{ "metadata": { "name": "", "signature": "sha256:483ac761a0ac81598a32958276222effb2c60791a86a62e2445fc0aaf9c0e97b" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 9 Interference" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.1 Page no 136" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "t=0.2 #Thickness of film in micro m\n", "r=1.25 #Refractive index of liquid\n", "w=(4000,5000) #Range of wavelength in Angstrom\n", "q=35 #Angle observed in degrees\n", "\n", "#Calculations\n", "import math\n", "u=math.asin(math.sin(q*3.14/180.0)/r)*180/3.14\n", "w1=(2*t*10**-6*r*math.cos(u*3.14/180.0))/10**-10\n", "w2=w1/2.0 \n", "\n", "#Output\n", "print\"Wavelength absent in reflected light is \",round(w2,0),\"Angstrom\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Wavelength absent in reflected light is 2222.0 Angstrom\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.2 Page no 136" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "r=1.39 #Refractive index of the film \n", "q=30 #Angle observed in degrees\n", "w=(5125,5000) #Wavelengths of two consecutive dark bands in Angstrom\n", "\n", "#Calculations\n", "import math\n", "r1=math.asin(math.sin(q*3.14/180.0)/r)*180/3.14\n", "n=w[1]/(w[0]-w[1])\n", "t=((n*w[0]*10**-8)/(2.0*r*math.cos(r1*3.14/180.0)))/10**-4\n", "\n", "#Output\n", "print\"Thickness of the film is \",round(t,4),\"*10**-4 cm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Thickness of the film is 7.9026 *10**-4 cm\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.3 Page no 137" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "r=1.4 #Refractive index of the material\n", "w=5893 #Wavelength of yellow light in Angstrom\n", "n=10 #Number of bands\n", "w1=0.009 #Width of band in m\n", "\n", "#Calculations\n", "import math\n", "b=math.asin((w*10**-8)*180/3.14/(2.0*r*n*w1))\n", "\n", "#Output\n", "print\"Angle of wedge is \",round(b,4),\"degrees\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Angle of wedge is 0.0134 degrees\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.4 Page no 137" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "r=1.0 #Refractive index\n", "n=4 #Number of bands\n", "w=6500 #Wavelength in Angstrom\n", "\n", "#Calculations\n", "t=(((n+(1/2.0))*w*10**-8)/(2*r))/10.0**-4\n", "\n", "#Output\n", "print\"Thickness of wedge shaped air film is \",t,\"*10**-4 cm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Thickness of wedge shaped air film is 1.4625 *10**-4 cm\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.5 Page no 137" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "d=0.5 #Diameter of the ring in cm\n", "n=4 #number of bands\n", "w=5893 #Wavelength of light in Angstrom\n", "q=30 #Angle at which light enters in degrees\n", "\n", "#Calculations\n", "import math\n", "R=((d**2*math.cos(q*3.14/180.0))/(2.0*(2*n+1)*w*10**-8))\n", "\n", "#Output\n", "print\"Radius of curvature of lens is \",round(R,1),\"cm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Radius of curvature of lens is 204.1 cm\n" ] } ], "prompt_number": 11 } ], "metadata": {} } ] }