{ "metadata": { "name": "", "signature": "sha256:ffc24e4736ce76886d42f423c1c0ec0d6d6df9d9e5919471cf9355fdd075f7c0" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 4 : Flow Measurement\n" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 4.1 page no : 65" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math \n", "\n", "# Initialization of Variable\n", "rho=998.\n", "rhom=1.354*10**4#density of mercury\n", "M=2.83/100\n", "mu=1.001/1000\n", "mun=1.182/10**5#vicosity of natural gas\n", "R=8.314\n", "g=9.81\n", "h=28.6/100\n", "d=54./100\n", "\n", "#part1\n", "nu=1./rho\n", "delP=h*g*(rhom-rho)\n", "umax=math.sqrt(2.*nu*delP)\n", "umax=round(umax*10.)/10\n", "print \"maximum fluid velocity in (m/s)\",umax\n", "Re=umax*d*rho/mu\n", "print \"reynold no. is %.2e\"%(Re)\n", "\n", "#using chart\n", "u=0.81*umax\n", "G=rho*math.pi*d**2./4*u\n", "print \"mass flow rate in (kg/s): %.4f\"%G\n", "print \"Volumetric flow rate in (m**3/s): %.4f\"%(G/rho)\n", "\n", "#part2\n", "P1=689.*1000 #initial pressure\n", "T=273+21.\n", "nu1=R*T/M/P1\n", "nu1=round(nu1*10000)/10000.\n", "rhog=1./nu1 #density of gas\n", "h=17.4/100\n", "P2=P1+h*(rho-rhog)*g\n", "P2=round(P2/100)*100.\n", "umax2=math.sqrt(2*P1*nu1*math.log(P2/P1))\n", "print \"maximum fluid velocity in (m/s) %.4f\"%umax2\n", "Re=rhog*umax2*d/mun\n", "print \"reynold no. is %.3e\"%(Re)\n", "#from table\n", "u=0.81*umax2\n", "Q=math.pi*d**2/4*u\n", "print \"volumetric flow rate is (m**3/s): %.4f\"%Q\n", "print \"mass flow rate in (kg/s): %.4f\"%(Q*rhog)\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "maximum fluid velocity in (m/s) 8.4\n", "reynold no. is 4.52e+06\n", "mass flow rate in (kg/s): 1555.1499\n", "Volumetric flow rate in (m**3/s): 1.5583\n", "maximum fluid velocity in (m/s) 20.6358\n", "reynold no. is 7.518e+06\n", "volumetric flow rate is (m**3/s): 3.8281\n", "mass flow rate in (kg/s): 30.5271\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 4.2 page no : 67" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math \n", "import numpy\n", "from matplotlib import pyplot as plt\n", "%pylab inline\n", "\n", "# Initialization of Variable\n", "rd = numpy.true_divide([0, 1, 2.5, 5 ,10, 15, 17.5],100) #radial distance from pipe\n", "dlv = numpy.true_divide([0,0.2, 0.36, 0.54, 0.81, 0.98, 1],100) #differnce in liquid levels\n", "r = [.175 ,.165, .150, .125 ,.075, .025, 0]\n", "g = 9.81\n", "R = 8.314\n", "rho = 999.\n", "temp = 289.\n", "P1 = 148 * 1000.\n", "M = 7.09 / 100.\n", "pi = 3.12\n", "rhoCl2 = P1 * M / R / temp #density of Cl2\n", "nuCl2 = 1 / rhoCl2 #specific volume of Cl2\n", "def P2(x):\n", " return P1+x*(rho-rhoCl2)*g\n", "\n", "u = [0,0,0,0,0,0,0]\n", "a = [0,0,0,0,0,0,0]\n", "\n", "for i in range(7):\n", " y = P2(dlv[i])\n", " u[i] = math.sqrt(2.*P1*nuCl2*math.log(y/P1))\n", " a[i] = u[i] * r[i]\n", "\n", "plt.plot(r,a)\n", "plt.xlabel(\"r (m)\")\n", "plt.ylabel(\"u*r (m**2/s)\")\n", "s=0\n", "for i in range(6): #itegration of the plotted graph\n", " s=abs((r[i]-r[i+1])*.5*(a[i]+a[1]))+s\n", "\n", "s=s-0.01\n", "Q=2*pi*s\n", "plt.show()\n", "#Result\n", "print \"volumetric flow rate (m**3/s):\",Q\n", "print \"mass flow rate of chlorine gas (kg/s)\",Q*rhoCl2\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] }, { "output_type": "stream", "stream": "stderr", "text": [ "WARNING: pylab import has clobbered these variables: ['pi']\n", "`%pylab --no-import-all` prevents importing * from pylab and numpy\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEMCAYAAAAxoErWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX+P/DX4IwbkJbiNoOigoC7BlpmRlmiXsM90VJ/\nhqaGlbZ3uylYeeWqlUoZ9c28ZiFeU3GDCnHcFQu3csMFHUdzKTUVExjO749PkgjDOmc+s7yejweP\nGDlz5oUd5z3ns2oURVFARERUAg/ZAYiIyHGxSBARkVUsEkREZBWLBBERWcUiQUREVrFIEBGRVaoW\nidTUVAQFBSEgIABxcXHFfj579mx06tQJnTp1Qrt27aDVanHlyhU1IxERUQVo1JonYbFYEBgYiLS0\nNOj1eoSGhiIxMRHBwcElHr927Vp89NFHSEtLUyMOERFVgmp3EhkZGfD394efnx90Oh0iIyORnJxs\n9fhvvvkGw4cPVysOERFVgmpFwmw2w9fXt/CxwWCA2Wwu8dicnBx89913GDx4sFpxiIioErRqnVij\n0ZT72DVr1qB79+6oW7dulc9FRER/q2qPgmp3Enq9HiaTqfCxyWSCwWAo8dilS5eW2dSkKIpDfU2b\nNk16BmfI5Ki5mImZ3CGXLahWJEJCQpCVlYXs7Gzk5uYiKSkJERERxY67evUqNm/ejP79+6sVhYiI\nKkm15iatVov4+HiEh4fDYrEgKioKwcHBSEhIAACMHz8eALBq1SqEh4ejVq1aakUhIqJKUq1IAECf\nPn3Qp0+fIn92uzjcNnr0aIwePVrNGKoICwuTHaEYR8wEOGYuZiofZio/R81VVarNk7AljUZjs/Y1\nIiJ3YYv3Ti7LQUREVrFIEBGRVSwSRERkFYsEERFZxSJBRERWsUgQEZFVLBJERGQViwQREVnFIkFE\nRFaxSBARkVUsEkREZBWLBBERWcUiQUREVrFIEBGRVSwSRERkFYsEERFZxSJBRERWsUgQEZFVLBJE\nRGQViwQREVmllR2AiJzXpUtAYiJQuzbQoMHfXz4+gKcnoNHITkhVxSJBRBX255/A/PnAf/4DhIcD\nOh1w4YL4ungROH9eFIg7i0ZJ399+7OMD1Kwp+7eikqhaJFJTUzF58mRYLBaMHTsWb7zxRrFjjEYj\npkyZgry8PNSvXx9Go1HNSERUBYoCLFsGvPkm0L49sHUrEBhY8nE3bvxdNG4XkAsXgLNngb17i/7s\n4kWgVi3rReTux/XrA1p+xLULjaIoihontlgsCAwMRFpaGvR6PUJDQ5GYmIjg4ODCY65cuYKHHnoI\n3333HQwGAy5duoT69esXD6nRQKWYRFRO27cDL78M5OUBc+YAYWG2O7eiAFeuFC8o1h7//jtQt275\ni8q99wIebtgDa4v3TtVqcUZGBvz9/eHn5wcAiIyMRHJycpEi8c0332Dw4MEwGAwAUGKBICK5jh8X\ndw47dwLvvw8884zt33A1GvFGfu+9QKtWZR9vsQC//VZyEdm/v3hRuX5d3H3cXUBGjwY6dbLt7+Jq\nVCsSZrMZvr6+hY8NBgN27dpV5JisrCzk5eXh0UcfxbVr1/DSSy9h5MiRJZ4vJiam8PuwsDCE2fJj\nDBEVc/ky8N57wKJF4g7iv/8VHdSOoFq1v9/o27Qp+/jcXNHJfmdBOXYM+Mc/gIwM4K/PqU7PaDTa\nvMletSKhKcewhry8PGRmZmLDhg3IycnBgw8+iAceeAABAQHFjr2zSBCRenJzgQULxF3DwIHAL78A\njRrJTlU11asDTZqIrzvVrCl+xy1bXKPj/O4P0LGxsVU+p2qtdHq9HiaTqfCxyWQqbFa6zdfXF716\n9UKtWrVQr1499OjRA/v27VMrEhGVQlGAlSvFJ/PUVCA9HUhIcP4CUZo33gBatADGjxe/PxWnWpEI\nCQlBVlYWsrOzkZubi6SkJERERBQ5pn///ti6dSssFgtycnKwa9cutG7dWq1IRGTF7t3AI48A06YB\nH38MpKQAbdvKTqU+jQZYuBDYtw+YO1d2GsekWnOTVqtFfHw8wsPDYbFYEBUVheDgYCQkJAAAxo8f\nj6CgIPTu3Rvt27eHh4cHxo0bxyJBZEenTwNvvQVs3AhMnw6MGSPa+92JpyewahXwwANAu3ZAz56y\nEzkW1YbA2hKHwBLZ1h9/AP/+N/DZZ0B0NPD664CXl+xUcm3cCAwfDuzYATRvLjuNbdjivdMNRw4T\nua/8fNEp3aoV8Ouvopll+nQWCAB49FHgn/8EBgwQEwFJ4J0EkRtQFGD9euC114DGjYHZszk/oCSK\nAjz7rCgSSUnOv/aULd47WSSIXNzevcCrrwJmMzBrlpgb4Oxvfmr680/Rid+/v7izcGZsbiIiq8xm\n0RHduzcwaJCYidyvHwtEWWrWBFasEKO81q2TnUY+FgkiF3P9uhjK2r490LAhcOQI8PzzYqVWKh+9\nHvjf/0SRPXJEdhq5WCSIXITFAnzxhViVNSsL+OknYOZMoE4d2cmcU7duwIwZotnp6lXZaeRhnwSR\nC/jhB9Hv4O0NfPAB0KWL7ESu4/nnAZMJSE52vpVk2XFN5OZ++UWMWDp6VGwANHAg+xxsLTcXePxx\n0Zn97ruy01QMO66J3NT588CECWJsf69ewMGDonOaBcL2qlcHli8HFi8Gvv1Wdhr7Y5EgciI3b4p2\n8jZtxLLdhw8DkyeLNzJST4MGYsTThAnAgQOy09gXiwSREygoAL76SnRKZ2aKDYA++AC47z7ZydzH\n/fcDH30kZmT//rvsNPbDPgkiB7dpE/DKK2LhvTlzgO7dZSdyb6++KpYzSUlx/H222XFN5MKOHhUL\n7+3dKxbjGzbM+UbXuKL8fKBvX7Fi7Jw5stOUjh3XRC7o0iXgxRfFOP1u3US/w/DhLBCOQqsFli4V\nQ2K/+kp2GvXxsiNyELduiYX3goNFH8ShQ+JOwhW21XQ1990n9qB4+WXgxx9lp1EXiwSRZIoiVhwN\nDgY2bxb7LcfHAz4+spNRadq2Fdu7Dh4shiS7KgfvdiFybTt2iE+jt24B//d/wGOPyU5EFTFokOgz\nGjIE2LDBNYcis+OaSIITJ4A33xRF4r33gJEj2efgrAoKxEz3Jk3Ehk6OhB3XRE7m8mUxhDI0VIyO\nOXIEGD2aBcKZeXiIDmyjUWwH62p4aRLZQW4uMG8eEBQk9pf++WfgnXfErGlyfvfcI0Y7/etfwLZt\nstPYFosEkYoUBVi5UnRyrl8PpKWJT5uNG8tORrbWqhWwaBHw1FPAmTOy09gO+ySIVPLjj2Km9O+/\ni6Gt4eGyE5E9zJwp1nnavFn+8GXOuCZyQKdPi72R09OB2Fixu5mjL99AtqMoQGQkUKsW8OWXclfm\ndfiO69TUVAQFBSEgIABxcXHFfm40GlGnTh106tQJnTp1wnvvvadmHCJV/fGHKA6dOgHNm4tO6XHj\nWCDcjUYDLFwohsbOmyc7TdWpdvlaLBZMmjQJaWlp0Ov1CA0NRUREBIKDg4sc98gjj2D16tVqxSBS\nXX6+mOMQGyv2dti3DzAYZKcimTw9xYzsBx4Q/VE9e8pOVHmq3UlkZGTA398ffn5+0Ol0iIyMRHJy\ncrHj2IxEzkpRgHXrgPbtxYzpdeuA//6XBYIEPz8gMRF4+mng5EnZaSpPtTsJs9kMX1/fwscGgwG7\ndu0qcoxGo8H27dvRoUMH6PV6zJ49G61bty7xfDExMYXfh4WFISwsTI3YROWyb5/olD5zBpg1C+jX\nj7vCUXGPPiqaIAcMALZvF3cYajIajTAajTY9p2pFQlOOfzGdO3eGyWRC7dq1kZKSggEDBuDo0aMl\nHntnkSCS5exZMRZ+3Tpg6lTguecAnU52KnJkL7wA7NkjBjAkJan7YeLuD9CxsbFVPqdqzU16vR4m\nk6nwsclkguGu+3Bvb2/U/ms2UZ8+fZCXl4ff3WnLJ3IaN24AMTFilrSPj9jrITqaBYLKptGI5TqO\nHhUT7pyNakUiJCQEWVlZyM7ORm5uLpKSkhAREVHkmPPnzxf2SWRkZEBRFNzH/RjJgVgsYqRKq1Zi\ntNJPPwFxcUCdOrKTkTOpWVMMajh8WHaSilOtuUmr1SI+Ph7h4eGwWCyIiopCcHAwEhISAADjx4/H\n8uXLsWDBAmi1WtSuXRtLly5VKw5RhaWliX4HLy8xOaprV9mJyJk1bQocPCg7RcVxMh3RXQ4eBF57\nTXzqi4sT+wWwU5qqavVqsf/EunX2e02Hn0xH5EzOnwcmTgQeeQR4/HFRLIYMYYEg22jWTMzGdzYs\nEuT2bt4EZswA2rQRbcdHjgBTpgA1ashORq6kaVMWCSKnUlAALFkCBAaKDumdO4EPPxT7FxPZWt26\n4pq7elV2korhqjLkljZvFp3SGg3w9dfAww/LTkSuTqMRdxOnTolZ+s6CdxLkVo4eFVtNjhwpmpR2\n7mSBIPtxxn4JFglyC7/9Brz0EtCtmxjKevgwMGIEtw0l+3LGfgn+EyGXduuW2PAnKEis1nrwIPDm\nm2KtfyJ7Y5EgchCKAixbBgQHA5s2iT6Ijz8GGjSQnYzc2e0+CWfCjmtyOTt2iE7pmzeBzz937rX8\nybU4Y58EiwS5jGvXxKqsW7YA770nOqerVZOdiuhvztjcxCJBLuHqVaB3bzEh7sgR9dftJ6qMJk3E\nzP68POdZQZh9EuT0Ll8GnngCuP9+0bzEAkGOSqcDGjUCzGbZScqPRYKc2m+/iXWWHnoImD+f6yyR\n43O2JqdyNTfduHEDJpMJGo0GBoMBnvyoRg7g4kVRIHr3BmbOZIEg5+AyReLatWv4/PPPsXTpUly6\ndAkNGzaEoig4f/486tWrh6effhrjxo2Dl5eXPfMSARDtuj17ir2D332XBYKch7MNg7Xa3DRgwAB4\ne3tjzZo1OHHiBHbs2IGdO3fi5MmTWLt2LTw9PdG/f397ZiUCAJw7B4SFAUOHskCQ83G2YbDcdIic\nypkzwGOPAf/v/wH//KfsNEQVt24dEB8PpKSo/1p22XRo69atuH79OgDgq6++wpQpU3DKme6VyGWc\nPi3uIMaNY4Eg5+VsfRJlFomJEyfC09MT+/btwwcffAB/f3+MGjXKHtmICmVnix3joqPF1qJEzup2\nn4SzNI6UWSS0Wi00Gg1WrVqF6OhoREdH49q1a/bIRgQAOH5cFIhXXxXLexM5szp1AK1WzO9xBmUO\ngfX29saMGTOwZMkSbNmyBRaLBXl5efbIRoSjR8UopnfeEUtuELmC201OzrALYpl3EklJSahRowYW\nLlyIRo0awWw24zXe75MdHDoEPPooEBvLAkGuxZmGwVod3RQeHo7evXujT58+CAoKsneuIji6yf38\n/DPQqxcQFycW6iNyJdHRYo+TF15Q93VUHd20aNEi1K1bFzExMejUqRMmTJiA5ORk3Lhxo9wnT01N\nRVBQEAICAhAXF2f1uN27d0Or1WLFihUVS08uad8+sRbTnDksEOSanGmEU7nmSVgsFuzatQspKSlI\nT09HzZo1ER4ejtdff73U5wQGBiItLQ16vR6hoaFITExEcHBwseOeeOIJ1K5dG2PGjMHgwYOLh+Sd\nhNvIzAT69hXrMA0dKjsNkToSE4FVq4CkJHVfxy7zJACgWrVq6NatG959911s27YNS5cuhV6vL/U5\nGRkZ8Pf3h5+fH3Q6HSIjI5GcnFzsuPnz52PIkCHw8fGp3G9ALiMjA+jTB1iwgAWCXJsz9UmUOrop\nNTUVZrMZPXv2hJ+fX+Gfr1mzBs8++2ypJzabzfD19S18bDAYsGvXrmLHJCcnIz09Hbt374amlPUV\nYmJiCr8PCwtDWFhYqa9PzmXHDqB/f2DhQqBfP9lpiNSl1tIcRqMRRqPRpue0WiTeeustbNu2DZ07\nd8aMGTPw0ksv4cUXXwQgPv2XVSRKe8O/bfLkyZg5c2bhLVFpt0V3FglyLVu2AIMHA4sXixVdiVxd\n48bApUvArVtAjRq2O+/dH6BjY2OrfE6rRWLNmjXYs2cPdDodYmJiMHz4cJw4cQIffvhhuU6s1+th\nMpkKH5tMJhgMhiLH/PTTT4iMjAQAXLp0CSkpKdDpdIiIiKjM70JOyGgEnnoK+OYbsew3kTuoVk3s\nUmc2Ay1ayE5TOqt9EhaLBbq/9terW7cu1qxZgz/++ANDhw5Fbm5umScOCQlBVlYWsrOzkZubi6Sk\npGJv/idOnMDJkydx8uRJDBkyBAsWLGCBcCNpaaLvYdkyFghyP87SL2G1SLRo0aJI25ZWq8XChQsR\nFBSEQ4cOlXlirVaL+Ph4hIeHo3Xr1hg2bBiCg4ORkJCAhIQEm4Qn55WaCowYAaxYIRbtI3I3zrJk\nuNUhsDdv3gQA1KpVq9jPzpw5U6zpSE0cAuta1q4Fnn1WDAHs1k12GiI53n4bqFlTLDmjFlWHwNaq\nVavwE/+8efOK/MyeBYJcy8qVQFSUKBQsEOTOnL65CRCL+82aNYt7WpNNLF8OTJwoNlvp0kV2GiK5\nnKW5yWqRiI2NxdGjR/HOO+/gyJEjNhlKRe5r6VKxTs133wGdO8tOQySfsyzNYbVITJs2DTqdDt9/\n/z2qV6+OadOm2TMXuZCvvgJefhn44QegQwfZaYgcg6+vKBKO3t1a6ozrHj16oEePHuUa8kpUkoUL\nRcfchg3AXct2Ebk1b2/RcX3pEuDIqxKV2idx8ODBIv8lqojPPgOmTQPS01kgiEriDP0S7LgmVXz8\nMfD++8DGjUBgoOw0RI7JGfol2HFNNvfRR8Ds2WLJDX9/2WmIHJdTFwl2XFNlzJoFxMcDmzYBzZvL\nTkPk2JxhrgQ7rslmZswAFi0SdxCcb0lUtmbNgLt2UHA4pRaJXr16AQB8fHyQnJyM/Px8AGKq96BB\ng9RPR05BUYDp08VciE2bxDLIRFQ2Z2huKrVIAMCYMWNw4MABtGnTBh4ef7dOsUgQIArEO++IdZiM\nRqBhQ9mJiJyHMzQ3lbnHdevWrfHLL7+UaxMhtXCBP8ekKMCbb4oVXdPSHHusN5EjKigAatUCrlwR\n/7U1u+xxHRoaynkSVIyi/D2LOj2dBYKoMjw8RP/dmTOyk1hXruamBx98EI0aNUKNv/bZ02g02L9/\nv+rhyDEpCvDii6LDbcMG4N57ZScicl63+yUCAmQnKVmZRSIqKgpLlixB27Zti/RJkHsqKACefx7Y\nv1/cRdSpIzsRkXNz9H6JMotEgwYNuKUoAQAsFuC554CjR8Vqrt7eshMROT9HX5qjzCLRqVMnjBgx\nAk8++SSqV68OgENg3ZHFAowZA5hMYj8ILy/ZiYhcQ9OmwPbtslNYV2aRyMnJQY0aNfD9998X+XMW\nCfeRnw+MGgVcvAisWwfUri07EZHraNpUzDFyVGUOgXUEHAIrT14e8PTTwLVrwIoV6gzTI3Jnhw8D\nTz4JZGXZ/tyqDoGNiYnB+fPnrT7x3LlzXM/JxeXmAsOGATk5Ym9qFggi22vaVDTjFhTITlIyq81N\nISEhiIyMRG5uLjp37ozGjRtDURT8+uuvyMzMRI0aNfDqq6/aMyvZ0a1bwNChQLVq4g7ir+4oIrKx\n2rXFIJCLFx1zxYIym5tMJhO2bduG0391vzdr1gwPPfQQDHZcwY3NTfZ18yYwaJDonP7mG0Cnk52I\nyLXdfz+wYAHQpYttz2uL905V+yRSU1MxefJkWCwWjB07Fm+88UaRnycnJ2Pq1Knw8PCAh4cHZs2a\nhccee6x4SBYJu8nJAfr3B+rXF3tTa8sc2kBEVTVoEDBiBDBkiG3P69BFwmKxIDAwEGlpadDr9QgN\nDUViYiKC79jH8saNG4W73h04cAADBw7EsWPHiodkkbCLGzdEB5peD3z5JQsEkb1Mniz6Jl5+2bbn\ntcvaTZWVkZEBf39/+Pn5QafTITIyEsnJyUWOuXNb1OvXr6N+/fpqxaEyXLsG9OkD+PmJPSFYIIjs\nx5GXDC/1rcBisWDevHmYMmVKhU9sNpvh6+tb+NhgMGBXCbtrrFq1Cm+99RbOnTtXbC7GnWJiYgq/\nDwsLQ1hYWIUzUcmuXhUFol070S7K1VeI7KtpU2DLlqqfx2g0wmg0Vv1EdyizuSk0NBS7d++u8Im/\n/fZbpKam4vPPPwcALFmyBLt27cL8+fNLPH7Lli0YO3Ysjhw5Ujwkm5tUc+UKEB4OhIQA8+ezQBDJ\nsHs3MGEC8NNPtj2vLd47y2xU6N69OyZNmoRhw4YVaR7q3Llzqc/T6/UwmUyFj00mU6kjoh5++GHk\n5+fjt99+Q7169cqTnaro99+BJ54AHn4Y+PBDQOKWIURuzZGbm8q8kwgLCytxw6GNGzeWeuL8/HwE\nBgZiw4YNaNKkCbp06VKs4/r48eNo0aIFNBoNMjMzMXToUBw/frx4SN5J2NzFi6JA9OoFxMWxQBDJ\nVFAg5kv8/rttl72xy51EZdu3tFot4uPjER4eDovFgqioKAQHByMhIQEAMH78eHz77bdYvHgxdDod\nvLy8sNSRFzBxIRcuAD17AhERwHvvsUAQyebhAfj6iruJoCDZaYoq9U5iwoQJ+PTTT/H888/jk08+\nsWeuIngnYTvnzokC8dRTwLRpLBBEjuLxx4HXXxd397ai6hDYU6dOoXv37oiIiEC3bt1wypF3xaBy\nMZuBsDCxYF9MDAsEkSNx1H4Jq0XCaDQiOzsbBw4cQHZ2ts2HVZF9nT4NPPIIEBUFvP227DREdDdH\n3aHOapEYPXo0Tp06hZ07d+L06dMYPXq0PXORDWVnizuI6GhxO0tEjsdRd6grtU/i7NmzaNKkCc6d\nO4fGjRvbM1cR7JOovOPHRR/Eq68CkybJTkNE1mzYIAaSlDFwtEJUH93UpEkTxMbGlvjCU6dOrdIL\nk/qOHhUF4l//AsaPl52GiErjqH0SZQ6B9fT0LJwncfPmTaxduxatW7dWPRhVzeHDYrTE9OnAs8/K\nTkNEZfH1Bc6cEXMmHGnlgwqvAnvr1i306tULmzZtUitTMWxuqpiffxbD6GbOFHtTE5FzaNQIyMwE\nmjSxzfmkrAJ748YNmM3mKr0oqWffPjGTevZsFggiZ+OITU5lNje1a9eu8PuCggJcuHCB/REOKjMT\n6NtXLNQ3dKjsNERUUbeLxAMPyE7ytzKLxJo1a/4+WKtFw4YNoeN+lg5n926gXz/g00+BgQNlpyGi\nynDEuRJlFgk/Pz87xKCq2LFDbDn6xRdiZzkick7NmgElbM4plQP1oVNlbN0qCsR//8sCQeTsHLFP\ngkXCiRmNYgP1r78WO8sRkXNzyuYmckxpacDw4cCyZcCjj8pOQ0S24IhLc/BOwgl99x0wYgTw7bcs\nEESupF494M8/gWvXZCf5G4uEk1m3Dhg5Eli1CujRQ3YaIrIljUY0Od2x87N0LBJOJDlZLLGxdi3Q\nrZvsNESkBkfrl2CRcBLLlwPPPQesXw906SI7DRGpxdH6JVgknEBSEvDCC6Iv4v77ZachIjU52jBY\nFgkHt2QJMGUK8P33QMeOstMQkdpYJKjcvvwSeOMNMdz1jiW0iMiFOVqfBOdJOKjPPxd7QaSnA4GB\nstMQkb04Wp9EhfeTkMHd9pP45BMgLk5sZ+jvLzsNEdnTrVuAtzdw8yZQrVrVziVlP4mKSk1NRVBQ\nEAICAhAXF1fs519//TU6dOiA9u3b46GHHsL+/fvVjuTQ5s4FZs0SS26wQBC5nxo1gPr1gbNnZScR\nVC0SFosFkyZNQmpqKg4ePIjExEQcOnSoyDEtWrTA5s2bsX//frzzzjt47rnn1Izk0GbPBubNEwWi\neXPZaYhIFkdqclK1SGRkZMDf3x9+fn7Q6XSIjIxEcnJykWMefPBB1KlTBwDQtWtXnDlzRs1IDuvf\n/wY++wzYtElcIETkvhxphJOqHddmsxm+vr6Fjw0GA3bt2mX1+C+++AJ9+/Yt8WcxMTGF34eFhSEs\nLMxWMaWbPh1ITBR3ELba25aInFdli4TRaITRaLRpFlWLhEajKfexGzduxMKFC7Ft27YSf35nkXAV\nigJMnQqsXCkKRMOGshMRkSNo2hS4q2W+XO7+AB0bG1vlLKo2N+n1epjuWKnKZDLBYDAUO27//v0Y\nN24cVq9ejXvvvVfNSA5DUYC33gJWrwY2bmSBIKK/uU2fREhICLKyspCdnY3c3FwkJSUhIiKiyDGn\nT5/GoEGDsGTJEvi7yXAeRQFeeUXMok5PB3x8ZCciIkfiNn0SWq0W8fHxCA8Ph8ViQVRUFIKDg5GQ\nkAAAGD9+PKZPn47Lly9j4sSJAACdToeMjAw1Y0mlKMBLL4l9qTdsANzkxomIKsCRigQn09lRQQEQ\nHQ3s3QukpgJ/DeoiIipCUcSEOrO5au8TTjGZjoSCArHU94EDYjVXFggiskajcZx+CRYJO7BYgDFj\ngGPHxB3EPffITkREjs5Rmpy4wJ/K8vOB0aOB8+fF1qOenrITEZEzcJTVYFkkVJSXBzzzDHD1KrBm\nDVCrluxEROQs2Nzk4vLygMhI4MYNYNUqFggiqhg2N7kwRQEmTgRyckSBqFFDdiIicjYsEi7s3XeB\nPXvEYn0sEERUGeyTcFGLFomv7dsBLy/ZaYjIWen1YsBLXh6g08nLwT4JG/ruO7En9fr1QKNGstMQ\nkTPT6cSabrI3H2KRsJE9e4CRI4FvvwWCgmSnISJX4Aj9EiwSNnDqFPDkk8CCBUD37rLTEJGrcIR+\nCRaJKrp8GejTB3jtNWDwYNlpiMiVOMJcCRaJKrh1CxgwAOjdW6zsSkRkS2xucmIFBWK5jYYNgdmz\nZachIlfkCM1NHAJbSW+8IZbx/eEHwIOllohU4AjNTSwSlTBvHrB2LbBtG1Czpuw0ROSqbjc3KYpY\nPlwGfgauoBUrgLg4ICUFuO8+2WmIyJXVqSNaKq5ckZeBRaICtm8HJkwQK7r6+clOQ0TuQHa/BItE\nOR05AgwaBCxeDHTuLDsNEbkL2f0SLBLlcP480Lcv8P77YrgrEZG9yB4GyyJRhhs3gH79xJIbUVGy\n0xCRu2GRcGD5+cCwYUC7dsC0abLTEJE7Yp+Eg1IUIDpaLNObkCBv+BkRuTeX75NITU1FUFAQAgIC\nEBcXV+y/HDYkAAAMPElEQVTnhw8fxoMPPoiaNWtizpw5ascpt3//G8jIAJYvl7uWOxG5N9nNTapO\nprNYLJg0aRLS0tKg1+sRGhqKiIgIBAcHFx5Tr149zJ8/H6tWrVIzSoUsXgx89hmwYwfg7S07DRG5\ns8aNgUuXgNxcoHp1+7++qncSGRkZ8Pf3h5+fH3Q6HSIjI5GcnFzkGB8fH4SEhEDnIB/Xf/hBrOia\nkiL+5xARyaTViveiM2ckvb6aJzebzfD19S18bDAYsGvXrkqdKyYmpvD7sLAwhIWFVTFdcfv2AU8/\nLZqY7rjZISKS6naTU4sWpR9nNBphNBpt+tqqFgmNDXt77ywSajCZxFDX+HigRw9VX4qIqELK2y9x\n9wfo2NjYKr+2qs1Ner0eJpOp8LHJZILBYFDzJSvlyhWxcdDkycBTT8lOQ0RUlMxhsKoWiZCQEGRl\nZSE7Oxu5ublISkpCREREiccqiqJmFKtu3QIGDgR69gRefllKBCKiUskcBqtqc5NWq0V8fDzCw8Nh\nsVgQFRWF4OBgJCQkAADGjx+PX3/9FaGhofjjjz/g4eGBuXPn4uDBg/Dy8lIzGgCxcdCYMWI11w8+\n4FwIInJMTZuKFahl0CiyPsJXgEajUeVO4803gS1bgLQ0oFYtm5+eiMgmfvkFGDIEOHSoYs+zxXun\n22469PHHwMqVYuMgFggicmQyNx9yy2U5kpPFiq4pKUD9+rLTEBGVztsbqFED+O03+7+22xWJnTuB\nceOA1avLHnNMROQoZC3P4VZF4tgxMZLpyy+BkBDZaYiIyk/WMFi3KRIXL4q5ELGxwD/+ITsNEVHF\nyBoG6xZFIidHzKaOjASee052GiKiimNzk0ry80VxCAoCpk+XnYaIqHJkFQmXHgKrKMCLLwI3b4pF\n+zhZjoiclaw+CZcuEv/5j5gHsWWLnHXYiYhsRVafhMsWia+/Bj75BNi+HbjnHtlpiIiqplEj4PJl\n4M8/gZo17fe6LtknkZ4OTJkCrFsH6PWy0xARVZ2Hh3g/s/fmQy5XJA4cEB3Vy5YBbdvKTkNEZDsy\n+iVcqkicOSPmQMydC6iwcR0RkVQy+iVcpkhcvQr07QtMmgQMHy47DRGR7ckYBusSRSI3Fxg8WGw7\n+tprstMQEamDzU2VoChAVBTg5SWamTgXgohclYzmJqcfAvuvf4mF+zZsAKpVk52GiEg9MpqbnLpI\nJCSIUUzbtwO1a8tOQ0SkLl9fwGSy7+ZDTtvctHYtEBMDpKYCPj6y0xARqc/TU3xduGC/13TKIpGR\nAYwZI3aYa9lSdhoiIvuxd7+E0xWJ48eB/v2BL74AunSRnYaIyL7s3S/hVEXi0iWxcdC0aUBEhOw0\nRET251JFIjU1FUFBQQgICEBcXFyJx7z44osICAhAhw4dsGfPHqvnyskBnnxSzIeYMEGtxOVnNBpl\nRyjGETMBjpmLmcqHmcrPXrnsPVdCtSJhsVgwadIkpKam4uDBg0hMTMShQ4eKHLN+/XocO3YMWVlZ\n+OyzzzBx4kSr53v6adH/8P77aiWuGEe8UB0xE+CYuZipfJip/OyVy2X6JDIyMuDv7w8/Pz/odDpE\nRkYiOTm5yDGrV6/G6NGjAQBdu3bFlStXcP78+RLP98cfwMKFYiVEIiJ35TLNTWazGb6+voWPDQYD\nzGZzmcecsbIO7ooV3DiIiMjuS3MoKlm+fLkyduzYwsdfffWVMmnSpCLH9OvXT9m6dWvh4549eyo/\n/fRTsXMB4Be/+MUvflXiq6pUm3Gt1+thMpkKH5tMJhgMhlKPOXPmDPQl7BIk6gQREdmbas1NISEh\nyMrKQnZ2NnJzc5GUlISIu8atRkREYPHixQCAnTt3om7dumjYsKFakYiIqIJUu5PQarWIj49HeHg4\nLBYLoqKiEBwcjISEBADA+PHj0bdvX6xfvx7+/v7w9PTEl19+qVYcIiKqjCo3WFVBSkqKEhgYqPj7\n+yszZ84s8ZgXXnhB8ff3V9q3b69kZmZW6Ln2znX69GklLCxMad26tdKmTRtl7ty50jPdlp+fr3Ts\n2FHp16+fQ2S6fPmyMnjwYCUoKEgJDg5WduzYIT3TjBkzlNatWytt27ZVhg8frvz55592yXTo0CHl\ngQceUGrUqKHMnj27wr+PvXPJvM5L+7tSFDnXeWmZZF3npWWq6HUurUjk5+crLVu2VE6ePKnk5uYq\nHTp0UA4ePFjkmHXr1il9+vRRFEVRdu7cqXTt2rXcz5WR69y5c8qePXsURVGUa9euKa1atbJJrqpk\num3OnDnKiBEjlCeffLLKeWyRadSoUcoXX3yhKIqi5OXlKVeuXJGa6eTJk0rz5s0L/8E89dRTyqJF\ni+yS6cKFC8ru3buVt99+u8g/aNnXubVcMq9za5luk3Gdl5ZJ1nVuLVNlrnNpsw4qO4/i119/Lddz\n7Z3r/PnzaNSoETp27AgA8PLyQnBwMM6ePSs1EyAGBKxfvx5jx4612SCAqmS6evUqtmzZgmeffRaA\naJqsU6eO1Ez33HMPdDodcnJykJ+fj5ycnBIHUaiRycfHByEhIdDpdBV+roxcMq9za5kAede5tUwy\nr3NrmSpznUsrEpWdR2E2m3H27Nkyn2vvXHfP78jOzsaePXvQtWtXaZluHzNlyhTMmjULHjaciViV\nv6eTJ0/Cx8cHY8aMQefOnTFu3Djk5ORIy2Q2m3HffffhlVdeQdOmTdGkSRPUrVsXjz/+uF0yqfFc\ne53b3td5aWRd59bIvM6tqcx1Lq1IaMq5Y4atPhGUV2Vz3fm869evY8iQIZg7dy68vLykZVIUBWvX\nrkWDBg3QqVMnm/5dVuXvKT8/H5mZmXj++eeRmZkJT09PzJw5U1omADh+/Dg++ugjZGdn4+zZs7h+\n/Tq+/vpru2Wy9XPtcW5Z13lJZF/nJZF9nZekMte5tCJR2XkUBoOhXM+1d67bt2x5eXkYPHgwnnnm\nGQwYMEB6pu3bt2P16tVo3rw5hg8fjvT0dIwaNUpqJoPBAIPBgNDQUADAkCFDkJmZKTXTjz/+iG7d\nuqFevXrQarUYNGgQtm/fbpdMajxX7XPLus6tkXmdWyPzOremUtd5lXtRKikvL09p0aKFcvLkSeXW\nrVtldjLu2LGjsJOxPM+VkaugoEAZOXKkMnnyZJtksUWmOxmNRpuN+qhqpocfflg5cuSIoiiKMm3a\nNOX111+XmmnPnj1KmzZtlJycHKWgoEAZNWqUEh8fb5dMt02bNq1IJ6Ps69xaLpnXubVMd7L3dV5a\nJlnXubVMe/furfB1LnUI7Pr165VWrVopLVu2VGbMmKEoiqJ8+umnyqefflp4THR0tNKyZUulffv2\nRZbsKOm5snNt2bJF0Wg0SocOHZSOHTsqHTt2VFJSUqRmupPRaLTZqI+qZtq7d68SEhKitG/fXhk4\ncKBNRn1UNVNcXFzh0MBRo0Ypubm5dsl07tw5xWAwKPfcc49St25dxdfXV7l27ZrV59pKZXPJvM5L\n+7u6zd7XeWmZZF3npWWq6HWuURSueUFERCXjwttERGQViwQREVnFIkFERFaxSBARkVUsEkQVNGzY\nMBw/frzcx+/fvx9RUVEqJiJSD4sEkRWKGCJe5M+OHTuGGzduoGXLluU+T/v27XH8+HFcuHDB1hGJ\nVMciQXSH7OxsBAYGYvTo0WjXrl2xNbmWLl1aZPMsLy8vvP7662jbti2eeOIJ7Ny5E4888ghatmyJ\nNWvWFB7Xp08f/O9//7Pb70FkKywSRHc5duwYoqOj8fPPPxdZSA0Atm3bhpCQkMLHOTk56NmzJ37+\n+Wd4e3tj6tSpSE9Px8qVKzF16tTC47p06YLNmzfb7XcgshXVdqYjclbNmjVDly5dSvzZqVOn0Lhx\n48LH1atXR3h4OACgXbt2qFmzJqpVq4a2bdsiOzu78LjGjRsXeUzkLHgnQXQXT0/PUn9+Zz/Fnev1\ne3h4oHr16oXf5+fnF3mOmqu6EqmFRYKoApo1a4Zz585V+Hnnzp1Ds2bNVEhEpC4WCaK7lPaJv3v3\n7vjxxx+tHnvn4zu/z8jIQI8ePWyYksg+uMAfUQWcOHECL7zwAtatW1eh54WFhWHZsmVo0KCBSsmI\n1ME7CaIKaNGiBby9vSs8mc7f358FgpwS7ySIiMgq3kkQEZFVLBJERGQViwQREVnFIkFERFaxSBAR\nkVUsEkREZNX/B8MTpny5+pGIAAAAAElFTkSuQmCC\n", "text": [ "" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "volumetric flow rate (m**3/s): 0.455983319661\n", "mass flow rate of chlorine gas (kg/s) 1.99135662691\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 4.3 page no : 70 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math \n", "\n", "# Initialization of Variable\n", "pi = 3.14\n", "Cd = 0.61\n", "rho = 999.\n", "rhoo = 877. #density of oil\n", "g = 9.81\n", "h = 75/100.\n", "d = 12.4/100. #dia of orifice\n", "d1 = 15/100. #inside diameter\n", "nuo = 1/rhoo #specific volume of oil\n", "\n", "#calculation\n", "#part1\n", "delP = h*(rho-rhoo)*g\n", "A = pi*d**2./4\n", "G = Cd*A/nuo*math.sqrt(2*nuo*delP/(1-(d/d1)**4))\n", "print \"mass flow rate in (kg/s) %.4f\"%G\n", "\n", "#part2\n", "h = (1.+0.5)*d1\n", "delP = rhoo/2*(G*nuo/Cd/A)**2*(1-(d/d1)**4)+h*rhoo*g\n", "print \"pressuer differnce between tapping points %.4f\"%delP\n", "delh = (delP-h*rhoo*g)/(rho-rhoo)/g\n", "print \"difference in water levels in manometer i (cm) %.4f\"%delh\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "mass flow rate in (kg/s) 12.6544\n", "pressuer differnce between tapping points 2833.3733\n", "difference in water levels in manometer i (cm) 0.7500\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 4.4 page no : 72" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math \n", "\n", "# Initialization of Variable\n", "rhom = 1.356*10**4 #density mercury\n", "rhon = 1266. #density NaOH\n", "Cd = 0.61\n", "g = 9.81\n", "Cdv = 0.98 #coeff. of discharge of venturimeter\n", "Cdo = Cd #coeff. of discharge of orificemeter\n", "d = 6.5/100\n", "pi = 3.14\n", "A = pi*d**2/4.\n", "Q = 16.5/1000.\n", "h = 0.2 #head differnce\n", "\n", "#calculation\n", "#part1\n", "delP = g*h*(rhom-rhon)\n", "G = rhon*Q\n", "nun = 1./rhon#specific volume of NaOH\n", "Ao = G*nun/Cd*math.sqrt(1./(2*nun*delP+(G*nun/Cd/A)**2)) #area of orifice\n", "d0 = math.sqrt(4.*Ao/pi)\n", "print \"diameter of orifice in (cm): %.4f\"%(d0*100)\n", "\n", "#part2\n", "a = (Cdv/Cdo)**2\n", "print \"ratio of pressure drop %.4f\"%a\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "diameter of orifice in (cm): 5.8041\n", "ratio of pressure drop 2.5810\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 4.5 page no : 74" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "# Initialization of Variable\n", "M = 3.995/100\n", "g = 9.81\n", "R = 8.314\n", "Cd = 0.94\n", "temp = 289.\n", "df = 9.5/1000 #diameter of float\n", "Af = math.pi*df**2/4. #area of float\n", "P = 115.*10.**3.\n", "V = 0.92/10**6\n", "rhoc = 3778. #density of ceramic\n", "\n", "#calculation\n", "rho = P*M/R/temp\n", "nu = 1/rho\n", "P = V*(rhoc-rho)*g/Af\n", "print \"pressure drop over the float in (Pa): %.4f\"%P\n", "\n", "#part2\n", "x = .15/25.*(25-7.6)\n", "L = df*100.+2*x\n", "L = L/100.\n", "A1 = math.pi*L**2./4\n", "A0 = A1-Af\n", "G = Cd*A0*math.sqrt(2.*rho*P/(1-(A0/A1)**2))\n", "print \"mass flow rate in kg/s) is %.3e\"%(G)\n", "Q = G/rho\n", "print \"Volumetric flow rate in (m**3/s): %f\"%Q\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "pressure drop over the float in (Pa): 480.7971\n", "mass flow rate in kg/s) is 1.475e-03\n", "Volumetric flow rate in (m**3/s): 0.000772\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 4.6 page no : 77" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math \n", "\n", "# Initialization of Variable\n", "rho = 999.\n", "rhos = 8020. #density of steel\n", "g = 9.81\n", "math.pi = 3.14\n", "df = 14.2/1000 #dia of float\n", "Af = math.pi*df**2/4. #area of float\n", "Cd = 0.97\n", "nu = 1./rho\n", "Q = 4./1000./60\n", "G = Q*rho\n", "\n", "#calculation\n", "x = 0.5*(18.8-df*1000)/280*(280-70)\n", "L = df*1000.+2*x\n", "L = L/1000.\n", "A1 = math.pi*L**2./4\n", "A0 = A1-Af\n", "Vf = Af/g/(rhos-rho)/2/nu*(G*nu/Cd/A0)**2*(1-(A0/A1)**2)\n", "m = Vf*rhos\n", "print \"mass of float equired in (g): %.4f\"%(m*1000)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "mass of float equired in (g): 5.1176\n" ] } ], "prompt_number": 6 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }