{ "metadata": { "name": "", "signature": "sha256:b663d37f11172deb3563f162b70ebad3fa6ba55d33d2460355cbcd711fb7c2ba" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 7 Thin Lens, Coaxial Systems and Aberrations " ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.1 Page no 114" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "f1=-12.0 #Focal length of a converging lens in cm\n", "f2=25.0 #Focal length of a diverging lens in cm\n", "d=8 #Distance between the lens in cm\n", "\n", "#Calculations\n", "C=(1/f1)+(1/f2)+(d/(f1*f2))\n", "D=(d/f2)+1\n", "A=(d/f1)+1\n", "O1F1=(-D/C)\n", "O2F2=(A/C)\n", "O1H1=(1-D)/C\n", "O2H2=(A-1)/C\n", "\n", "#Output\n", "print\"Position of cardinal points are O1F1 = \",round(O1F1,3),\"cm, O2F2 = \",round(O2F2,3),\"cm, O1H1 = \",round(O1H1,3),\"cm, O2H2 = \",round(O2H2,3),\"cm\"\n", "print\"The system is in air, therfore, nodal points coincide with unit points\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Position of cardinal points are O1F1 = 18.857 cm, O2F2 = -4.762 cm, O1H1 = 4.571 cm, O2H2 = 9.524 cm\n", "The system is in air, therfore, nodal points coincide with unit points\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.2 Page no 115" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "f=15.0 #Focal length of achromatic doublet made up of crown and flint glasses in cm\n", "fl=(0.01506,0.02427) #Dispersive power of crown and flint glasses respectively \n", "\n", "#Calculations\n", "#Solving two equations\n", "#(1/f)=(1/f1)+(1/f2)\n", "#(f1/f2)=(-0.01506/0.02427)\n", "fx=(fl[0]/fl[1])\n", "f2=(-(1/fx)+1)/(1/f)\n", "f1=(-fx*f2)\n", "\n", "#Output\n", "print\"Focal length of converging lens is \",round(f2,1),\"cm\" \n", "print\"Focal length of diverging lens is \",round(f1,1),\"cm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Focal length of converging lens is -9.2 cm\n", "Focal length of diverging lens is 5.7 cm\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.3 Page no 115" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "f=20.0 #Focal length in cm\n", "fl=(0.015,0.019) #Dispersive powers of crown and flint glasses respectively\n", "r=(1.495,1.53) #Refractive indices respectively\n", "\n", "#Calculations\n", "fx=-(fl[0]/fl[1])\n", "#Solving two equations\n", "#(1/f)=(1/f1)+(1/f2)\n", "#(f1/f2)=(-0.015/0.019)\n", "f2=((1/fx)+1)/(1.0/f)\n", "f1=(fx*f2)\n", "r2=(r[1]-1)*f2\n", "r1=1/(((1/f1)/(r[0]-1))+(1/r2))\n", "\n", "#Output\n", "print\"Radius of curvature of converging lens is \",round(r2,1),\"cm\" \n", "print\"Radius of curvature of diverging lens is \",round(r1,1),\"cm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Radius of curvature of converging lens is -2.8 cm\n", "Radius of curvature of diverging lens is 7.9 cm\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.4 Page no 116" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "r=1.5 #Refractive index of the material of a thin lens\n", "f=-20.0 #Focal length of the lens in cm\n", "rx=-6.0 #Ratio of radii of curvature of lens\n", "\n", "#Calculations\n", "r1=1/((1/f)/((r-1)*(1-(1/rx))))\n", "r2=(rx*r1)\n", "\n", "#Output\n", "print\"Radii of curvature of lens are \",round(r1,2),\"cm and\",r2,\"cm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Radii of curvature of lens are -11.67 cm and 70.0 cm\n" ] } ], "prompt_number": 8 } ], "metadata": {} } ] }