{ "metadata": { "name": "", "signature": "sha256:0059190c3ee26fe93a1d293531a49cd3a6e92d5339c0638feafb8d9d1d250c2e" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 1 : Pipe Flow of Liquids" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "\n", "example 1.1 page no : 1" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math \n", "\n", "# Initialization of Variable\n", "mu = 6.3/100; #viscosity\n", "rho = 1170.; #density\n", "d = .3; #diameter of pipe\n", "b = 0.142; #conversion factor\n", "pi=3.14;\n", "\n", "#calculation\n", "Q = 150000.*b/24./3600 #flow rate\n", "u = Q/pi/d**2.*4 #flow speed\n", "Re = rho*u*d/mu\n", "if Re>4000:\n", " print \"the system is in turbulent motion as reynolds no is greater than 4000: %.3f\"%Re\n", "elif Re<2100 :\n", " print \"the system is in laminar motion\" ,Re\n", "else:\n", " print \"the system is in transition motion\",Re\n", "\n", "mu = 5.29/1000;\n", "d = 0.06;\n", "G = 0.32; #mass flow rate\n", "Re = 4*G/pi/d/mu;\n", "\n", "if Re>4000 :\n", " print \"the system is in turbulent motion as reynolds no is greater than 4000: \",Re\n", "elif Re<2100 :\n", " print \"the system is in laminar motion as Re is less than 2100 : %.3f\" %Re\n", "else:\n", " print \"the system is in transition motion\",Re\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the system is in turbulent motion as reynolds no is greater than 4000: 19441.074\n", "the system is in laminar motion as Re is less than 2100 : 1284.320\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "\n", "example 1.2 page no : 2" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math \n", "\n", "\n", "# Initialization of Variable\n", "G=21.2; #mass flow rate\n", "rho=1120; #density\n", "d=0.075; #diameter\n", "l=50.;\n", "g=9.81;\n", "pi=3.14;\n", "delz=24./100; #head difference\n", "\n", "#calculation\n", "delP=delz*rho*g; #differece of pressure\n", "u=4*G/pi/d**2/rho;\n", "phi=delP/rho*d/l/u**2./4*50;\n", "print \"The Stanton-Pannel friction factor per unit of length: %f\"%phi\n", "R=phi*rho*u**2;\n", "print \"shear stress exerted by liquid on the pipe wall in (N/m**2) : %.3f\"% R\n", "F=pi*d*l*R;\n", "print \"Total shear force exerted on the pipe in (N): %.3f\"%F\n", "Re=(.0396/phi)**4;#reynold's no.\n", "mu=rho*u*d/Re;\n", "print \"viscosity of liquid in (kg/m/s):%f\" %mu\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Stanton-Pannel friction factor per unit of length: 0.002402\n", "shear stress exerted by liquid on the pipe wall in (N/m**2) : 49.442\n", "Total shear force exerted on the pipe in (N): 582.184\n", "viscosity of liquid in (kg/m/s):0.004877\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 1.3 page no : 4" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "# Initialization of Variable\n", "pi=3.14;\n", "g=9.81;\n", "d=0.00125;\n", "Re=2100;\n", "l=0.035;\n", "rhoc=779. #density of cyclohexane\n", "rhow=999. #density of water\n", "muc=1.02/1000; #viscosity of cyclo hexane\n", "\n", "#calculation\n", "u=Re*muc/rhoc/d; #speed\n", "Q=pi*d**2*u/4; #volumetric flow rate\n", "delP=32*muc*u*l/d**2;#pressure difference\n", "delz=delP/(rhow-rhoc)/g;\n", "print \"the difference between the rise levels of manometer in (cm): %.4f\"%(delz*100 )\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the difference between the rise levels of manometer in (cm): 74.5210\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "\n", "example 1.4 page no : 6" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math \n", "\n", "# Initialization of Variable\n", "d=0.05;\n", "l=12.;\n", "per=100.-2;\n", "pi=3.1428\n", "\n", "#calculation\n", "s=math.sqrt(per/100/4*d**2);#radius of core of pure material\n", "V=pi*d**2./4.*l/(2.*(1-(2.*s)**2/d**2));\n", "print \"The volume of pure material so that 2%% technical material appears at the end in (m**3): %.3f\"%V\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The volume of pure material so that 2% technical material appears at the end in (m**3): 0.589\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 1.5 page no : 7" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "\n", "# Initialization of Variable\n", "\n", "a=1./2*(1-1/math.sqrt(2.));\n", "print \"The percent value of d for which where pitot tube is kept show average velocity \\\n", "in streamline flow in (%%) : %.4f\"%(a*100)\n", "\n", "a=(49./60)**7/2.\n", "print \"The percent value of d for which where pitot tube is kept show average velocity in \\\n", "turbulent flow in (%%) : %.4f\"%(a*100)\n", "\n", "#on equating coefficient of r\n", "y=a*2; #y=a/100*2*r\n", "s=1-y; #s=r-y\n", "\n", "#on equating coeff. of 1/4/mu*del(P)/del(l)\n", "E=(1-s**2-.5)/.5;\n", "print \"The error shown by pitot tube at new position if value of streamlined flow flow was\\\n", "to be obtained in (%%) : %.4f\"%E\n", "print \"The - sign indicates that it will print lay reduced velocity than what actually is\"\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The percent value of d for which where pitot tube is kept show average velocity in streamline flow in (%) : 14.6447\n", "The percent value of d for which where pitot tube is kept show average velocity in turbulent flow in (%) : 12.1139\n", "The error shown by pitot tube at new position if value of streamlined flow flow wasto be obtained in (%) : -0.1483\n", "The - sign indicates that it will print lay reduced velocity than what actually is\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "\n", "example 1.6 page no : 9" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "# Initialization of Variable\n", "rhon = 1068. #density of nitric acid\n", "mun = 1.06/1000. #viscosity of nitric acid\n", "g = 9.81\n", "l = 278.\n", "d = 0.032\n", "alpha = 1.\n", "h2 = 57.4 #height to be raised\n", "h1 = 5. #height from which to be raised\n", "e = .0035/1000. #roughness\n", "G = 2.35 #mass flow rate\n", "pi = 3.14\n", "#calculations\n", "#part 1\n", "u = 4.*G/rhon/pi/d**2\n", "Re = rhon*d*u/mun\n", "rr = e/d #relative roughness\n", "\n", "#Reading's from Moody's Chart\n", "phi = .00225 #friction coeff.\n", "W = u**2/2.+g*(h2-h1)+4*phi*l*u**2/d #The work done/kg of fluid flow in J/kg\n", "V = abs(W)*G\n", "print \"The Power required to pump acid in kW : %.4f\"%(abs(V)/1000)\n", "\n", "#part 2\n", "P2 = -u**2*rhon/2.+g*(h1)*rhon+abs(W+2)*rhon\n", "print \"The gauge pressure at pump outlet when piping is new in (kPa) : %.4f\"%(P2/1000)\n", "\n", "#part 3\n", "e = .05/1000\n", "Re = rhon*d*u/mun\n", "rr = e/d\n", "\n", "#Reading's from Moody's Chart\n", "phi = 0.0029\n", "W = u**2/2+g*(h2-h1)+4*phi*l*u**2/d\n", "Vnew = abs(W)*G\n", "Pi = (Vnew-V)/V*100.\n", "print \"The increase in power required to transfer in old pipe in (%%): %.4f\"%Pi\n", "\n", "#part 4\n", "P2 = -u**2*rhon/2+g*(h1)*rhon+abs(W+2)*rhon\n", "print \"The gauge pressure at pump outlet when piping is old in (kPa) :%.4f\"%(P2/1000)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Power required to pump acid in kW : 2.5936\n", "The gauge pressure at pump outlet when piping is new in (kPa) : 1229.2152\n", "The increase in power required to transfer in old pipe in (%): 15.3353\n", "The gauge pressure at pump outlet when piping is old in (kPa) :1409.9715\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 1.7 page no : 12" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math \n", "\n", "# Initialization of Variable\n", "rho=990.;\n", "mu=5.88/10000;\n", "g=9.81;\n", "pi=3.14;\n", "temp=46.