{ "metadata": { "name": "", "signature": "sha256:57d22a7adb4054841cc52259e77089014f3c25ca9c50bc1dab4a74d78f09ccf3" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 17 Quantum theory" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.1 Page no 284" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "w=4000.0 #Wavelength of the light in Angstrom units\n", "wf=2.25 #Work function of potassium in eV\n", "m=(9.1*10**-31) #Mass of the electron in kg\n", "v=(3*10**8) #Velocity of light in m/s\n", "c=(1.6*10**-19) #Charge of the electron in coloumbs\n", "h=6.626*10**-34 #Plancks constant in Js\n", "\n", "#Calculations\n", "E=(h*v)/(w*10**-10*c)\n", "KE=(E-wf)\n", "\n", "#Output\n", "print\"Maximum kinetic energy of photoelectron is \",round(KE,3),\"eV\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum kinetic energy of photoelectron is 0.856 eV\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.2 Page no 284" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "wf=1.9 #Workfunction of the material in eV\n", "w=3000 #Wavelength of the light in Angstrom units\n", "v=(3*10**8) #Velocity of light in m/s\n", "c=(1.6*10**-19) #Charge of the electron in coloumbs\n", "h=6.626*10**-34 #Plancks constant in Js\n", "\n", "#Calculations\n", "V=(1/c)*(((h*v)/(w*10**-10))-(wf*c))\n", "\n", "#Output\n", "print\"Stopping potential is \",round(V,2),\"V\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Stopping potential is 2.24 V\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.3 Page no 284" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "V=(70*10**3) #Accelerating potential in V\n", "v=(3*10**8) #Velocity of light in m/s\n", "c=(1.6*10**-19) #Charge of the electron in coloumbs\n", "h=6.626*10**-34 #Plancks constant in Js\n", "\n", "#Calculations\n", "lmin=((h*v)/(c*V))/10**-9\n", "\n", "#Output\n", "print\"Shortest wavelength of X-rays produced is \",round(lmin,4),\"mm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Shortest wavelength of X-rays produced is 0.0177 mm\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.4 Page no 284" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "w1=2 #Wavelength in Angstrom \n", "Z1=24 #Target one\n", "Z2=42.0 #Target two\n", "a=1 #Constant value\n", "\n", "#Calculations\n", "w2=w1*(Z1-a)**2/(Z2-a)**2\n", "\n", "#Output\n", "print\"Wavelength is \",round(w2,2),\"Angstrom\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Wavelength is 0.63 Angstrom\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.5 Page no 284" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "w=3 #Wavelength of the light in Angstrom\n", "v=(3*10**8) #Velocity of light in m/s\n", "h=6.626*10**-34 #Plancks constant in Js\n", "q=40 #Scattering angle in degrees\n", "m=(9.11*10**-31) #Mass of electron in kg\n", "c=(1.6*10**-19) #Charge of the electron in coloumbs\n", "\n", "#Calculations\n", "import math\n", "dl=(h/(m*v))*(1-math.cos(q*3.14/180.0))/10.0**-10\n", "l=(w+dl)\n", "\n", "#Output\n", "print\"Wavelength of scattered X-rays is \",round(l,4),\"Angstrom\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Wavelength of scattered X-rays is 3.0057 Angstrom\n" ] } ], "prompt_number": 1 } ], "metadata": {} } ] }