{ "metadata": { "name": "", "signature": "sha256:c36425eab1371d7c77f7bd1775095f254e3df888559e80a11117b968dfc1b5b4" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 3: Principles of Power System" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.1, Page Number: 50" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration:\n", "M = 100 #Maximum demand on power station(MW)\n", "L = 0.40 #annual load factor\n", "\n", "#Calculation:\n", "E = M*L*8760*10**6 #Energy generated in a year(kWh)\n", "\n", "#Results:\n", "print \"Energy generated in a year is (\",E/10**8,\"* 10^5) kWh\" " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Energy generated in a year is ( 3504.0 * 10^5) kWh\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.2, Page Number: 50" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "#Variable declaration:\n", "L = 43 #connected load(MW)\n", "M = 20 #Maximum demand(MW)\n", "E = 61.5*10**6 #Units genearted per annum(kWh)\n", "\n", "#calculation:\n", "DF = M/L #demand factor\n", "LF = E/(M*8760*1000) #load factor\n", "\n", "#Results:\n", "print \"The demand factor is\",round(DF,3)\n", "print \"Load factor is \",round(LF*100,1),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The demand factor is 0.465\n", "Load factor is 35.1 %\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.3, Page Number: 50" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "\n", "#variable declaration:\n", "\n", "#power station delivers 100 MW for 2 hours, \n", "#50 MW for 6 hours and is shut down for the rest\n", "#of each day.\n", "M = 100 #Maximum capacity of station(MW)\n", "\n", "\n", "#Calculation:\n", "E1 = 100*2+50*6 #Energy supplied per day(MWh)\n", "n = 365-45 #No.of working days\n", "LF = E1*320/(M*n*24) #load factor\n", "\n", "print \"Annual load factor is\",round(LF*100,1),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Annual load factor is 20.8 %\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.4, Page Number: 50" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "#Variable declaration:\n", "M = 25 #Maximum demand(MW)\n", "LF = 0.60 #Load factor\n", "PCF = 0.50 #plant capacity factor\n", "PUF = 0.72 #plant use factor\n", "\n", "\n", "#Calculations:\n", "L = LF*M #Average load(MW)\n", "PC = L/PCF #Plant gapacity(MW)\n", "R = PC-M #Reserve capacity(MW)\n", "E = L*24 #daily energy produced(MWh)\n", "ME = E/PUF #Maximum energy produced(MWh/day)\n", "\n", "#Results:\n", "print \"Reserve capacity is \",R,\"MW\"\n", "print \"Daily energy produced is\",E,\"MWh\"\n", "print \"Maximum energy that could be produced dauly is \",ME,\"MWh/day\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Reserve capacity is 5.0 