzcXq1atAgC8//77SEhIQHZ2NiZPnoxTp04hKipK\naiPBfwMx+Czoltdffx2HDh2C1WqVZvtYLBYcOXIEra2tqKmpQV5eXqdXIYaHh+PixYsgiT///POJ\nV6qcPXs29uzZI3Vs165dQ1NTE/73v//h3r17UjlPHX98fDz27duHlpYWAEBdXZ3X9XfUmJ+fL2l8\n+eWXsXPnTsTFxcFisWDbtm2YOnXqY222B4EXX3wRTqfTbZD8+eefR0NDAwAgKioKNTU10qsXm5ub\nceXKFQDAqFGjpJc6daSnQbCdv/76C/fv3wfQ1la//PIL9Ho97t69C5fLJd1xXb9+HVqtFuvXr0dM\nTAwqKioAAA6HA6NGjZLlg6DvIO4YBN2i0WjgdDqhVqsRFBQEAEhKSsL58+dhNBqhUCiwdetWBAYG\nwm63S/8Yp0yZgtGjR0Oj0WDcuHGIjo6WbHb8V/nodvvnFStWwG63Y/z48SCJwMBAHDt2DAaDAX5+\nfjCZTFi2bBkCAgK6tbdixQpcu3YNBoMBgwYNwsqVK7F69epOGruqvzuNQFvQyM3NRUREBEaOHIm6\nujpYLJYu2+9R28OHD0dqaip0Oh2Cg4PdXlK0bNkyvPPOOxg2bBgKCwthtVqxdu1aqVNOS0uDRqPB\nlClTUFJSIj2e6uh7V1q85erVq0hPT5fsfPjhhxg7diysVqvbnVtmZibOnj2LAQMGQKfTSY+YiouL\nvQqQgv6BWERPIOgnOJ1OTJ8+HRcuXPBZnampqUhNTe10V9iRRYsWISMjA2az2UeeCZ4l4lGSQNBP\nUKlUmD59Os6ePeuzOr/66qvHBoXq6mrU19eLoPAfQtwxCAQCgcANcccgEAgEAjdEYBAIBAKBGyIw\nCAQCgcANERgEAoFA4IYIDAKBQCBwQwQGgUAgELjxf6z7LLHWFcGKAAAAAElFTkSuQmCC\n", "text": [ "" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "Power required to pump fluid at this rate(in KW): 7.2014\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 6.4 pageno : 123" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "from matplotlib.pyplot import *\n", "\n", "# Initialization of Variable\n", "#each is increased by five units to make each compatible for graph plotting\n", "Q = [0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1] #flow rate\n", "HeffA = [20.63 ,19.99, 17.80, 14.46, 10.33, 5.71, 0, 0, 0, 0, 0 ] #Heff of pump A\n", "HeffB = [18 ,17, 14.95, 11.90, 8.10, 3.90, 0, 0, 0, 0, 0] #Heff of pump B\n", "alpha = 1.\n", "h = 10.4\n", "d = 0.14\n", "l = 98.\n", "pi = 3.1412\n", "g = 9.81\n", "rho = 999.\n", "mu = 0.001109\n", "H_sys = [0,0,0,0,0,0,0,0,0,0,0]\n", "for i in range(11):\n", " if i == 0:\n", " H_sys[i] = h\n", " else:\n", " H_sys[i] = h+8*Q[i]**2/pi**2/d**4/g*(1+8*l*0.0396/d*(4*rho*Q[i]/pi/d/mu)**-0.25)\n", "\n", "#H_sys is head of the system\n", "print \"the head of system in terms of height of water : \",H_sys\n", "plot(Q,H_sys,'r--d')\n", "plot(Q,HeffA ,'-c')\n", "plot(Q,HeffB)\n", "show()\n", "\n", "#at intersecting point using datatrip b/w H_sys &H_effA\n", "print \"the flow rate at which H_sys takes over HeffA \",0.03339\n", "\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the head of system in terms of height of water : [10.4, 10.703503558535079, 11.434551925145852, 12.522017190713953, 13.934570851357016, 15.652293146483034, 17.66081196342499, 19.949010875049055, 22.507899154909985, 25.329974605787854, 28.4088306047139]\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD9CAYAAACoXlzKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVXX6wPHPZXVBcQNcwMAFFFBALZsmEzNLywWz0bEm\n3G1Ks1JHf2aJlmM6ak6Wk00jppZNWqFOGpNmOFqWpqDighsoKoiKoAhc4XJ+fxwlUIELdzn3Xp73\n68VLuZxz7vMNe/jyXZ6vTlEUBSGEEA7DSesAhBBCmJckdiGEcDCS2IUQwsFIYhdCCAcjiV0IIRyM\nJHYhhHAwlSb2wsJCunfvTnh4OMHBwcyYMQOA7Oxs+vTpQ2BgII8//jg5OTlWCVYIIUTVdFWtY8/P\nz6devXoUFxfz8MMPs2jRIjZt2kSzZs2YNm0aCxYs4OrVq8yfP99aMQshhKhElUMx9erVA+DmzZsY\nDAYaN27Mpk2bGDFiBAAjRoxgw4YNlo1SCCGE0apM7CUlJYSHh+Pj40OvXr0ICQnh4sWL+Pj4AODj\n48PFixctHqgQQgjjuFR1gZOTE0lJSeTm5vLEE0/www8/lPu6TqdDp9Pddd+9XhNCCFE1Uyu9GL0q\nxtPTk6eeeop9+/bh4+NDZmYmABkZGXh7e1cYnKN+xMTEaB6DtE/aVxvb58htUxTzlO6qNLFfvny5\ndMVLQUEBW7duJSIigoEDB7Jq1SoAVq1aRVRUlFmCEUIIYbpKh2IyMjIYMWIEJSUllJSU8Pzzz9O7\nd28iIiIYOnQoK1aswN/fn3Xr1lkrXiGEEFWoNLF36tSJ/fv33/V6kyZN2LZtm8WCsgeRkZFah2BR\n0j775sjtc+S2mUuV69hr/GCdzmzjRUIIUVuYI3dKSQEhhHAwktiFEHZDr9czYdgw9Hq91qHYNEns\nQgi7MW/cOIZ89RXvjB+vdSg2TRK7EMIuxMXGErFpE48aDIRt3EhcbKzWIdksSexCCJt3+uRJDsyd\nS1RuLgCDc3NJevttUk+d0jgy2ySJXQhh8xZPmsTU1NRyr01NS2PRyy9rFJFtk8QuhLB5UxYvZlGD\nBuVeW+Tvz9T339coItsmiV0IYfPatG5N2EMPEefpCUCcpycRs2YR0LatxpHZJknsQgjbV78+g+Pj\nSRo4kO+dnTkwaBBRo0ZpHZXNkp2nQgi7odfrmRwdzZI1a3Bzc9M6HIswR+6UxC6EsC2KAno91Kmj\ndSSakJICQgjHcuMGDB0Kf/2r1pHYNUnsQgjbcOYM/P734OEBb7yhdTR2TRK7EEJ7u3bBgw/CiBEQ\nGwvu7lpHZNeqPPNUCCEsKiFBHX5ZvRr69tU6Gocgk6dCCG0VFsK5c9CundaR2ARZFSOEEA5GVsUI\nIYS4iyR2IYT1bN0Ktyo0CsuRxC6EsDxFgQULYORIdVmjsChZFSOEsKyCAhg3Do4dg19+AV9frSNy\neNJjF0JYzvnz0LMnGAzwv/9JUrcSWRUjhLCcN96A+vXh//4PdDqto7ELstxRCGHbFEUSejXJckch\nhOb0ej0Thg1Dr9ff/UVJ6pqQxC6EMMm8ceMY8tVXvDN+vNahiFsksQshaiwuNpaITZt41GAgbO1a\n4pYv1zokQRWJPT09nV69ehESEkJoaChLly4FYPbs2fj6+hIREUFERATx8fFWCVYIYTtOnzzJgblz\nibq14WhwcTFJCxaQeuqUxpGJSidPMzMzyczMJDw8nLy8PLp27cqGDRtYt24dDRo0YPLkyRU/WCZP\nhXBoE/r1Y0F8PB5lXrsO/F+/fizbskWrsOyexSdPmzdvTnh4OAAeHh507NiR8+fPA0jSFqI2Kypi\nSl4ei+6om77I35+p77+vUVDiNqPH2NPS0khMTOTBBx8E4P333ycsLIwxY8aQk5NjsQCFEDbI1ZU2\n06cT9sEHxHl6AhDn6UnErFkEtG2rcXDCqHXseXl5REZG8sYbbxAVFUVWVhZeXl4AvPnmm2RkZLBi\nxYryD9bpiImJKf08MjKSyMhI80YvhNBcTHQ0j6xdy87nnmP2qlVah2N3EhISSEhIKP18zpw5lt+g\nVFRURP/+/enXrx+vvvrqXV9PS0tjwIABHDp0qPyDZYxdiFpBr9czOTqaJWvW4ObmpnU4ds/iY+yK\nojBmzBiCg4PLJfWMjIzSv8fFxdGpUyeTghBC2LAff4S9eyv8sru7O8u++EKSug2ptMe+a9cuHnnk\nETp37ozu1g6yefPm8fnnn5OUlIROpyMgIICPPvoIHx+f8g+WHrsQ9q2kBBYtgnffhTVroE8frSOq\nFaRWjBDCMq5cgREjIDsb/v1vaN1a64hqDakVI4Qwv927oUsX6NgRduyQpG6HpMcuhChv0ya1eNeA\nAVpHUivJUIwQQjgYGYoRQghxF0nsQtRWigKJiVpHISxADrMWoja6ehVGjYLLl9UJUmdnrSMSZiQ9\ndiFqm7171VUv/v6wfbskdQckiV2I2kJRYOlSeOopWLwY/v53kN2iDkmGYoSoLTIz1aWMP/8Mbdpo\nHY2wIOmxC+FgKjxcukUL2LZNknotIIldCAcjh0sLSexCOJByh0tv3EhcbKzWIQkNSGIXwkHcdbh0\nbi5Jb78th0vXQpLYhXAQiydOZGpqarnXpqalsejllzWKSGhFErsQjuD4caZkZrKoTp1yL8vh0rWT\nJHYhHMHkybQZO1YOlxaAVHcUwjEoilpqFzlc2t5J2V4hxF3kcGn7JoldiNomMxNcXaFpU60jERYi\n9diFqE3Wr4fwcHX3qBCVkFoxQti67GyYOBH27YONG6F7d60jEjZOeuxC2LJvv4XOncHLSz0UQ5K6\nMIL02IWwZQcPwpo10KuX1pEIOyKTp0IIYUNk8lQIIcRdJLELYQv27oXdu7WOQjgIiyb2AoPBko8X\nwv7dvAmzZkH//urB0kKYgUUnTxv/+COt3d0JrV+f0Pr1Cbn1Z2Ddurg6yS8LopZLToboaPVko6Qk\n9U8hzMCik6d6g4ETBQUk37jB4Rs3SL71ka7X07Zu3dKEH1q/PiH16tGmbl2cb9W7EMJR3N7i/+7q\n1bi7u6svLl8Ob74J77wDY8aU1nkRwuIlBdLT04mOjiYrKwudTsf48eOZNGkS2dnZDBs2jDNnzuDv\n78+6deto1KiR0cEVGAwcy89XE/6tP5Nv3ODSzZt0qFevtGd/u5ff2t0dnfzDF3YqJjqanmvX8r+y\nRbl27gQ/P/D31zQ2YXssntgzMzPJzMwkPDycvLw8unbtyoYNG1i5ciXNmjVj2rRpLFiwgKtXrzJ/\n/nyTg7teXMyR2wm/TA8/z2AoTfZlk76Pq6skfGHT4mJj0U2eTFRurlpO9913GTx6tNZhCRtm9SJg\nUVFRTJw4kYkTJ7Jjxw58fHzIzMwkMjKSY8eOmT2427KLikoTfdkevqIopUm+e8OGPOvjg4skemEj\nTp88yerHH2d2mVONYvz9Gbltm9RIFxWyamJPS0ujZ8+eJCcn07p1a65evQqAoig0adKk9POywcXE\nxJR+HhkZSWRkpEnBlqUoCllFRaW9+w2XL3OpqIj32rXj0caNzfY+QtTUhL59WfDf/+JR5rXrwP/1\n68eyLVu0CkvYmISEBBISEko/nzNnjnUSe15eHj179uTNN98kKiqKxo0bl0vkTZo0ITs7u/yDrbzz\nVFEUNly+zJRTp4jw8GBxu3b433FMmBBWs3s3p0eNYvWZM8wuLCx9WXrsoipW2XlaVFTEkCFDeP75\n54mKigIoHYIByMjIwNvb26QgzEGn0zHYy4vD999PRIMGdNu3j1mpqeTLWnphTVeuwLhxMGQIbWJi\nCFu2TI6qE1ZXaWJXFIUxY8YQHBzMq6++Wvr6wIEDWXVrdn/VqlWlCd8W1HV25o377iOxa1dOFBTQ\nYc8evsjKkro1wjpeeQXq1YOjR2H4cAaPHk3SwIF87+zMgUGDiBo1SusIRS1Q6VDMrl27eOSRR+jc\nuXPp6pN33nmHBx54gKFDh3L27NkaLXe0pv/l5DDp5Ek8nZ1Z2r49YR4eVd8kRE0ZDODsXO4lOapO\nVIccjWckg6Lwr4wMZqWmMsTLi7cDAmjq6qp1WEIIcRep7mgkZ52OF1q25OgDD+Ci09Fxzx6WnT9P\nsY384BF2RlFg3Toos4xRCFtSK3rsd0q+cYNXTpwoXR7ZS5ZHCmMdP64eU5eRAZ9+CmFhWkckHIz0\n2GsotH59toWFEePvz6iUFP5w+DBnyixJE+IuBQVqFcaHHoInnoD9+yWpC5tVK3vsZRUYDCxMT+e9\nc+d42deXaX5+1Ltj8kvUcsXFahIPDoYlS8DXV+uIhAOTyVMzOltYyF9OneKX69dZ2KYNz3h5SR0a\n8ZvTp6FNG62jELWAJHYL2JGTw6QTJ2ji6srSdu3oJMsjhRBWJGPsFtCzUSP2devGUC8veh84wMQT\nJ8guKtI6LGEtyclaRyCEySSx34OLTseLrVpx9IEHUBSFjnv28OH58xjs8DcQcTe9Xs+EYcPQ6/W/\nvZiVBSNHQr9+cPGiZrEJYQ4WTexr1sCFC5Z8B8tq6urKssBAtoaFse7SJbr8+is7cnK0DkuYaN64\ncQz56iveGT8eSkrgo48gNBSaNYMjR8DHR+sQhTCJRcfYhwxR2L4dWraExx5TP3r2hAYNLPGOlqUo\nCl9eusTUU6d4sGFDFrZtS2upHml3yh180bAhNGnC4JYt4cMPoXNnrcMTwj4mTw0Gdcnvtm3qx549\nEB7+W6J/4AGwp939+QYDf0tP58Pz5/kqNJSHb1XuE7bvngdfNGvGyJ9+IqB9ew0jE+I3dpHY75Sf\nD7t2/ZboT51Se/G3E33HjvZxru/W7GyeO3qU5YGBPO3lpXU4wggTnnySBd9+KwdfCJtml4n9Tpcu\nwfbtapLfuhWKin5L8r17q8M4tirx+nX6HzrEjPvuY2KrVlqHIypiMEB6OqeLi+WoOmHzHCKxl6Uo\nag/+dm9++3Zo0QL69LHd8fnUggL6HjzIYC8v5gUE4GQPv27UFooCW7bAjBnQqRN89hlxsbEweTKD\nbx0urVuyRGqkC5vicIn9TmXH57du/W18/nait5Xx+ctFRQw4dIh2deuyIigINydZRaq53bth+nT1\nRKN582DgwNIxvpjoaB5Zu5adzz3H7FsHxghhKxw+sd+p7Pj81q3qLu9HHlGT/JNPgpbzX/kGA8OP\nHKGgpISvQkJo4OKiXTC13ZQpsH49zJkD0dFy8IWwK7Uusd+p7Pj8pk3Qty+8/Ta0bm3Rt61QsaIw\n8cQJ9ly7xuZOnWjh7q5NILXd8ePg5wd162odiRDVVusTe1nXrsHChfCPf8DYseqw6h2n9VmFoij8\n9exZVmRkEN+5M0H16lk/CCGE3ZJaMWU0bKj21g8dgqtXITBQrbBadte4Neh0Ot647z5m3XcfPZOS\n2J2ba90Aaov8fFi8GPLytI5ECJvjMIn9tpYt4Z//hIQE+OEH6NAB1q5Vd45b06gWLVgZFMTA5GQ2\nXr5s3Td3ZEVFagmA9u3hl18ksQtxDw4zFFORHTvgL39RV9gsXAiPPmrd9//1+nUGHjrELH9//mzL\ni/JtnaLAl1/CzJnq+Pn8+XD//VpHJYTZyRi7kRRFXSQxYwYEBcGCBeqyZms5dWut+zBvb97295cD\nPGril1/gxRfVhN6nj31sTxaiBmSM3Ug6HQwdCkePqitnHnsMRo+Gc+es8/5t69blp4gItmZnMzol\nhSJrjwvZuHuW0b1T9+6wbx88/rgkdSGqUCsS+21ubjBpkroarnlz9RjL118Ha8xverm5sT08nEtF\nRQxITibPYLD8m9qJcmV0KyMJXQij1KrEfpunp7oZ8cAByMxUV9AsXQo3b1r2fes7O7MhNBRfd3ci\nk5K4aOk3tANxsbFEbNrEowYDYRs2EPfoo/DGG1qHJYRdq5WJ/TZfX4iNVTc4xcerlSXXrVPH5C3F\nRafj48BA+jdtykP793MiP99yb2bjTp88yYG5c4m69SvT4GvXSNq3j9RBgzSOTAj7VismT431/fcw\nbZq6A33hQrXomCV9fOECs9LS2BAaSveGDS37ZjZoQr9+LIiPlzK6QpQhq2IsoKQE/v1vdVVdp07q\nIozgYMu93zdXrjDq2DFWduhA/6ZNLfdGNuj0yZOs/t3vmF1mnb+U0RW1nVVWxYwePRofHx86lVkf\nOHv2bHx9fYmIiCAiIoL4+HiTgrAlTk7w7LNw7Bj06gWRkTBunOXObu3ftCnfdOrEuJQUPrbnA2Jr\noE27doQtWEDcrVOo4jw9iZg1S5K6ECaqMrGPGjXqrsSt0+mYPHkyiYmJJCYm0rdvX4sFqBV3d3jt\nNUhJgSZN1N77m2+qNWnMrXvDhuwID2f+2bPMTkuzy990KmQwqBuL3n77nl8ePHo0SQMH8r2zMwcG\nDZLa6EKYQZWJvUePHjRu3Piu1x0q+VSicWN1Q1NiIpw9q66gWbZM3dluToH16vFTly58c+UK444f\np9je//sWFKgHRAcFwbvvVnpQ9Osff8zXQ4bw+scfWzFAIRyXUWPsaWlpDBgwgEOHDgEwZ84cVq5c\niaenJ926dWPx4sU0uqOUok6nIyYmpvTzyMhIIiMjzRu9BpKS1AnWjAyIi4N27cz7/DyDgWcOH8YZ\nWBcSQv07aonbhYULYdEiePBB9T/W73+vdURC2KyEhAQSEhJKP58zZ451Jk/vTOxZWVl43TrA+c03\n3yQjI4MVK1aUf7CdTp4aa/lyiImBNWvUzZDmVFRSwrjjxzly4wabO3XCy94Og1i7Frp0USuwCSGq\nRbOSAt7e3uh0OnQ6HWPHjmXPnj0mBWGP/vxntf7MiBFqeWBz/gxzdXJiZVAQjzdpwkOJiZwqKDDf\nw63h2WclqQuhoRol9oyMjNK/x8XFlVsxU5s88gj8/DOsXg0jR0JhofmerdPpmBsQwGRfX3okJvLr\n9evme7ipSkpg82a1bKYQwuZUmdiHDx/OQw89REpKCn5+fsTGxjJ9+nQ6d+5MWFgYO3bsYMmSJdaI\n1Sbdd596DmthoZroz5837/NfbNWKZe3b89TBgxy+ccO8D69AhUW5bt6ETz5RJ0JnzlRPFnfg4TYh\n7JVsUDITRVE3My1bpq7ue/BB8z7/s4sXmXH6NLsiImhdp455H36HmOhoeq5dy/+ee47Zq1apL/7z\nn/DWW2rdhWnT1BKZUpRLCLOTsr02RKdT670vXw4DB8LKleZ9/nM+Przm68sTBw9yxdxrLcsoV5Rr\n40biYmPVL3h7w3/+A1u3Sj10IWyc9Ngt4OhRGDQInnxSXfXn4mK+Z08/dYodubl8HxZm9qWQp0+e\nZPXjjzM7NbX0NdniL4R1Sa0YG3b1Kgwfrm5kWrcOzFUGRlEURqWkkHXzJhtDQ3F1MtMvXVlZTOjZ\nkwXHjklRLiE0JEMxNqxxY3XhSNeu8MADkJxsnufqbpX9ddLpGJOSQokp/wBu3oQNG9RfLwIDmdKx\nI4uaNy93ySJ/f6a+/76JUQshrEkSuwU5O8Pf/gZz5qgFxeLizPNcVycn1gUHc7KggOmnT9f8Qf36\nqYvwo6IgPZ02X39N2F//KkW5hLBzMhRjJb/+Ck8/DWPGqMXEzDGCkl1URI/EREa1aMFUP7/qPyA/\nH+rVu+vlmOhoHlm7lp1lV8UIIaxCxtjtTGYmDBkCPj7qpiYPj6rvqco5vZ7f79/P2wEBRN8xjEJR\nkXo0VF6eOuBvJL1ez+ToaJasWYObvZUzEMLOyRi7nWneHLZvV8sA/+53YMooym2+7u7Ed+7MtNOn\n2XLlivpicjJMnQp+furi+mr+euDu7s6yL76QpC6EnZLEbmXu7vDxx/DCC/DQQ+pxfKbqWL8+G0JD\nGXH0KD8PGQJ9+4KbG+zYAT/+CMOGmf4mQgi7IUMxGvrhB3WE5PXX4eWXK97zc3to5N3Vq3F3d6/w\neVuuXGH0oUP80LUrHRs0sFDUQghLkqEYO9erF+zeDStWqJOqd5ZmuW3euHEM+eor3hk/Xn3h6FEo\ns4notiebNuVvHTrQNzmZdHNWJBNC2BVJ7BoLCFBHS65dU89XLVM4E7hji//69cS1aQO9e8OBA/d8\nXnTz5rzs60vfgwfJtmDpASGE7ZLEbgM8PNTdqU8+qW5mul3e/vTJkxyYNYuo3FwABhcUkJSfT+oP\nP6hrzysw1c+PJ5s2ZcChQ+QbDNZoghDChsgYu43ZuBHGjoXFi+GXfz/Jgm+/rdEW/xJFYeSxY2QX\nFxMXEmK+0gNCCIuSMXZHkJmp1jgfORIMBgYNgoQEtUKuvsVn/M2//KGqxm7xd9LpWBEURImiMP74\ncfkhK0QtIoldC3v3qgemduumHiG3eTP07Am3hk1CQtThmLPpjflP/R9Y07A1UP0t/q5OTqwPCeFY\nfj4z7jHZKoRwTDIUo4Xx46FRI3jqKXUxu6vrPS8rLlbPtFj1r0wW3ujD2T91qdEW/ytFRTycmMj4\nFi14rSalB4QQViMlBTRS5bpyRYGDB6FOHQgKMvn9/vWvIia9fIOdu+rTteu9fwhU5WxhIQ8nJvJO\nmzY85+NjckxCCMuQMXaN3LWuHOD6dbUE7rhx6lb+p5+GxESzvN/Ysa58sqoR/fu71rj8b+s6dfi2\nc2cmnzxJfHa2WeISQtgm6bFXU1xsLLrJk4nKzVXL2777LoN9fdXqXg8+qK5ZfOopaN/e7MfHff45\nTJkC27ZBcHDNnvFTbi6DkpP5plMnujdsaNb4hBCmk6EYa8rN5XRCAqtfe+3uo+O++YaA1q3BCtv4\nP/0Upk9Xa8x06FCzZ3xz5QpjU1JICA+nwz3K9gohtCOJ3VKKi9VCLvv3//aRkcGEunVZcPmy5kfH\nrV6t1pf5/vuaD+F/kpnJ7LQ0foyIoFUl9WeEENYlY+y36PV6Jgwbhr6iYisVURT14046HSxcCBcv\nwoAB6q6h3Fym7N7NooCAcpdqcXRcdDS8/TY89hicOFGzZ4xs3pwXW7ak78GDXJXSA0I4FIfoscdE\nR9Nz7Vr+V9mJP4oCZ86U74Xv368uGG/d2uj3iouNhcmTGXxrjF23ZAlRo0aZqSXV869/qRuZfvgB\nanJ6naIoTDl1ij3Xr7O1c2fqOjubP0ghRLXYfI+92j3oGihXJGvjRjXx3kuvXvD738PKlephpC+8\noG4Uqua67sGjR5M0cCDfOztzYNAgzZI6qKUHZs6ERx+9Z7HHKul0Oha1bYt/nToMO3KEYnsdOhNC\nlKdYCKDEREdb6vGKUlionNq5U4lp2fL2gIqigDKrRQvl9MmTd1+fl2fGty5UXho6VNHr9WZ7pik+\n+EBR/P0VJTW1ZvfrDQbliQMHlNFHjyolJSVmjU0IUT3mSMsWHYr5+vZywNGjq77hxg21bsqlS3D5\nsvrnpUtqd7Rbt7uvf/FFJqxcyQK9XvPJTFvw/vuwZIlaZ6YaI0ul8gwGeicl0btxY+a1aWP2+IQQ\nxrH9VTFATPPmjJw5kwAXFzVR9+oFDz989w3Tp8P69dCsGXh5qR/NmsHQoWot23s4ffIkqx9//O7l\nh9u2GV1PxZEsWQLLlqnJ3de3+vdfvlV64MWWLXmlJg8QQpjMKol99OjRbN68GW9vbw4dOgRAdnY2\nw4YN48yZM/j7+7Nu3ToaNWp0d3Dc6kF7e7MsKkpN1gMGQPfuJgVdli1NZtqCRYvgo4/U405btqz+\n/WdulR5Y1LYtw7y9zR+gEKJSVpk8HTVqFPHx8eVemz9/Pn369OH48eP07t2b+fPnV3j/In9/pv70\nk5pt5s41a1IH25rMtAVTp6qTqr163X0akzHuq1OHzZ06MfHECfZdv27+AIUQlmfMQHxqaqoSGhpa\n+nlQUJCSmZmpKIqiZGRkKEFBQXfdAyhfe3oqcbGxps0CGMHWJjNtwdy5itKhg6JkZNTs/i+zshS/\nn35SMuW/qRBWZWRarpRLTX4YXLx4EZ9bFQJ9fHy4ePHiPa97z9+fyDNnSJo9m8jISCIjI2v446dy\n7u7uLPviC4s8217NnKmWd+/dW13nXt1RlSFeXhzMy2PI4cNsDwvDTU5gEsIiEhISSEhIMOszjZo8\nTUtLY8CAAaVj7I0bN+bq1aulX2/SpAnZd1QM1Ol06PV63NzczBqwqJ6YGPj6a9i+XZ3iqI4SReHp\nw4dp7ubG8sBAywQohChHsw1KPj4+ZGZmApCRkYF3Bd1BSeramz0bBg5Uyw9cvly9e510OtZ06MDO\nnByWX7hgkfiEEOZXo8Q+cOBAVt3aur9q1SqioqLMGpQwH51OnbPu1w/69IHqlmJv4OLCxk6diElN\n5X85OZYJUghhVlUOxQwfPpwdO3Zw+fJlfHx8eOuttxg0aBBDhw7l7NmzlS93lC3qNkNR4C9/Ucfb\nt22Dxo2rd/932dmMOHaMn7t04b46dSwTpBDCDjYoSWK3KYoCkyfDrl2wdat67Gp1vJuezqcXL7Ir\nIoJ6UjBMCIuQxC6qTVHglVfUopbffQfVOURJURRGHDtGkaKwtmNHdGY+IUoIYQfVHYXt0engvfeg\na1fo21c9qtX4e3V8FBjIyYIC/paebrkghRAmkcReC+l0atGwzp3VSdW8POPvrevsTFxoKEvPnWPL\nlSuWC1IIUWOS2GspJyf4xz+gY0f17O0bN4y/19fdnfUhIYw8doyU/HzLBSmEqBFJ7LWYk5Nawqdt\nW+jfH6qTox/y9OSdNm0YlJxMbnGx5YIUQlSbTJ4KDAYYPRrOn4f//Afq1jX+3oknTpBWWMjG0FCc\nZTJVCJPJ5KkwC2dniI2F5s1h0CAoKDD+3iVt25JnMPBmTc7mE0JYhCR2AajJ/ZNPoGlTePppKCw0\n7j5XJyfWBwfzeVYWX2RlWTRGIYRxJLGLUi4usGYNNGgAf/wjGDt07uXmRlxoKBNPnCBRargLoTlJ\n7KIcFxf49FN1InXiRHVDkzHCPTz4R/v2DD58mEs3b1o2SCFEpSSxi7u4ucFXX6m7U+fONf6+P3h7\n85y3N88cPkxRSYnlAhRCVEoSu7inBg1gyxZYuVKdWDXW2wEBNHRx4dWTJy0XnBCiUpLYRYWaN4dv\nv4XXX4dXFnFdAAANzUlEQVTNm427x0mn49OOHdmek8M/pYa7EJqQxC4qFRQEGzbAyJHq0IwxPF1c\n2BgayhupqfyYm2vR+IQQd5PELqr04IPqcMygQXDihHH3BNarx+qOHfnD4cOkG7t2UghhFpLYhVEG\nDIC33lIrQlZwdvld+jZpwqu+vgw+fJgCg8GyAQohSklJAVEts2fDN99AQgJ4eFR9vaIoPHf0aOn5\nqVLDXYjKyUEbwuoUBcaPh/R0ta6Mq2vV9+QbDPRITGS4jw9T/fwsH6QQdkxqxQir0+ngww/VhD52\nrHEbmOrdquH+bno6/63uadpCiGqTxC6qzcUF/v1vSEmBmTONu6d1nTp8ERxM9NGjnJAa7kJYlCR2\nUSP166tDMV9+CcuWGXdPj0aNeCsggEHJyVyTGu5CWIyMsQuTpKbCww+rR+09/bRx97x4/Djn9Xo2\nhIbiJJOpQpQjY+xCcwEBas/9z3+GXbuMu+e9du3IKS4mJi3NorEJUVtJYhcm69IFPvsMhgyBI0eq\nvt7NyYkvQ0JYc/EiX166ZPkAhahlJLELs+jTBxYtgn794Ny5qq/3dnPj65AQXjx+nIN5eZYPUIha\nRBK7MJvnn4eXXlKTe05O1dd3adCApe3aEZWczOWiIssHKEQtIZOnwqwUBV55BQ4dgvh4cHev+p6/\nnDrFyYICvg4JkZ2potaTyVNhc3Q6WLIEmjWD6Ggw5ryNuQEBHM/PZ52MtwthFib12P39/WnYsCHO\nzs64urqyp0xdV+mx126FhfDEE+rE6rvvqgm/Mr9cu8ag5GQOdeuGl5ubdYIUwgZpXismICCAffv2\n0aRJE4sEJ+zb1avQo4day33q1Kqv/8upU5zT6/k8ONjisQlhq2xiKEaSt6hI48bqCUxLl8LatVVf\n/5a/P/uuX2fD5cuWD04IB2ZSYtfpdDz22GN069aNjz/+2FwxCQfi56eenfrqq/D995VfW9fZmRVB\nQUw4fpyrskpGiBpzMeXmH3/8kRYtWnDp0iX69OlDhw4d6NGjR+nXZ8+eXfr3yMhIIiMjTXk7YadC\nQ2H9evjDH+C77yA8vOJrezRqxNNeXkw+dYqVHTpYL0ghNJKQkEBCQoJZn2m25Y5z5szBw8ODKVOm\nqA+WMXZxh/Xr4bXX1NID/v4VX5dnMNBp714+DAyk7z3mb4RwZJqOsefn53P9+nUAbty4wXfffUen\nTp1MCkY4tj/8AaZNU4/Xu3Kl4us8nJ35OCiIF1JSpAqkEDVQ4x57amoqgwcPBqC4uJjnnnuOGTNm\n/PZg6bGLCkyfDjt3wrZtUK9exdeNS0nBWadjeWCg9YITQmOaL3es9MGS2EUFSkpgxAi4dg2++ko9\nuONecouLCd27l1UdOvBo48bWDVIIjdjEckchqsvJCVasgIICmDCh4uP1PF1cWB4YyNiUFG4YDNYN\nUgg7JoldaMLNTe2t790Lc+dWfN1TTZvysKcnM1NTrRecEHZOErvQTIMG6hr3lSuhsm0Qf2/XjnVZ\nWfyYm2u94ISwY5LYhaaaN4f//hfmzFEP67iXJq6ufNC+PaOPHaNAhmSEqJIkdqG59u3VjUtTp6rD\nM/fytJcXYR4ezDlzxrrBCWGHJLELmxAcrA7LvPQSbN5872veb9+elRkZ7L12zbrBCWFnJLELmxER\nAZs2wahR6hr3O/m4ubGkXTtGpaSgN6bQuxC1lCR2YVO6d4cvv4Thw9VNTHca7u1N2zp1mCdDMkJU\nSBK7sDmPPAKffw5DhkCZs1sAdfPGh4GBfHjhAgfkEGwh7kkSu7BJjz0GsbEwYAAkJZX/Wkt3dxa0\nacOoY8cokiEZIe4iiV3YrP79Ydky6NcPjhwp/7WRzZvj5erKovR0bYITwoZJYhc27ZlnYOFCePxx\nOHnyt9d1Oh3/DAri3XPnOHrjhnYBCmGDJLELm/enP8GsWerwTNk50/vq1OEtf39Gp6RgkIJzQpSS\nxC7swvjxMHky9O4N58//9voLLVvi7uTEe+fOaRecEDZGEruwG5Mmwbhxas89K0t9zUmn419BQcw7\ne5YT+fnaBiiEjZDELuzK9OkwdCj06QPZ2epr7erWZWbr1oxNSaFEhmSEkMQu7M/s2epk6hNPwO2C\nj5N8fSlSFJZfuKBpbELYAjlBSdglRYGJE+HAAbU6ZP36cCw/nx6Jiezt2hX/OnW0DlGIGpETlESt\npdPB++9DYCAMHKiextShXj2m+PkxPiVFOhWiVpPELuyWk5N6QIePj1p+QK+HqX5+ZBcXszIzU+vw\nhNCMDMUIu1dUBMOGqX9ftw6OFObx2IEDJHbrRit3d22DE6KaZChGCMDVVS0aVlgII0ZASF0PXmrV\nij8fPy6dC1ErSWIXDsHdXT19KSMDXngB/s+3NWmFhay9veBdiFpEhmKEQ8nLU5dBdukC0X+9Tv9D\nBzl4//34uLlpHZoQRjFH7pTELhxObq5aeuDRR8HphdOcKixgfUiI1mEJYRQZYxfiHjw91bXt8fHg\nsjqAQzdu8OWlS1qHJYTVSI9dOKysLOjZE3r9sYANfRI5dP/9NHV11TosISolQzFCVOH8eTW5+z17\niVbDL/Npx45ahyREpTQdiomPj6dDhw60b9+eBQsWmBSEPUpISNA6BItylPa1agXbtsGpVc347xo3\n/nP5MuA47auII7fPkdtmLjVK7AaDgYkTJxIfH8+RI0f4/PPPOXr0qLljs2mO/o/Lkdrn7w/fb9PB\nqgBGfHCVnOJih2rfvThy+xy5beZSo8S+Z88e2rVrh7+/P66urvzxj39k48aN5o5NCLNp3x52bHVC\n/48AhvzjotbhCGFRLjW56fz58/j5+ZV+7uvryy+//GK2oISwhOBg+O8W6Pm4Fz831PNhwjWtQ7KY\nG2mO276CdD2zZ2sdhW2rUWLX6XRmvc5ezZkzR+sQLMqR25d/FfLPzNc6DIu64cDt0+kct23mUKPE\n3qpVK9LT00s/T09Px9fXt9w1siJGCCG0UaMx9m7dunHixAnS0tK4efMmX3zxBQMHDjR3bEIIIWqg\nRj12FxcXPvjgA5544gkMBgNjxoyho6wPFkIIm1CjHnt8fDyvvfYaJSUljBs3jhkzZtx1zaRJk2jf\nvj1hYWEkJiaWu9fW178bE+O92peenk6vXr0ICQkhNDSUpUuXWjNso9W0fbcZDAYiIiIYMGCANcKt\nFlPalpOTwzPPPEPHjh0JDg7m559/tlbYRjOlfe+88w4hISF06tSJZ599Fr1eb62wjVZV+44dO8bv\nfvc76tSpw+LFi6t1ry2oafuqnVuUaiouLlbatm2rpKamKjdv3lTCwsKUI0eOlLtm8+bNSr9+/RRF\nUZSff/5Z6d69u9H3as2U9mVkZCiJiYmKoijK9evXlcDAQIdq322LFy9Wnn32WWXAgAFWi9sYprYt\nOjpaWbFihaIoilJUVKTk5ORYL3gjmNK+1NRUJSAgQCksLFQURVGGDh2qfPLJJ9ZtQBWMaV9WVpay\nd+9eZebMmcqiRYuqda/WTGlfdXNLtXvsxqxh37RpEyNGjACge/fu5OTkkJmZaRfr32vavosXL9K8\neXPCw8MB8PDwoGPHjly4cMHqbaiMKe0DOHfuHFu2bGHs2LE2N0FuSttyc3PZuXMno0ePBtThRk9P\nT6u3oTKmtK9hw4a4urqSn59PcXEx+fn5tGrVSotmVMiY9nl5edGtWzdc76j54yi5paL2VTe3VDux\n32sN+/nz54265sKFC1Xeq7Watu/cuXPlrklLSyMxMZHu3btbNuBqMuX7B/Daa6+xcOFCnJxsrzCo\nKd+71NRUvLy8GDVqFF26dGHcuHHk5+dbLXZjmPK9a9KkCVOmTKF169a0bNmSRo0a8dhjj1ktdmMY\n0z5L3Gst5orRmNxS7f87jV2bbmu9OWPVtH1l78vLy+OZZ57hvffew8PDw6zxmaqm7VMUhW+++QZv\nb28iIiJs8vtryveuuLiY/fv389JLL7F//37q16/P/Pm2tVbalP/3Tp06xd///nfS0tK4cOECeXl5\nfPbZZ+YO0SSm7Huxhz0z5ojR2NxS7cRuzBr2O685d+4cvr6+Rt2rtZq27/avtUVFRQwZMoQ//elP\nREVFWSfoajClfT/99BObNm0iICCA4cOHs337dqKjo60We1VMaZuvry++vr7cf//9ADzzzDPs37/f\nOoEbyZT2/frrrzz00EM0bdoUFxcXnn76aX766SerxW4MU/KDo+SWylQrt1R3AqCoqEhp06aNkpqa\nquj1+ioncHbv3l06gWPMvVozpX0lJSXK888/r7z66qtWj9tYprSvrISEBKV///5WidlYpratR48e\nSkpKiqIoihITE6NMmzbNesEbwZT2JSYmKiEhIUp+fr5SUlKiREdHKx988IHV21CZ6uSHmJiYcpOL\njpJbbruzfdXNLdVO7IqiKFu2bFECAwOVtm3bKvPmzVMURVGWL1+uLF++vPSaCRMmKG3btlU6d+6s\n7Nu3r9J7bU1N27dz505Fp9MpYWFhSnh4uBIeHq58++23mrShMqZ8/25LSEiwuVUximJa25KSkpRu\n3bopnTt3VgYPHmxzq2IUxbT2LViwQAkODlZCQ0OV6Oho5ebNm1aPvypVtS8jI0Px9fVVGjZsqDRq\n1Ejx8/NTrl+/XuG9tqam7atubrHYQRtCCCG0YXtLG4QQQphEErsQQjgYSexCCOFgJLELIYSDkcQu\nhBAORhK7EEI4mP8HHfNwDjcyutAAAAAASUVORK5CYII=\n", "text": [ "" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "the flow rate at which H_sys takes over HeffA 0.03339\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 6.5 pageno : 126" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math\n", "from numpy import *\n", "\n", "# Initialization of Variable\n", "rho = 1000.\n", "dc = .15\n", "l = 7.8\n", "g = 9.81\n", "pi = 3.1428\n", "atp = 105.4*1000\n", "vap_pre = 10.85*1000\n", "sl = .22\n", "dp = 0.045\n", "h = 4.6\n", "\n", "#(\"x(t) = sl/2*cos(2*pi*N*t)\" \"the function of print lcement\")\n", "#\"since we have to maximize the acceleration double derivate the terms\")\n", "#since double derivation have the term cos(kt) \n", "#finding it maxima\n", "t = linspace(0,5,100)\n", "k = 1.\n", "\n", "def maximacheckerforcosine():\n", " h = 0.00001\n", " a = 0.00\n", " for i in range(1,401): \n", " if (math.cos(a+h)-math.cos(a-h))/2*h == 0 and math.cos(i-1)>0:\n", " break\n", " else:\n", " a = 0.01+a\n", " m = i-1\n", " v = math.cos(i-1)\n", " return m,v\n", "\n", "a, b = maximacheckerforcosine()\n", "\n", "print \"time t when the acceleration will be maximum(s)\",a\n", "\n", "#double derivative will result in a square of value of N\n", "#lets consider its coefficient all will be devoid of N**2 \n", "k = sl/2*(2*pi)**2 #accn max of piston\n", "kp = k*1./4*pi*dc**2/1.*4/pi/dp**2 #accn coeff. ofsuction pipe\n", "f = 1./4*pi*dp**2*l*rho*kp #force exerted by piston\n", "p = f/1.*4./pi/dp**2 #pressure exerted by piston\n", "\n", "#calculation\n", "o = atp-h*rho*g-vap_pre\n", "#constant term of quadratic eqn\n", "y = poly1d([-p, 0,o],False)\n", "a = roots(y)\n", "print \"Maximum frequency of oscillation if cavitation o be avoided(in Hz) %.4f\"%abs(a[0])\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "time t when the acceleration will be maximum(s) 0\n", "Maximum frequency of oscillation if cavitation o be avoided(in Hz) 0.3622\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 6.6 pageno : 128" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math \n", "\n", "# Initialization of Variable\n", "rhos = 1830. #density of acid\n", "atp = 104.2*1000 #atmospheric pressure\n", "temp = 11.+273 #temp in kelvin\n", "M = 28.8/1000 #molar mass of air\n", "R = 8.314 #universal gas constant\n", "g = 9.81 #acceleration of gravity\n", "pi = 3.14\n", "d = 2.45 #diameter of tank\n", "l = 10.5 #length of tank\n", "h_s = 1.65 #height of surface of acid from below\n", "effi = 0.93 #efficiency\n", "\n", "#calculation\n", "mliq = pi*d**2*l*rhos/4\n", "h_atm = atp/rhos/g #height conversion of atp\n", "h_r = 4.3-1.65 #height difference\n", "mair = g*h_r*mliq*M/(effi*R*temp*math.log(h_atm/(h_atm+h_s))) #mass of air\n", "print \"mass of air required to lift the sulphuric acid tank %.4f\"%mair\n", "print \"The negative sign indicates air is expanding & work done is magnitude of value in kg:\"\n", "m = abs(mair/mliq)\n", "print \"The mass of air required for per kilo of acid transferred: %.4f\"%m\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "mass of air required to lift the sulphuric acid tank -123.3851\n", "The negative sign indicates air is expanding & work done is magnitude of value in kg:\n", "The mass of air required for per kilo of acid transferred: 0.0014\n" ] } ], "prompt_number": 9 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }