{ "metadata": { "name": "", "signature": "sha256:aa8849d14e0b72277789cfe0c1cc3e7e66ca9061ac47dccbae27561c50c68d32" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 1 Motion" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.1 Page no 17" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "d=180 #Distance of satellite above the surface of earth in km\n", "t=90 #Time taken to complete one revolution of the earth in minutes\n", "r=6400 #Radius of the earth in kms\n", "\n", "#Calculations\n", "R=(r+d)*1000\n", "T=t*60\n", "v=(2*3.14*R)/T\n", "a=(v**2/R)\n", "\n", "#Output\n", "print\"Orbital speed is \",round(v,0),\"m/s\" \n", "print\"Centripetal acceleration is \",round(a,1),\"m/s**2\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Orbital speed is 7652.0 m/s\n", "Centripetal acceleration is 8.9 m/s**2\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.2 Page no 17" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "m=0.05 #Mass of the stone in kg\n", "r=0.4 #Radius of the string in m\n", "\n", "#Calculations\n", "import math\n", "vh=math.sqrt(9.8*r)\n", "vl=math.sqrt((2/m)*(((1/2.0)*m*vh**2)+(m*9.8*2*r)))\n", "\n", "#Output\n", "print\"Minimum speed when the stone is at the top of the circle is \",round(vh,2),\"m/s\" \n", "print\"Minimum speed when the stone is at the bottom of the circle is \",round(vl,2),\"m/s\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Minimum speed when the stone is at the top of the circle is 1.98 m/s\n", "Minimum speed when the stone is at the bottom of the circle is 4.43 m/s\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.3 Page no 17" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "m=0.2 #Mass of the ball in kg\n", "r=1.5 #Radius of vertical circle in m\n", "q=35 #Angle made by the ball in degrees\n", "v=6 #Velocity of the ball in m/s\n", "\n", "#Calculations\n", "import math\n", "T=(m*((v**2/r)+(9.8*math.cos(q*3.14/180.0))))\n", "at=9.8*math.sin(q*3.14/180.0)\n", "ar=(v**2/r)\n", "a=math.sqrt(at**2+ar**2)\n", "\n", "#Output\n", "print\"Tension in the string is \",round(T,1),\"N\" \n", "print\"Tangential acceleration is \",round(at,2),\"m/s**2\" \n", "print\"Radial acceleration is \",ar,\"m/s**2\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Tension in the string is 6.4 N\n", "Tangential acceleration is 5.62 m/s**2\n", "Radial acceleration is 24.0 m/s**2\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.4 Page no 17" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "#A small ball is released from height of 4r measured from the bottom of the loop, where r is the radius of the loop\n", "\n", "#Calculations\n", "import math\n", "ar=(6*9.8)\n", "at=(9.8*math.sin(90*3.14/180.0))\n", "\n", "#Output\n", "print\"Radial acceleration is \",ar,\"m/s**2\"\n", "print\"Tangential acceleration is \",round(at,1),\"m/s**2\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Radial acceleration is 58.8 m/s**2\n", "Tangential acceleration is 9.8 m/s**2\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.5 Page no 18" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "l=0.95 #Length of the strring in m\n", "m=0.15 #Mass of the bob in kg\n", "r=0.25 #Radius of the circle in m\n", "\n", "#Calculations\n", "import math\n", "h=math.sqrt(l**2-r**2)\n", "t=2*3.14*math.sqrt(h/9.8)\n", "\n", "#Output\n", "print\"The period of rotation is \",round(t,2),\"s\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The period of rotation is 1.92 s\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.6 Page no 18" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "N=40.0 #Minimum speed of rotor in rpm\n", "r=2.5 #Radius of rotor in m\n", "\n", "#Calculations\n", "t=60/N\n", "u=(9.8*t**2)/(4.0*3.14**2*r)\n", "\n", "#Output\n", "print\"The coefficient of limiting friction between the object and the wall of the rotor is \",round(u,3)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The coefficient of limiting friction between the object and the wall of the rotor is 0.224\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.7 Page no 18" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "a=30 #Angle of inclination in degrees\n", "t=3 #Time in s\n", "\n", "#Calculations\n", "import math\n", "a=(9.8*math.sin(a*3.14/180.0))\n", "v=(0+a*t)\n", "\n", "#Output\n", "print\"Speed of the block after \",t,\"s is \",round(v,1),\"m/s\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Speed of the block after 3 s is 14.7 m/s\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.8 Page no 19" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "m=10.0 #Mass of the block in kg\n", "F1=40 #Horizontal force to start moving in N\n", "F2=32 #Horizontal force to move with constant velocity in N\n", "\n", "#Calculations\n", "u1=(F1/(m*9.8))\n", "u2=(F2/(m*9.8))\n", "\n", "#Output\n", "print\"Coefficient of static friction is \",round(u1,3)\n", "print\"Coefficient of kinetic friction is \",round(u2,4)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Coefficient of static friction is 0.408\n", "Coefficient of kinetic friction is 0.3265\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.9 Page no 19" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "m=(3,12) #Masses of the blocks in kg\n", "q=50 #Angle made by the string in degrees\n", "a=3 #Acceleration of 12kg block in m/s^2\n", "\n", "#Calculations\n", "import math\n", "T=m[0]*(9.8+a)\n", "u=(m[1]*(9.8*math.sin(q*3.14/180.0)-a)-T)/(m[1]*9.8*math.cos(q*3.14/180.0))\n", "\n", "#Output\n", "print\"Tension in the string is \",T,\"N\" \n", "print\"The coefficient of kinetic friction is \",round(u,3)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Tension in the string is 38.4 N\n", "The coefficient of kinetic friction is 0.207\n" ] } ], "prompt_number": 54 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.e.1 Page no 9" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "w=50 #Weight in N\n", "a=(40,50) #Angles made by two cables in degrees\n", "\n", "#Calculations\n", "#Solving two equations obtained from fig. 1.10 on page no.10\n", "#-T1cos40+T2cos50=0\n", "#T1sin40+T2sin50=50\n", "import math\n", "A = array([[math.cos(a[1]*3.14/180.0),-math.cos(a[0]*3.14/180.0)], \n", " [math.sin(a[0]*3.14/180.0),math.sin(a[1]*3.14/180.0)]])\n", "b = array([0,50])\n", "X = solve(A, b)\n", "T2=X[1]\n", "print \"T2=\",round(T2,1),\"N\"\n", "T1=(math.cos(a[1]*3.14/180.0)/math.cos(a[0]*3.14/180.0))*T2\n", "print \"T1\",round(T1,1),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "T2= 32.7 N\n", "T1 27.4 N\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.e.5 Page no 13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "m=100.0 #Mass of block in kg\n", "F=500 #Force in N\n", "q=30 #Angle made with the horizontal in degrees\n", "u=0.4 #Coefficient of sliding friction\n", "\n", "#Calculations\n", "R=m*9.8\n", "f=(u*R)\n", "a=(F*math.cos(q*3.14/180.0)-f)/m\n", "\n", "#Output\n", "print\"The acceleration of the block is \",round(a,2),\"m/s**2\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The acceleration of the block is 0.41 m/s**2\n" ] } ], "prompt_number": 56 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.e.6 Page no 14" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "m=(20.0,80.0) #Masses of blocks in kg\n", "F=1000 #Force with which 20kg block is pulled in N\n", "\n", "#Calculations\n", "a=F/(m[0]+m[1])\n", "T=F-(m[0]*a)\n", "\n", "#Output\n", "print\"The acceleration produced is \",a,\"m/s^2\" \n", "print\"The tension in the string connecting the blocks is \",T,\"N\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The acceleration produced is 10.0 m/s^2\n", "The tension in the string connecting the blocks is 800.0 N\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.e.8 Page no 15" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "w=588 #Weight of the person in N\n", "a=3 #Acceleration in m/s^2\n", "b=180\n", "\n", "#Calculations\n", "m=(w/9.8)\n", "P=(w+(m*a))\n", "p=w-b\n", "\n", "#Output\n", "print\"Weight of the person when the elevator is accelerated upwards is \",P,\"N\"\n", "print\"Weight of the person when the elevator is accelerated upwards is \",p,\"N\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Weight of the person when the elevator is accelerated upwards is 768.0 N\n", "Weight of the person when the elevator is accelerated upwards is 408 N\n" ] } ], "prompt_number": 1 } ], "metadata": {} } ] }