+273\n", "e=1.8/10000 #absolute roughness\n", "Q=4800./1000./3600;\n", "l=155.;\n", "h=10.5;\n", "d=0.038;\n", "delh=1.54 #head loss at heat exchanger\n", "effi=0.6 #efficiency\n", "\n", "#calculations\n", "\n", "u=Q*4./pi/d**2;\n", "Re=rho*d*u/mu;\n", "rr=e/d #relative roughness\n", "\n", "#from moody's diagram\n", "phi=0.0038 #friction factor\n", "alpha=1. #constant\n", "leff=l+h+200*d+90*d;\n", "Phe=g*delh #pressure head lost at heat exchanger\n", "W=u**2/2/alpha+Phe+g*h+4*phi*leff*u**2/d; #work done by pump\n", "G=Q*rho; #mass flow rate\n", "P=W*G; #power required by pump\n", "Pd=P/effi #power required to drive pump\n", "print \"power required to drive pump in (kW) : %.4f\"%(Pd/1000)\n", "\n", "P2=(-u**2/2/alpha+W)*rho;\n", "print \"The gauge pressure in (kPa): %.4f\"%(P2/1000)\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "power required to drive pump in (kW) : 0.4763\n", "The gauge pressure in (kPa): 213.6461\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 1.8 page no : 15" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math \n", "\n", "# Initialization of Variable\n", "rho=908.;\n", "mu=3.9/100;\n", "g=9.81;\n", "pi=3.14;\n", "d=0.105;\n", "l=87.;\n", "h=16.8;\n", "e=0.046/1000; #absolute roughness\n", "\n", "#calculations\n", "\n", "#part1\n", "P=-rho*g*h; #change in pressure\n", "a=-P*rho*d**3/4/l/mu**2 #a=phi*Re**2\n", "\n", "#using graph given in book(appendix)\n", "Re=8000.\n", "u=mu*Re/rho/d\n", "Q=u*pi*d**2/4.\n", "print \"Volumetric flow rate initial (m**3/s): %.4f\"%Q\n", "\n", "#part 2\n", "W=320.;\n", "Pd=W*rho; #pressure drop by pump\n", "P=P-Pd;\n", "a=-P*rho*d**3./4./l/mu**2 #a=phi*Re**2\n", "\n", "#using graph given in book(appendix)\n", "Re=15000.;\n", "u=mu*Re/rho/d;\n", "Q=u*pi*d**2./4;\n", "print \"Volumetric flow rate final(part 2) (m**3/s) : %.4f\"%Q\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Volumetric flow rate initial (m**3/s): 0.0283\n", "Volumetric flow rate final(part 2) (m**3/s) : 0.0531\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 1.9 pageno : 17" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "from numpy import linspace\n", "# Initialization of Variable\n", "rho=1000.;\n", "mu=1.25/1000;\n", "g=9.81;\n", "pi=3.14\n", "d = 0.105\n", "d1=0.28; #diameter of tank\n", "d2=0.0042; #diameter of pipe\n", "l=0.52; #length of pipe\n", "rr=1.2/1000./d; #relative roughness\n", "phid=0.00475;\n", "print \"It is derived from tyhe graph giben in appedix and can be seen \\\n", "is arying b/w 0.0047 & 0.0048 dependent on D which varies from 0.25 to 0.45 : %f\"%phid\n", "\n", "#calculations\n", "def intregrate():\n", " s=0\n", " for i in range(0,1000):\n", " D=linspace(0.25,0.45,1000);\n", " y=math.sqrt(((pi*d1**2./pi/d2**2)**2-1)/2/9.81+(4*phid*l*(pi*d1**2/pi \\\n", " /d2**2)**2)/d2/9.81)*((0.52+D[i])**-0.5)*2/10000;\n", " s=s+y;\n", " a=s;\n", " return a\n", "\n", "b=intregrate();\n", "print \"Time required to water level to fall in the tank in (s): %.4f\"%b\n", "\n", " \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "It is derived from tyhe graph giben in appedix and can be seen is arying b/w 0.0047 & 0.0048 dependent on D which varies from 0.25 to 0.45 : 0.004750\n", "Time required to water level to fall in the tank in (s): 514.7299\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 1.10 pageno : 21" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "# Initialization of Variable\n", "rho=1000.;\n", "mu=1.42/1000;\n", "g=9.81;\n", "pi=3.14;\n", "l=485.;\n", "h=4.5\n", "e=8.2/100000;\n", "Q=1500.*4.545/1000/3600;\n", "\n", "print \"assume d as 6cm\"\n", "d=0.06;\n", "u=4*Q/pi/d**2;\n", "Re=rho*d*u/mu;\n", "rr=e/d; #relative roughness\n", "\n", "#using moody's chart\n", "phi=0.0033 #friction coeff.\n", "d=(64*phi*l*Q**2/pi**2/g/h)**0.2;\n", "print \"The calculated d after (1st iteration which is close to what we\\\n", " assume so we do not do any more iteration) in(cm) %d \"%(d*100)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "assume d as 6cm\n", "The calculated d after (1st iteration which is close to what we assume so we do not do any more iteration) in(cm) 6 \n" ] } ], "prompt_number": 17 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }