{ "metadata": { "name": "", "signature": "sha256:9774a5727e94c3e9d7f6de1d46ee1710f0f45bee5b4624a7cce654515da8e820" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 8: Mechanical Design of Overhead Lines" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.1, Page Number: 171" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration:\n", "k = 0.11 #ratio of shunt-capatance to self capacitance\n", "V = 33/math.sqrt(3) #Voltage across string(kV)\n", "n = 3 #no. of insulators\n", "\n", "#Calculation:\n", "\n", "# At Junction A\n", "# I2 = I1 + i1\n", "# or V2*w*C = V1*w*C + V1*K*\u03c9*C\n", "# or V2 = V1*(1 + K) = V1*(1 + 0\u00b711)\n", "# or V2 = 1\u00b711*V1 ...(i)\n", "\n", "# At Junction B\n", "# I3 = I2 + i2\n", "# or V3*w*C = V2*w*C + (V1 + V2) K*w*C\n", "# or V3 = V2 + (V1 + V2)*K\n", "# = 1\u00b711*V1 + (V1 + 1\u00b711*V1)*0\u00b711\n", "# V3 = 1\u00b7342 V1\n", "# Voltage across whole unit,\n", "# V = V1+V2+V3\n", "# or V = V1+1.11*V1+1.342*V1\n", "\n", "V1 = V/3.452 #Voltage across top unit(V)\n", "V2 = 1.11*V1 #Voltage across top unit(V)\n", "V3 = 1.342*V1 #Voltage across top unit(V)\n", "\n", "e = V/(n*V3)*100 #string efficiency\n", "\n", "#Result:\n", "print \"(i)\\tVoltage across top unit,V1 is\",round(V1,2),\"kV\"\n", "print \" \\tVoltage across middle unit, V2 is\",round(V2,2),\"kV\"\n", "print \" \\tVoltage across bottom unit, V3 is\",round(V3,1),\"kV\"\n", "print \"(ii)\\tThe string efficiency is \",round(e,1),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i)\tVoltage across top unit,V1 is 5.52 kV\n", " \tVoltage across middle unit, V2 is 6.13 kV\n", " \tVoltage across bottom unit, V3 is 7.4 kV\n", "(ii)\tThe string efficiency is 85.7 %\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.2, Page Number: 172" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "import math\n", "\n", "#Variable declaration:\n", "V1 = 8 #voltage across top unit(kV)\n", "V2 = 11 #voltage across middle unit(kV)\n", "n = 3 #no. of insulators\n", "#Calculation:\n", "\n", "#(i)\n", "# Let K be the ratio of capacitance between pin and the earth\n", "# to self capacitance. \n", "# Let C farad be the self capacitance of each unit, \n", "# then, capacitance between pin and earth = K*C.\n", "# Applying Kirchoff\u2019s current law to Junction A,\n", "# I2 = I1 + i1\n", "# or V2*w*C = V1*w*C + V1*K*w*C\n", "# or V2 = V1 (1 + K)\n", "\n", "k = (V2-V1)/V1\n", "\n", "#(ii)\n", "# Applying Kirchoff\u2019s current law to Junction B,\n", "# I3 = I2 + i2\n", "# or V3*w*C = V2*w*C + (V1 + V2)*K*w*C\n", "# or V3 = V2 + (V1 + V2)*K = 11 + (8 + 11) * 0\u00b7375\n", "V3 = 18.12 #kV\n", "V = V1 + V2+ V3 #kV\n", "Vl = math.sqrt(3)*V #line voltage(kV)\n", "\n", "#(iii)\n", "e = V/(n*V3)*100 #stirng efficiency(%)\n", "\n", "\n", "#Result:\n", "print \"(i) Ratio of capacitance b/w pin & earth is\",k\n", "print \"(ii) The line voltage is\",round(Vl,2),\"kV\"\n", "print \"(iii)String efficiency is\",round(e,2),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) Ratio of capacitance b/w pin & earth is 0.375\n", "(ii) The line voltage is 64.29 kV\n", "(iii)String efficiency is 68.29 %\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.3, Page Number: 172" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "#Variable declaration:\n", "n = 3 #no. of insulators\n", "V3 = 17.5 #voltage across the line unit(V)\n", "\n", "# At Junction A\n", "# I2 = I1 + i1\n", "# V2 \u03c9 C = V1 \u03c9 C + V1 K \u03c9 C\n", "# or V2 = V1 (1 + K) = V1 (1 + 0.125)\n", "# \u2234 V2 = 1\u00b7125 V1\n", "\n", "# At Junction B\n", "# I3 = I2 + i2\n", "# or V3 \u03c9 C = V2 \u03c9 C + (V1 + V2) K \u03c9 C\n", "# or V3 = V2 + (V1 + V2) K\n", "# = 1\u00b7125 V1 + (V1 + 1\u00b7125 V1) \u00d7 0.125\n", "# \u2234 V3 = 1\u00b739 V1\n", "\n", "V1 = V3/1.39 #Voltage across top unit(kV)\n", "V2 = 1.125*V1 #Voltage across middle unit(kV)\n", "\n", "V = V1+V2+V3 #voltage across line unit(kV)\n", "e = V/(n*V3)*100 #string efficiency(%)\n", "\n", "\n", "#Result:\n", "print \"Line to neutral voltage is\",round(V,2),\"kV\"\n", "print \"String efficiency is\",round(e,2),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Line to neutral voltage is 44.25 kV\n", "String efficiency is 84.29 %\n" ] } ], "prompt_number": 36 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.4, Page Number: 173" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from pylab import *\n", "from sympy import *\n", "\n", "#Variable declaration:\n", "V3 = 13.1 #voltage across the lowest insulator(kV)\n", "V2 = 11 #voltage across the middle insulator(kV)\n", "K = symbols('K')\n", "# Applying Kirchhoff\u2019s current law to Junctions A and B, we can easily\n", "# derive the following equations:\n", "\n", "# V2 = V1 (1 + K)\n", "# or V1 = V2/(1 + K) ...(i)\n", "# and V3 = V2 + (V1 + V2)*K ...(ii)\n", "# Putting the value of V1 = V2/(1 + K) in eq. (ii), we get,\n", "\n", "#V3 = V2 + (V2/(1+k)+ V2)*K\n", "K1 = solve(V3-(V2 + (V2/(1+K)+ V2)*K),K)[1]\n", "\n", "V1 = V2/(1+K1)\n", "V = V1+V2+V3 #kV\n", "\n", "#Result:\n", "print \"The voltage b/w the bus bars is\",round(float(math.sqrt(3)*V)),\"kV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The voltage b/w the bus bars is 59.0 kV\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.5, Page Number: 173" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "\n", "#Variable declaration:\n", "n = 3 #no.of insulators\n", "k = 1/8 #ratio of self-capacitance to shunt capacitance\n", "V3 = 15 #safe working voltage of each insulator(kV)\n", "\n", "# Applying Kirchhoff\u2019s current law to junction A, we get,\n", "# V2 = V1*(1 + K)\n", "# or V1 = V2/(1 + K) = V2/(1 + 0\u00b7125) = 0\u00b789*V2\n", "\n", "# Applying Kirchhoff\u2019s current law to Junction B, we get,\n", "# V3 = V2 + (V1 + V2)*K = V2 + (0.89*V2 + V2) * 0.125\n", "# V3 = 1.236*V2 \n", "V2 = V3/1.236 #kV\n", "V1 = 0.89*V2 #kV\n", "V = V1+V2+V3 #voltage across the string(kV)\n", "e = V/(n*V3) *100 #string efficiency(%)\n", "\n", "#Result:\n", "print \"Voltage across the string is\",round(V,3),\"kV\"\n", "print \"The string efficiency is\",round(e,2),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Voltage across the string is 37.937 kV\n", "The string efficiency is 84.3 %\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.6, Page Number: 174" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "#Variable declaration:\n", "n = 4 #no. of unit\n", "\n", "\n", "#Calculation:\n", "# Suppose Xc = 1 \u03a9. Given, the ratio of self-capacitance to shunt\n", "# capacitance is 10, so, Xc1 = 10 \u03a9 .\n", "# Suppose that potential V across the string is such that 1 A current \n", "# flows in the top insulator.\n", "#Thus,\n", "V1 = 1*1 #Voltage across top unit(V)\n", "V2 = 1*1.1 #Voltage across 2nd unit(V)\n", "V3 = 1*1.31 #Voltage across 3rd unit(V)\n", "V4 = 1*1.65 #Voltage across 4th unit(V)\n", "V = V1+V2+V3+V4 #Voltage obtained across the string(V)\n", "\n", "#The voltage across each unit expressed as a % of V becomes:\n", "f1 = V1/V*100\n", "f2 = V2/V*100\n", "f3 = V3/V*100\n", "f4 = V4/V*100\n", "\n", "e = V/(n*V4)*100 #string efficiency(%)\n", "\n", "#Result:\n", "print \"(i) The voltage distributation from top unit is \"\n", "print \"\\t\",round(f1,2),\"%\\t\",round(f2,2),\"%\\t\",round(f3,1),\"%\\t\",round(f4,1),\"%\"\n", "print \"\\n(ii)String efficiency is\",round(e,1),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) The voltage distributation from top unit is \n", "\t19.76 %\t21.74 %\t25.9 %\t32.6 %\n", "\n", "(ii)String efficiency is 76.7 %\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.7, Page Number: 175" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "import math\n", "\n", "#Variable declaration:\n", "n = 5 #no.os insulators\n", "Vl = 100 #line voltage(kV)\n", "\n", "#Suppose Xc = 1 \u03a9.\n", "#Ratio of self capacitance to shunt capacitance is 10, so, Xc1 = 10 \u03a9. \n", "#Let V be the voltage s.t 1A current flows in top insulator.\n", "\n", "#Calculation:\n", "#calculation for fraction of voltage drop:\n", "v1 = 1*1 #Voltage across top unit(V)\n", "v2 = 1*1.1 #Voltage across 2nd unit(V)\n", "v3 = 1*1.31 #Voltage across 3rd unit(V)\n", "v4 = 1*1.65 #Voltage across 4th unit(V)\n", "v5 = 1*2.16 #voltage across 5th unit(V)\n", "v = v1+v2+v3+v4+v5 #total voltage(V)\n", "V = 100/math.sqrt(3) #string voltage(V)\n", "V1 = round(v1/v*V,3) #kV\n", "V2 = v2/v*V #kV\n", "V3 = v3/v*V #kV\n", "V4 = v4/v*V #kV\n", "V5 = v5/v*V #kV\n", "e = V/(n*V5)*100 #string efficiency(%)\n", "\n", "\n", "#Result:\n", "print \"(i)The distribution of voltage on the insulator discs are\"\n", "print \"V1 = \",round(V1,3),\"kV \",\"\\tV2 =\",round(V2,2),\"kV \\n\",\n", "print \"V3 =\",round(V3,1),\"kV\",\"\\t\\tV4 =\",round(V4,2),\"kV\",\n", "print \"\\nV5 =\",round(V5,1),\"kV\"\n", "print \"\\n(ii)The string efficiency\",round(e,1),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i)The distribution of voltage on the insulator discs are\n", "V1 = 7.997 kV \tV2 = 8.8 kV \n", "V3 = 10.5 kV \t\tV4 = 13.19 kV \n", "V5 = 17.3 kV\n", "\n", "(ii)The string efficiency 66.9 %\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.8, Page Number: 176" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "import math\n", "from sympy import *\n", "\n", "#Variable declaration:\n", "n = 4 #no.os insulators\n", "V2 = 13.2 #Voltage across 2th unit\n", "V3 = 18 #Voltage across 3th unit\n", "#Suppose K is the ratio of shunt-capacitance to self-capacitance\n", "k = symbols('k')\n", "\n", "# Referring to Fig.(ii), we have,\n", "# V2/V1 = ( 1 + K)/1\n", "# V2 = V1 (1 + K)\n", "# V3/V1 = (1 + 3K + K2)/1\n", "# V3 = V1 (1 + 3K + K2)\n", "# putting values of V2 & V3\n", "\n", "k1 = solve(13.2*k**2+21.6*k-4.8,k)[1]\n", "V1 = V2/(1+k1)\n", "V4 = V1*(1 + k1**33 + 5*k1**2 + 6*k1)\n", "V = V1+V2+V3+V4 #Voltage between line and earth(kV)\n", "Vl = math.sqrt(3)*V #Voltage between conductors(kV)\n", "\n", "#Result:\n", "print \"Voltage between conductors is\",round(float(Vl)),\"kV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Voltage between conductors is 119.0 kV\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.9, Page Number: 177" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "\n", "#Variable declaration:\n", "k = 5 #ratio of self-capacitance(C) to pin-earth capacitance(C1)\n", "V = 1+1.2+1.64+2.408 #voltage obtained across the string(V)\n", "\n", "\n", "#Calculation:\n", "#(i) The voltage across each unit expressed as a % of V\n", "v1 = 1/V*100\n", "v2 = 1.2/V*100\n", "v3 = 1.6/V*100\n", "v4 = 2.408/V*100\n", "\n", "#(ii)String efficiency\n", "e = V/(4*2.408)*100\n", "\n", "#Result:\n", "print \"(i) The voltage across each unit expressed as a % of V are:\"\n", "print \"\\tTop Unit: \",round(v1),\"%\"\n", "print \"\\tSecond from top: \",round(v2,1),\"%\"\n", "print \"\\tThird from top: \",round(v3),\"%\"\n", "print \"\\tFourth from top: \",round(v4,1),\"%\"\n", "print \"(ii)String efficiency is\",round(e,2),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) The voltage across each unit expressed as a % of V are:\n", "\tTop Unit: 16.0 %\n", "\tSecond from top: 19.2 %\n", "\tThird from top: 26.0 %\n", "\tFourth from top: 38.5 %\n", "(ii)String efficiency is 64.87 %\n" ] } ], "prompt_number": 54 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.10, Page Number: 177" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from sympy import *\n", "\n", "#Variable declaration:\n", "V1,V2,V3,V= symbols('V1 V2 V3 V') #volts (shown in fig(ii))\n", "\n", "\n", "#Calculation:\n", "\n", "#We know that in an actual string of insulators, 3 capacitances\n", "#exist i.e, self-capacitance of each insulator, shunt capacitance \n", "#and capacitance of each unit to line.\n", "#But, capacitance of each unit to line is very small and\n", "#can be neglected.\n", "\n", "#At Junction A\n", "# I2 + i1 = I1 + i1\n", "#or V2*w*C + (V2 + V3)*0\u00b71*w*C = V1*\u03c9*C + 0\u00b715*C*V1*w\n", "#or 0\u00b71*V3 = 1\u00b715*V1 \u2212 1\u00b71*V2\n", "# V3 = 11\u00b75*V1 \u2212 11*V2 ...(i)\n", "\n", "#At Junction B\n", "# I3 + i\u20322 = I2 + i2\n", "#or V3*w*C + V3*0\u00b71*C*w = V2*w*C + (V1 + V2)*w*0\u00b715 C\n", "#or 1\u00b71*V3 = 1\u00b715*V2 + 0\u00b715*V1 ...(ii)\n", "#Putting the value of V3 from exp (i). into exp. (ii), we get,\n", "# 1\u00b71*(11\u00b75*V1 \u2212 11*V2) = 1\u00b715*V2 + 0\u00b715*V1\n", "#or 13\u00b725*V2 = 12\u00b75*V1\n", "# V2 = 12.5/13.25*V1\n", "# V3 = 11.5*V1-11*V2\n", "# V = V1+V2+V3\n", "# V = 40.55/13.25*V1\n", "V1 = 13.25/40.55*V\n", "V2 = 12.5/13.25*V1\n", "V3 = 14.8/13.25*V1\n", "\n", "#The voltage across each unit expressed as a % of V becomes:\n", "p1 = V1/V*100\n", "p2 = V2/V*100\n", "p3 = V3/V*100\n", "\n", "\n", "#Results:\n", "print \"The voltage across each unit expressed as a % of V becomes:\"\n", "print \"for top unit, v1 =\",round(p1,1),\"%\",\n", "print \"\\nfor middle unit, v2 =\",round(p2,1),\"%\"\n", "print \"for 3rd unit, v3 =\",round(p3,1),\"%\"\n", "\n", "print \"String efficiency is\",round(V/(3*V3)*100,1),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The voltage across each unit expressed as a % of V becomes:\n", "for top unit, v1 = 32.7 % \n", "for middle unit, v2 = 30.8 %\n", "for 3rd unit, v3 = 36.5 %\n", "String efficiency is 91.3 %\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.11, Page Number: 179" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from sympy import *\n", "\n", "#Variable Declaration:\n", "V1,V2,V3,V= symbols('V1 V2 V3 V') #volts (shown in fig(i))\n", "\n", "#Calculation:\n", "\n", "#At Junction A\n", "# I2 + i\u20321 = I1 + i1\n", "#or V2*w*C + (V2+V3)*w*0\u00b71*C = V1*w*C+V1*0\u00b72*C*\u03c9 \n", "# V3 = 12 V1 \u2212 11 V2 # ...(i)\n", "\n", "#At Junction B\n", "# I3 + i\u20322 = I2 + i2\n", "#or V3 \u03c9 C + V3 \u00d7 0\u00b73 C \u00d7 \u03c9 =V2 \u03c9 C + (V1 + V2) \u03c9 \u00d7 0\u00b72 C\n", "#or 1\u00b73 V3 = 1\u00b72 V2 + 0\u00b72 V1 ...(ii)\n", "#Substituting the value of V3 from exp. (i) into exp. (ii), we get,\n", "# 1\u00b73*(12*V1 \u2212 11*V2) = 1\u00b72*V2 + 0\u00b72*V1\n", "#or 15\u00b75*V2 = 15\u00b74*V1\n", "V2 = 15.4*V1/15.5 #...(iii)\n", "V2 = 0.993*V1\n", "\n", "#Substituting the value of V2 from exp. (iii) into exp. (i), we get,\n", "V3 = 12*V1 - 11*0.993*V1\n", "V3 = 1.077*V1\n", "\n", "#Voltage between conductor and earth (i.e. phase voltage)\n", "V = V1+V2+V3\n", "n = V/(3*V3)*100\n", "\n", "#Result:\n", "print \"String efficiency is\",round(n),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "String efficiency is 95.0 %\n" ] } ], "prompt_number": 55 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.13, Page Number: 184" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from pylab import *\n", "import math\n", "\n", "#Variable declaration:\n", "r = 1 #conductor radius(cm)\n", "d = 100 #conductor spacing(cm)\n", "go = 30/math.sqrt(2) #Dielectric strength of air,(rms)(kV/cm)\n", "dl = 0.952 #air density factor\n", "mo = 0.9 #irregularity factor\n", "\n", "#Calculation:\n", "Vc = mo*go*dl*r*math.log(d/r) #kV/phase\n", "Vl = Vc*3**0.5 #kV/line\n", "\n", "#Result:\n", "print \"The disruptive critical voltage for the line is\",round(float(Vl),2),\"kV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The disruptive critical voltage for the line is 144.97 kV\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.14, Page Number: 184" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from pylab import *\n", "\n", "#Variable declaration:\n", "r = 0.978 #conductor radius(cm)\n", "go = round(30/2**0.5,1) #Dielectric strength of air,rms(kV/cm)\n", "Vc = 210/3**0.5 #Disruptive voltage/phase(kV)\n", "mo = 1 #irregularity factor(for smooth conductor)\n", "dl = 1 #air density factor(at std pressure and temperature)\n", "\n", "#Calculation:\n", "d = r*10**(Vc/(2.3*mo*go*dl*r))\n", "\n", "#Result:\n", "print \"The spacing between the conductors is\",round(d),\"cm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The spacing between the conductors is 341.0 cm\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.15, Page Number: 185" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from pylab import *\n", "import math\n", "\n", "#Variable declaration:\n", "r = 1.5 #conductor radius(cm)\n", "t = 40 #temperature(deg C)\n", "b = 76 #atmospheric pressure(cm)\n", "mo = 0.85 #irregularity factor\n", "f = 50 #Hz\n", "d = 200 #conductor spacing(cm)\n", "go = 30/2**0.5 #Dielectric strength of air,rms(kV/cm)\n", "Vl = 220 #line voltage(kV)\n", "\n", "#Calculation:\n", "dl = round(3.92*b/(273+t),3)\n", "\n", "Vc = round(mo*go*dl*r*round(math.log(d/r),2),1) #Critical disruptive voltage per phase(kV)\n", "V = round(Vl/3**0.5) #kV/phase\n", "P = 242.2/dl*(f+25)*(r/d)**0.5*(V-Vc)**2*10**-5 #kW/km/phase\n", "Pl = 3*P #corona loss(kW)\n", "\n", "#Result:\n", "print \"Total corona loss per km for three phases is\",round(Pl,5),\"kW\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Total corona loss per km for three phases is 0.05998 kW\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.16, Page Number: 185" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from sympy import *\n", "\n", "#Variable declaration:\n", "P1 = 53 #corona loss(kW)\n", "V1 = 106 #operating voltage(kV)\n", "P2 = 98 #corona loss(kW)\n", "V2 = 110.9 #operating voltage(kV)\n", "V3 = 113 #opeating voltage(kV)\n", "\n", "\n", "#Calculation:\n", "#As f, \u03b4, r and d are the same for the two cases,\n", "#therfore, P \u221d (V \u2212 Vc)**2\n", "k,Vc = symbols('k Vc') #k = proportionality constant\n", " #Vc = critical disuptive voltage(kV)\n", "#for 1st case,\n", "# V1/3**0.5 = k*(64 - Vc)**2\n", "# V2/3**0.5 = k*(61\u00b72 - Vc)**2\n", "# Dividing above equations & solving,\n", "Vc1 = round(solve(((64-Vc)/(61.2-Vc))-math.sqrt(98/53),Vc)[0],2)\n", "Vc1 = 54\n", "#Let W kilowatt be the power loss at 113 kV.\n", "#W = k*(113/3**0.5-Vc1)**2\n", "W = P1*((65.2-Vc1)/(61.2-Vc1))**2\n", "\n", "\n", "\n", "#Result:\n", "print \"The disruptive critical voltage at 113 kV is\",Vc1,\"kV\"\n", "print \"The corona loss at 113 kV is\",round(W),\"kW\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The disruptive critical voltage at 113 kV is 54 kV\n", "The corona loss at 113 kV is 128.0 kW\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.17, Page Number: 190" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "#Variable declaration:\n", "w = 680 #weigth of conductor(kg/km)\n", "l = 260 #length ofspan(m)\n", "u = 3100 #ultimate strength(kg)\n", "sf = 2 #safety factor\n", "h = 10 #ground clearance(m)\n", "\n", "\n", "#Calculation:\n", "T = u/sf #working tension(kg)\n", "s = w*l**2/(8*T*1000) #span(m)\n", "H = h+s\n", "\n", "\n", "#Result:\n", "print \"Conductor should be supported at a height of \",round(H,1),\"m\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Conductor should be supported at a height of 13.7 m\n" ] } ], "prompt_number": 56 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.18, Page Number: 190" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "import math\n", "\n", "#Variable declaration:\n", "l = 150 #length ofspan(m)\n", "a = 2 #conductor cross-section(cm**2)\n", "go = 9.9 #specific gravity of conductor(gm/cm**3)\n", "ww = 1.5 #Wind force/m length of conductor(kg)\n", "T = 2000 #working tension(kg)\n", "\n", "#Calculation:\n", "w = go*a*1/10 #Wt. of conductor/m length(kg)\n", "wt = round((w**2+ww**2)**0.5,2) #Total wt of 1m length of conductor(kg)\n", "s = wt*l**2/(8*T) #sag(m)\n", "#This is the value of slant sag in a direction making \n", "#an angle theta with the vertical\n", "\n", "theta = math.atan(ww/w)\n", "Vs = s*math.cos(theta)\n", "\n", "#Result:\n", "print \"The sag is\",round(s,2),\"m\"\n", "print \"The vertical sag is\",round(Vs,2),\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The sag is 3.49 m\n", "The vertical sag is 2.78 m\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.19, Page Number: 191" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "import math\n", "\n", "#Variable declaration:\n", "l = 200 #span length(m)\n", "w = 1170/1000 #weigth of conductor(kg)\n", "u = 4218 #Ultimate Strength(kg/cm**2)\n", "sf = 5 #safety factor\n", "a = 1.29 #cross-section of conductor(cm**2)\n", "P = 122 #wind pressure(kg/m**2)\n", "\n", "#Calculation:\n", "T = u/sf*a #working tension(kg)\n", "d = round((4*a/math.pi)**0.5,2) #diameter of conductor(cm)\n", "ww = P*d*10**-2 #Wind force/m length,\n", "wt = (ww**2+w**2)**0.5 #total wt of conductor per metre length\n", "S = wt*l**2/(8*T)\n", "theta = math.atan(ww/w)\n", "VS = S*math.cos(theta)\n", "\n", "#Result:\n", "print \"The sag is\",round(S,2),\"m\"\n", "print \"The vertical sag is\",round(VS,2),\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The sag is 8.97 m\n", "The vertical sag is 5.38 m\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.20, Page Number: 191" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "#Variable declaration:\n", "l = 275 #span length(m)\n", "w = 0.865 #weigth of conductor/m(kg)\n", "d = 1.96 #conductor diameter(cm)\n", "t = 1.27 #ice coating thickness(cm)\n", "u = 8060 #Ultimate Strength(kg)\n", "sf = 2 #safety factor\n", "a = 1.29 #cross-section of conductor(cm**2)\n", "wo = 0.91 #Weight of 1 c.c. of ice(gm)\n", "P = 3.9 #wind pressure(gm/cm**2)\n", "\n", "#Calculation:\n", "T = u/sf #working tension(kg)\n", "v = 3.14*t*(d+t)*100 #Volume of ice per metre(cm**3)\n", "wi = v*wo/1000 #kg\n", "ww = P*(d+2*t)*100/1000 #kg\n", "wt = ((w+wi)**2+ww**2)**0.5 #total weight(kg)\n", "S = wt*l**2/(8*T) #sag(m)\n", "\n", "\n", "#Result:\n", "print \"Sag is\",round(S,1),\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Sag is 6.3 m\n" ] } ], "prompt_number": 60 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.21, Page Number: 192" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from sympy import *\n", "\n", "#Variable declaration:\n", "Sv = 2.35 #vertical sag(m)\n", "P = 1.5 #wind pressure(kg/m)\n", "B = 2540 #breaking stress(kg/cm**2)\n", "w = 1.125 #wt of conductor(kg/m)\n", "l = 214 #length of conductor(m)\n", "a = 3.225 #conductor cross-section\n", "\n", "\n", "#Calculation:\n", "f = symbols('f') #safety factor\n", "wt = (w**2+P**2)**0.5 #Total wt. of one m length of conductor\n", "T = B*a/f #working stress(kg)\n", "cos_theta = w/wt\n", "S = Sv/cos_theta #slant sag\n", "T1 = wt*l**2/(8*S) \n", "f1 = solve(T-T1,f)[0] #safety factor\n", "\n", "\n", "#Result:\n", "print \"Safety factor is\",round(f1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Safety factor is 3.0\n" ] } ], "prompt_number": 61 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.22, Page Number: 192" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "#Variable declaration:\n", "l = 150 #span length(m)\n", "u = 5000 #ultimate strength(kg/cm**2)\n", "go = 8.9 #specific gravity of material(gm/cc)\n", "P = 1.5 #wind pressure(kg/m)\n", "sf = 5 #safety factor\n", "a = 2 #cross-section of conductor(cm**2)\n", "h = 7 #ground clearance(m)\n", "\n", "#Calculation:\n", "w = a*go*100/1000 #weight of conductor per m(kg)\n", "T = u*a/sf #working stress per m(kg)\n", "wt = (w**2+P**2)**0.5 #Total wt of 1 m length of conductor(kg)\n", "S = wt*l**2/(8*T) #slant sag(m)\n", "Sv = S*w/wt #conductor vertical sag(m)\n", "H = h+Sv #m\n", "\n", "#Result:\n", "print \"Conductor should be supported at a height of\",round(H,1),\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Conductor should be supported at a height of 9.5 m\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.23, Page Number: 193" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from sympy import *\n", "\n", "#Variable declaration:\n", "l = 500 #distance b/w the two towers(m)\n", "T = 1600 #tension in the conductor(kg)\n", "w = 1.5 #weight of the conductor(kg/m)\n", "h1 = 30 #height of 1st tower(m)\n", "h2 = 90 #height of 2nd tower(m)\n", "\n", "\n", "\n", "#Calculation:\n", "h = h2-h1 #difference in levels(m)\n", "x1,x2 = symbols('x1 x2')\n", "x2 = l-x1\n", "S1 = w*x1**2/(2*T) #m\n", "S2 = w*x2**2/(2*T) #m\n", "x11 = solve(S2-S1-h,x1)[0]\n", "S1 = w*x11**2/(2*T) #m\n", "#Let the mid-point P be at a distance x from the lowest point O\n", "x = l/2-x11\n", "Smid = w*x**2/(2*T) #m\n", "\n", "\n", "#Result:\n", "print \"The min. clearance of the conductor and water is \",round(h1-S1),\"m\"\n", "print \"The clearance mid-way b/w the supports is\",round(Smid+h1-S1,2),\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The min. clearance of the conductor and water is 23.0 m\n", "The clearance mid-way b/w the supports is 30.7 m\n" ] } ], "prompt_number": 62 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.24, Page Number: 194" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from sympy import *\n", "\n", "#Variable declaration:\n", "l = 600 #distance b/w the two towers(m)\n", "f = 5 #safety factor\n", "U = 8000 #kg/cm**2\n", "a = 2.2 #area of cross-section(cm**2)\n", "w = 1.925 #weight of the conductor(kg/m)\n", "h = 15 #difference in towers levels(m)\n", "wi = 1 #ice weight(kg)\n", "\n", "#Calculation:\n", "T = U*a/f #tension in the conductor(kg)\n", "wt = wi+w #total weight of conductor(kg)\n", "x1,x2 = symbols('x1 x2')\n", "x2 = l-x1\n", "S1 = wt*x1**2/(2*T) #m\n", "S2 = wt*x2**2/(2*T) #m\n", "x11 = solve(S2-S1-h,x1)[0]\n", "x22 = l-x11\n", "S22 = wt*x22**2/(2*T) #m\n", "\n", "\n", "#Result:\n", "print \"The sag from the taller of the two supports is\",round(S22,2),\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The sag from the taller of the two supports is 45.27 m\n" ] } ], "prompt_number": 63 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.25, Page Number: 195" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from sympy import *\n", "\n", "#Variable declaration:\n", "l = 400 #distance b/w the two towers(m)\n", "T = 2000 #tension in the conductor(kg)\n", "w = 1 #weight of the conductor(kg/m)\n", "h1 = 40 #height of 1st tower(m)\n", "h2 = 90 #height of 2nd tower(m)\n", "\n", "#Calculation:\n", "h = h2-h1 #difference in levels(m)\n", "x1,x2 = symbols('x1 x2')\n", "x2 = l-x1\n", "S1 = w*x1**2/(2*T) #m\n", "S2 = w*x2**2/(2*T) #m\n", "x11 = solve(S2-S1-h,x1)[0]\n", "S1 = w*x11**2/(2*T) #m\n", "x_mid = 50+400/2 #Horizontal distance of mid-point P from lowest point O\n", "Sp = w*x_mid**2/(2*T) #SAg at P(m)\n", "S2 = w*(l-x11)**2/(2*T) #m\n", "hc = h2-S2+Sp #Clearance of mid-point P above water level(m)\n", "\n", "\n", "\n", "#Result:\n", "print \"Clearance of mid-point P above water level is\",round(hc),\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Clearance of mid-point P above water level is 55.0 m\n" ] } ], "prompt_number": 127 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.26, Page Number: 195" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from pylab import *\n", "from sympy import *\n", "import math\n", "\n", "#Variable declaration:\n", "T = 1500 #tension in the conductor(kg)\n", "w = 1 #weight of the conductor(kg/m)\n", "DE = 300 #distance b/w tower's top(m)\n", "H = 22 #height of each tower(m)\n", "\n", "#Calculation:\n", "# Suppose, the conductors are supported between towers AD and BE over\n", "# a hillside having gradient of 1 : 20.\n", "# Let the lowest point on the conductor is O and\n", "# sin(theta) = 1/20.\n", "# since, the lowest conductor is fixed 2m below the top of each tower.\n", "theta = math.asin(1/20)\n", "BE = H-2 #Effective height of each tower(m)\n", "EC = DE*1/20\n", "x1,x2 = symbols('x1 x2')\n", "DC = (DE**2-EC**2)**0.5 #Horizontal distance b/w two towers(m)\n", "x2 = DC-x1\n", "S1 = w*x1**2/(2*T) #m\n", "S2 = w*x2**2/(2*T) #m\n", "x11 = solve(S2-S1-EC,x1)[0]\n", "S2 = w*(DC-x11)**2/(2*T) #m\n", "BC = BE+EC\n", "OG = BC-S2-x11*math.tan(theta)\n", "\n", "#Result:\n", "print \"Clearance of the lowest point O from the ground is\",round(OG,2),\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Clearance of the lowest point O from the ground is 14.4 m\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.27, Page Number: 196" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from sympy import *\n", "\n", "\n", "#Variable declaration:\n", "l = 300 #distance b/w tower(m)\n", "S = 10 #span(m)\n", "h = 8 #clearance(m)\n", "\n", "\n", "#Calculation:\n", "#On level ground:\n", "r = 8*S/l**2 #ratio w/T\n", "\n", "\n", "#On sloping ground:\n", "#The conductors are supported between towers AD and BE \n", "#over a sloping ground having a gradient 1 in 15 as shown above.\n", "\n", "DE = 300\n", "sin_theta = 1/15\n", "\n", "h = DE*sin_theta #Vertical distance b/w the two towers(m)\n", "BE = S+h #height of tower(m)\n", "x1,x2,x = symbols('x1 x2 x')\n", "x2 = l-x1\n", "S1 = r*x1**2/2 #m\n", "S2 = r*x2**2/2 #m\n", "x11 = solve(S2-S1-h,x1)[0]\n", "S11 = r*x11**2/(2) #m\n", "x22 = l-x11\n", "S22 = r*x22**2/(2) #m\n", "tan_theta = 1/15\n", "GF = x11*tan_theta\n", "BC = h-S22-GF\n", "#Since O is the origin, the equation of slope of ground is given by :\n", "y = x/15-10.5\n", "#C = Equation of conductor curve \u2212 y\n", "C = r*x**2/2-y\n", "C1 = diff(C,x)\n", "xm = solve(C1,x)[0]\n", "#putting values of xm in above equations,\n", "ym = xm/15-10.5\n", "Cm = C = r*xm**2/2-ym\n", "\n", "\n", "#Result:\n", "print \"Required minimum clearance is\",round(Cm),\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Required minimum clearance is 8.0 m\n" ] } ], "prompt_number": 129 } ], "metadata": {} } ] }