{ "metadata": { "name": "", "signature": "sha256:8d1a6e24325b21ce86c3b6da78ff6614496eb66a81611477ea9a7b9f8a72ae03" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 5 Properties of matter" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.1 Page no 76" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "m=1 #Mass of torsional pendulum in kg\n", "R=0.06 #Radius of torsional pendulum in m\n", "l=1.2 #Length of the wire in m\n", "r=0.0008 #Radius of wire in m\n", "S=(9*10**9) #Modulus of rigidity of the material in N/m^2\n", "\n", "#Calculations\n", "import math\n", "I=(1/2.0)*m*R**2\n", "C=(3.14*S*r**4)/(2*l)\n", "T=2*3.14*math.sqrt(I/C)\n", "\n", "#Output\n", "print\"Period of pendulum is \",round(T,1),\"s\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Period of pendulum is 3.8 s\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.2 Page no 76" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "l=0.8 #Length of the wire in m\n", "d=(1.8*10**-3) #Diameter of the wire in m\n", "a=1.5 #Angle of twist in degrees\n", "S=(1.8*10**11) #Modulus of rigidity of the material in N/m^2\n", "\n", "#Calculations\n", "r=(a*3.14)/180.0\n", "W=((3.14*S*(d/2.0)**4*r**2)/(4*l))/10.0**-5\n", "\n", "#Output\n", "print\"Work required to twist the wire is \",round(W,2),\"*10^-5 J\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Work required to twist the wire is 7.93 *10^-5 J\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.3 Page no 76" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "l=2 #Length of wire in m\n", "d=(0.4*10**-3) #Diameter of the wire in m\n", "x=(1.03*10**-3) #Extension in length in m\n", "L=2 #Load in kg\n", "C=(4.52*10**-6) #Couple in N/m\n", "a=0.03 #Twist angle in radians\n", "\n", "#Calculations\n", "Y=((L*9.8*l)/(x*3.14*(d/2.0)**2))/10**11\n", "S=((C*2*l)/(3.14*(d/2.0)**4*a))/10**11\n", "s=(Y/(2*S))-1\n", "\n", "#Output\n", "print\"Youngs modulus is \",round(Y,2),\"*10**11 N/m^2\"\n", "print\"Modulus of rigidity is \",round(S,2),\"*10**11 N/m^2\"\n", "print\"Poissons ratio is \",round(s,2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Youngs modulus is 3.03 *10**11 N/m^2\n", "Modulus of rigidity is 1.2 *10**11 N/m^2\n", "Poissons ratio is 0.26\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.4 Page no 76" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "r=0.003 #Radius of drop of glycerine in m\n", "T=(63.1*10**-3) #Surface tension of glycerine in N/m\n", "\n", "#Calculations\n", "P=((2*T)/r)\n", "\n", "#Output\n", "print\"Excess pressure inside the drop of glycerine is \",round(P,2),\"N/m^2\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Excess pressure inside the drop of glycerine is 42.07 N/m^2\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.5 Page no 76" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "r1=0.001 #Initial radius in m\n", "r2=0.004 #Final radius in m\n", "t=2*10**-3 #Time in s\n", "s=(7*10**-2) #Surface tension of water in N/m\n", "\n", "#Calculations\n", "P=((2*s)*((1/r2)-(1/r1)))/(t*10**4)\n", "\n", "#Output\n", "print\"Rate of change of pressure is \",P,\"*10**4 N/m**2 s\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rate of change of pressure is -5.25 *10**4 N/m**2 s\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.6 Page no 77" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "d=0.02 #Diamter of soap bubble in m\n", "s=(25*10**-3) #Surface tension in N/m\n", "#Initial surface area of the bubble is zero and final area is 2*4*pie*r^2 where r is the radius of the bubble\n", "\n", "#Calculations\n", "W=(s*2*4*3.14*(d/2.0)**2)/10.0**-5\n", "\n", "#Output\n", "print\"Work done in blowing a soap bubble is \",W,\"*10**-5 J\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Work done in blowing a soap bubble is 6.28 *10**-5 J\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.7 Page no 77" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "r=0.01 #Radius of liquid drop in m\n", "n=500 #Number of drops\n", "s=(63*10**-3) #Surface tension in N/m\n", "\n", "#Calculations\n", "r1=(((4*3.14*r**3)/3.0)/((n*4*3.14)/3.0))**(1/3.0)\n", "As=(n*4*3.14*r1**2)\n", "A=4*3.14*r**2\n", "W=(s*(As-A))/10.0**-4\n", "\n", "#Output\n", "print\"Energy required to break up a drop of a liquid is \",round(W,1),\"*10**-4 J\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Energy required to break up a drop of a liquid is 5.5 *10**-4 J\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.8 Page no 77" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "d=0.04 #Inside diameter of garden hose in m\n", "D=0.01 #Diamter of nozzle opening in m\n", "v1=0.6 #speed of flow of water in the hose in m/s\n", "\n", "#calculations\n", "a=3.14*(d/2.0)**2\n", "A=3.14*(D/2.0)**2\n", "v2=(v1*a)/A\n", "\n", "#Output\n", "print\"Speed of flow through the nozzle is \",v2,\"m/s\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Speed of flow through the nozzle is 9.6 m/s\n" ] } ], "prompt_number": 10 } ], "metadata": {} } ] }