{ "metadata": { "name": "", "signature": "sha256:3f76c4dafe83129bfa41f6667339b27d23cec6e550015e787119c4ce10873761" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 10 Difraction" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.1 Page no 154" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "D=1 #Distance of screen from the slit in m\n", "w=6000 #Wavelength in Angstrom\n", "w1=0.6 #Slit width in mm\n", "\n", "#Calculations\n", "x=((2*D*w*10**-10)/(w1*10**-3))*1000\n", "\n", "#Output\n", "print\"Width of central band is \",x,\"mm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Width of central band is 2.0 mm\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.2 Page no 155" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "d1=6000.0 #Diffraction grating have number of lines per cm\n", "q=50 #Diffracted second order spectral line observed in degrees\n", "n=2 #Second order\n", "\n", "#Calculations\n", "import math\n", "w=(math.sin(q*3.14/180.0)/(d1*n))*10**8\n", "\n", "#Output\n", "print\"Wavelength of radiation is \",round(w,1),\"Angstrom\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Wavelength of radiation is 6381.3 Angstrom\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.3 Page no 155" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "d1=6000 #Diffraction grating have number of lines per cm\n", "w=6000 #Wavelength in Angstrom\n", "\n", "#Calculations\n", "n=(1/(d1*w*10**-8))\n", "\n", "#Output\n", "print\"Maximum order of diffraction that can be observed is \",round(n,2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum order of diffraction that can be observed is 2.78\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.4 Page no 155" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "B=(3*3.14)/2 #First secondary maxima at B\n", "\n", "#Calculations\n", "import math\n", "I=(math.sin(B)/B)**2\n", "\n", "#Output\n", "print\"Ratio of intensity of central maxima to first secondary maxima is \",round(I,3)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Ratio of intensity of central maxima to first secondary maxima is 0.045\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.5 Page no 155" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "w=6400 #Wave length of light in Angstrom\n", "w1=0.3 #Slit width in mm\n", "d=110 #Distance of screen from the slit in cm\n", "n=3 #order\n", "\n", "#Calculations\n", "x=((n*w*10**-10*(d/100.0))/(w1*10**-3))*1000\n", "\n", "#Output\n", "print\"Distance between the centre of the central maximum and the third dark fringe is \",x,\"mm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Distance between the centre of the central maximum and the third dark fringe is 7.04 mm\n" ] } ], "prompt_number": 8 } ], "metadata": {} } ] }