MW\n", "Daily energy produced is 360.0 MWh\n", "Maximum energy that could be produced dauly is 500.0 MWh/day\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.5, Page Number: 51" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "#Variable declaration:\n", "M = 2500 #Maximum demand(kW)\n", "E = 45*10**5 #kWh/year\n", "\n", "#Calculation:\n", "D = (1500+750+100+450)/M #diversity factor\n", "LF = E/(M*8760) #Annual load factor\n", "\n", "#Results:\n", "print \"Diversity factor is\",D\n", "print \"Annual load factor is\",round(LF*100,1),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Diversity factor is 1.12\n", "Annual load factor is 20.5 %\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.6, Page Number: 51" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "#Variable declaration:\n", "M = 15000 #Max demand(kW)\n", "LF = 0.50 #Annual load factor\n", "PCF = 0.4 #Plant capacity factor\n", "\n", "\n", "#Calculations:\n", "L = LF*M #load factor(kW)\n", "PC = L/PCF #plant capacity(kW)\n", "R = PC-M #Reserve capacity(kW)\n", "\n", "#Results:\n", "print \"The reserve capacity is \",R,\"kW\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The reserve capacity is 3750.0 kW\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.7, Page Number: 51" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "#Variable declaration:\n", "DFo = 1.35 #Overall diversity factor of system\n", "\n", "\n", "\n", "#Calculations:\n", "M = (1500+2000+10000)/DFo #max demand(kW)\n", "#for domestic load:\n", "CL1 = (1500*1.2)/0.8 #kW\n", "\n", "#for Commercial load:\n", "CL2 = 2000*1.1/0.9 #kW\n", "\n", "#for Industrial load:\n", "CL3 = 10000*1.25/1 #kW\n", "\n", "\n", "#Results:\n", "print \"Maximum demand is \",M,\"kW\"\n", "print \"Connected loads for each type are:\"\n", "print CL1,\"kW \",round(CL2),\"kW \",CL3,\"kW\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum demand is 10000.0 kW\n", "Connected loads for each type are:\n", "2250.0 kW 2444.0 kW 12500.0 kW\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.8, Page Number: 52" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration:\n", "Dt = 1.3 #Diversity among transformers\n", "\n", "\n", "#Calculation:\n", "#for transformer 1:\n", "M1 = (10*0.65)/1.5 #Max demand (kW)\n", "\n", "#for transformer 2:\n", "M2 = (12*0.6)/3.5 #max demand(kW)\n", "\n", "#for transformer:\n", "M3 = (15*0.7)/1.5 #max demand(kW)\n", "\n", "Mf = (M1+M2+M3)/Dt #Maximum demand on feeder(kW)\n", "\n", "#Results:\n", "print \"Maximum load on the feeder is \",round(Mf,1),\"kW\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum load on the feeder is 10.3 kW\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.9, Page Number: 52" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration:\n", "n1 = 1000 #No of houses\n", "CL1 = 1.5 #Avg connected load in each house(kW)\n", "DF1 = 0.4 #Demand factor\n", "DvF = 2.5 #Diversity factor\n", "\n", "n2 = 10 #no. of factories\n", "M2 = 90 #factory overall max demand(kW)\n", "\n", "n3 = 7 #no of tubewells\n", "C3 = 7 #capacity of tubewells(kW)\n", "\n", "DF = 1.2 #Diversity factor among above types of consumers\n", "\n", "#Calculations:\n", "Ms = ((DF1*n1*CL1)/DvF)+M2+n3*C3 #Sum of maximum demand on the station(kW)\n", "M = Ms/DF #maximum demand on the station(kW)\n", "\n", "#Results:\n", "print \"Minimum capacity on the power station is\",round(M),\"kW\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Minimum capacity on the power station is 316.0 kW\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.10, Page Number: 53" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "%pylab inline\n", "\n", "\n", "#Calculations:\n", "M = 70.0 #Max demand, from load curve(MW)\n", "E = 40*6+50*4+60*2+50*4+70*4+40*4 #Units generated per day(MWh)\n", "L = E/24 #Avg load(MW)\n", "LF = L/M #Load factor\n", "\n", "n1 = linspace(0,6,10);\n", "M1 = linspace(40,40,10);\n", "plot(n1,M1);\n", "hold(True);\n", "\n", "n2 = linspace(6,10,10);\n", "M2 = linspace(50,50,10);\n", "plot(n2,M2,'b');\n", "\n", "n3 = linspace(10,12,10);\n", "M3 = linspace(60,60,10);\n", "plot(n3,M3,'b');\n", "\n", "n4 = linspace(12,16,10);\n", "M4 = linspace(50,50,10);\n", "plot(n4,M4,'b');\n", "\n", "n5 = linspace(16,20,10);\n", "M5 = linspace(70,70,10);\n", "plot(n5,M5,'b');\n", "\n", "n6 = linspace(20,24,10);\n", "M6 = linspace(40,40,10);\n", "plot(n6,M6,'b');\n", "\n", "ylim(0,100);\n", "xlim(0,24);\n", "grid(1,linewidth=0.5);\n", "ylabel(\"Load in MW ------>\");\n", "xlabel(\"Time in hours ----->\");\n", "title(\"Daily Load Curve\")\n", "\n", "#Results:\n", "print \"Maximum demand is \",M,\"MW\"\n", "print \"Units generated per day is (\",E/100,\"* 10^5) kWh\"\n", "print \"Average load is\",L*1000,\"kW\"\n", "print \"Load factor is \",round(LF*100,1),\"%\"\n", "print \"The Daily load curve is shown below:\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Populating the interactive namespace from numpy and matplotlib\n", "Maximum demand is " ] }, { "output_type": "stream", "stream": "stdout", "text": [ " 70.0 MW\n", "Units generated per day is ( 12.0 * 10^5) kWh\n", "Average load is 50000.0 kW\n", "Load factor is 71.4 %\n", "The Daily load curve is shown below:\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEZCAYAAABxbJkKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX6B/DPQbFUlkGSRVDHzA0X0JQsN7iIpalpKmqJ\ngMpNy4qszPxZqXVzquuWWderKFwxlWtdJVAsS0zFJQvTRMWFUURAExCVXMDz+4OcxDkzMMAszvfz\nfr14yRlm5jx8muZhvs+cM5IsyzKIiEhIDtYugIiIrIdNgIhIYGwCREQCYxMgIhIYmwARkcDYBIiI\nBMYmQPe9s2fPwtnZGXfe7RwUFITY2FgrV2WYg4MDTp8+be0yiACwCZANUKvVaNSoEVxcXODm5oZe\nvXph2bJlqO4hLC1atMCVK1cgSRIAQJIk3femiIuLQ58+fUy+XV3bunUr+vbtCxcXF3h4eCAoKAjf\nfPONtcsiO8UmQFYnSRKSk5NRUlKCs2fPYsaMGfjoo48wceJEa5dmcRs2bEBYWBgiIyORm5uLCxcu\nYO7cuTVqArIsV7uRkrjYBMimODs7Y8iQIVi/fj3i4+Nx5MgRAEBKSgq6du0KV1dXtGjRAnPmzNHd\nRqvVwsHBAbdv3650Xzdv3kSTJk3w22+/6S67cOECGjdujEuXLplUV3p6Onr06AGVSoXAwEDs2bNH\n97NVq1bBz88PLi4uaN26Nf79739Xuu0nn3yCZs2awdfXFytXrjS4D1mWMW3aNLz77ruYMGECnJ2d\nAQB9+/bV3efs2bMRHh5u8HcPCgrCrFmz0KtXLzRu3BiffPIJevToUWk/CxcuxDPPPAMAuHHjBt54\n4w20bNkSXl5emDJlCq5fv25SNnR/YxMgm9SjRw/4+vpi165dAAAnJyckJCTg8uXLSElJwRdffIFN\nmzYZvY8GDRpg7NixSEhI0F22du1a9O/fH+7u7tWupbCwEE8//TRiYmJQWFiIadOm4emnn0ZhYSEA\nwNPTEykpKSgpKcGqVavw2muvISMjAwCQmpqK+fPnY9u2bcjKysK2bdsM7uf48eM4d+4cRo4cafA6\n1VnmSkhIwIoVK3D16lVMnjwZx48fx8mTJ3U///LLL/H8888DAGbMmIGTJ0/i119/xcmTJ5Gbm4u5\nc+dWKxeyD2wCZLOaNWume6Lt168fOnbsCADo3LkzxowZgx07dlR5H+PHj8fatWt126tXr670l3R1\npKSkoF27dnj++efh4OCAMWPGoH379rolmkGDBqFVq1YAKv5qHzBgAHbu3AkASExMxIQJE+Dn54dG\njRpVegVzrzuvTry9vQ1ep6rlHUmSEBkZiQ4dOsDBwQEuLi545plndBmcOHECx48fx9ChQyHLMpYv\nX44FCxZApVLByckJb7/9NtatW1f9cOi+xyZANis3NxdNmjQBAOzbtw/BwcHw8PCASqXCsmXLqrWk\n89hjj6Fhw4ZIS0vDsWPHcOrUKQwdOtSkOs6fP48WLVpUuqxly5Y4f/48AGDLli3o2bMn3N3d4ebm\nhs2bN+tqy8vLQ/PmzXW3u/d+7nbn1UleXp5J9d3r7v0BwHPPPadrAl9++SWGDx+OBx98EBcvXkRp\naSkeffRRuLm5wc3NDQMHDsTvv/9eq/3T/YVNgGzSTz/9hNzcXPTu3RtAxRPZsGHDcO7cORQXF2Py\n5Ml6MwBDIiIikJCQgNWrV2PUqFFo0KCBSbX4+PjgzJkzlS47c+YMfHx8cOPGDYwYMQLTp0/HhQsX\nUFRUhEGDBun+Yvf29sbZs2d1t7v7+3u1a9cOzZs3x4YNGwxex8nJCaWlpbrt/Px8vevcu2TUv39/\nXLx4Eb/++ivWrVuH5557DgDw0EMPoWHDhsjMzERRURGKiopQXFyMkpISI2mQvWETIJtw50mzpKQE\nycnJGDt2LMLDw3VLQFevXoWbmxsaNGiA/fv348svvzS6Pn73ssm4cePw9ddfY82aNRg/fnyVddy4\ncQPXr1/XfQ0aNAhZWVlYu3YtysrKsH79ehw7dgyDBw/GzZs3cfPmTTz00ENwcHDAli1b8O233+ru\nLywsDHFxcTh69ChKS0uNLgdJkoQFCxbg/fffR1xcHEpKSnD79m3s2rULL7zwAgDA398fP/74I3Jy\ncnD58mXMmzfP6O8OAI6Ojhg1ahTeeOMNFBUVITQ0FEDF8QrR0dGIiYnBxYsXAVS8+rq7fhKATGRl\narVabtiwoezs7Cy7urrKTzzxhPz555/Lt2/f1l1nw4YNcsuWLWVnZ2d58ODB8ssvvyyHh4fLsizL\n2dnZsoODg1xeXi7LsiwHBQXJsbGxlfYREhIit2rVymgdcXFxsiRJlb7u3O+uXbvkRx99VHZ1dZW7\nd+8u7969W3e7pUuXyp6enrJKpZLDw8PlsWPHyu+8847u5xqNRvby8pJ9fHzklStXyg4ODvKpU6cM\n1pGamir36dNHdnJykps2bSoHBwfLmzdv1v38pZdeklUqldymTRt5+fLlVf7usizLO3fulCVJkqdO\nnVrp8uvXr8szZ86UH374YdnFxUXu0KGDvGTJEqM5kX2RZNk8bySeMGECUlJS4OHhgcOHDwOoeJfF\n6NGjcebMGajVaiQmJkKlUgEA5s2bh5UrV6JevXr49NNPMWDAAHOURYKaOHEifHx8+M4XonuYbTko\nKioKqamplS7TaDQIDQ1FVlYWQkJCoNFoAACZmZlYv349MjMzkZqaihdffLHa671EVdFqtfj666+F\nPPiMqCpmawJ9+vSBm5tbpcuSkpIQEREBoGJYt3HjRgDApk2bMHbsWDg6OkKtVuORRx7B/v37zVUa\nCeSdd95B586dMX36dLRs2dLa5RDZHIsOhgsKCuDp6Qmg4gCbgoICABVvwfP19dVdz9fXF7m5uZYs\njezU+++/jytXruDtt9+2dilENslq7w6q6iRfNTkBGBERmaa+JXfm6emJ/Px8eHl5IS8vDx4eHgAq\n3oedk5Oju965c+fg4+Ojd3sfHx/dATpERFQ9/v7+OHjwoOLPLPpKYOjQoYiPjwcAxMfHY9iwYbrL\n161bh5s3byI7OxsnTpxAYGCg3u3Pnz+vOzMiv/76eu+996xegy1+MRfmwkwqvn799VeDz8tmeyUw\nduxY7NixA7///juaN2+OuXPnYsaMGQgLC0NsbKzuLaIA4Ofnh7CwMPj5+aF+/fr4/PPPuRxkAq1W\na+0SbBJzUcZc9ImcidmawN0n7bqbobMozpw5EzNnzjRXOUREpICnjbADkZGR1i7BJjEXZcxFn8iZ\nmO2IYXOQJAn3UblERDbB2HMnXwnYgbS0NGuXYJOYizLmok/kTNgEiIgExuUgIiI7x+UgIiJSxCZg\nB0RezzSGuShjLvpEzoRNgIhIYJwJEBHZOc4EiIhIEZuAHRB5PdMY5qKMuegTORM2ASIigXEmQERk\n5zgTICIiRWwCdkDk9UxjmIsy5qJP5EzYBIiIBMaZABGRneNMgIiIFLEJ2AGR1zONYS7KmIs+kTNh\nEyAiEhhnAkREdo4zASIiUsQmYAdEXs80hrkoYy76RM6ETYCISGCcCRAR2TnOBIiISBGbgB0QeT3T\nGOaijLnoEzkTNgEiIoFxJkBEZOc4EyAiIkVsAnZA5PVMY5iLMuaiT+RM2ASIiATGmQARkZ3jTICI\niBSxCdgBkdczjWEuypiLPpEzYRMgIhKYVWYC8+bNQ0JCAhwcHNC5c2esWrUK165dw+jRo3HmzBmo\n1WokJiZCpVJVLpYzASIik9nUTECr1WL58uX45ZdfcPjwYZSXl2PdunXQaDQIDQ1FVlYWQkJCoNFo\nLF0aEZFwLN4EXFxc4OjoiNLSUpSVlaG0tBTNmjVDUlISIiIiAAARERHYuHGjpUu7b4m8nmkMc1HG\nXPSJnInFm0CTJk3w+uuvo0WLFmjWrBlUKhVCQ0NRUFAAT09PAICnpycKCgosXRoRkXDqW3qHp06d\nwqJFi6DVauHq6opRo0YhISGh0nUkSYIkSYq3j4yMhFqtBgCoVCoEBAQgKCgIwF/dnNvcviMtLc1m\n6uG27W4HBQXZVD213U5LS0NcXBwA6J4vDbH4YHj9+vX47rvvsGLFCgDA6tWrsXfvXvzwww/Yvn07\nvLy8kJeXh+DgYBw7dqxysRwMExGZzKYGw+3bt8fevXvxxx9/QJZlbNu2DX5+fhgyZAji4+MBAPHx\n8Rg2bJilS7tv3fkLgCpjLsqYiz6RM7H4cpC/vz/Gjx+P7t27w8HBAd26dcPf//53XLlyBWFhYYiN\njdW9RZSIiMyL5w4iIrJzNrUcREREtoNNwA6IvJ5pDHNRxlz0iZwJmwARkcA4EyAisnOcCRARkSI2\nATsg8nqmMcxFGXPRJ3ImbAJERALjTICIyM5xJkBERIrYBOyAyOuZxjAXZcxFn8iZsAkQEQmMMwEi\nIjvHmQARESliE7ADIq9nGsNclDEXfSJnwiZARCQwzgSIiOxcncwE8vPzcfv27TorioiIrK9aTaCw\nsBCtWrVCUlKSueuhGhB5PdMY5qKMuegTOZNqNYE1a9YgNDQUsbGx5q6HiGyUJNnvV3CwtdO1nmrN\nBLp164ZNmzZhyJAh2LJlC7y9vS1Rmx7OBIiITFermcCBAwfQtGlTNG/eHOHh4YiLi6vr+oiIyEqq\nbAIrVqzAhAkTAADh4eH4z3/+Y/aiyDQir2caw1yUMRd9ImditAlcu3YNW7duxfDhwwEAHh4eaNeu\nndCBERHZE6MzgVu3bqGwsBCenp66y0pKSgAALi4u5q/uHpwJEBGZrsYzAUdHx0oNIDk5GS4uLlZp\nAEREVPdMOm3EO++8Y646qBa4PKeMuShjLvpEzoTnDiIiEphJ5w7av38/AgMDzVmPUZwJEBGZrs4+\nT2DFihV1UhAREdkGk5rATz/9ZK46qBZEXs80hrkoYy76RM7EpCbg4eFhrjqIiMgKTJoJ5OXlWe28\nQQBnAkRENVFnM4Gnn366TgoiIiLbYFIT4F/htknk9UxjmIsy5qJP5ExMagLR0dHmqoOIiKzApCZQ\nr169OtlpcXExRo4ciQ4dOsDPzw/79u1DYWEhQkND0bZtWwwYMADFxcV1si8RBAUFWbsEm8RclDEX\nfSJnYlIT+Ne//lUnO3311VcxaNAgHD16FIcOHUL79u2h0WgQGhqKrKwshISEQKPR1Mm+iIjIMIvP\nBC5fvoydO3fqPqOgfv36cHV1RVJSEiIiIgAAERER2LhxY633JQqR1zONYS7KmIs+kTMxqQkkJyfX\neofZ2dlo2rQpoqKi0K1bN0RHR+PatWsoKCjQnbHU09MTBQUFtd4XEREZZ9JxAoMHD651Izhw4AAe\nf/xxpKeno0ePHoiJiYGzszM+++wzFBUV6a7XpEkTFBYWVi6WxwkQEZnM2HNnfVPuKDc3t9bF+Pr6\nwtfXFz169AAAjBw5EvPmzYOXlxfy8/Ph5eWFvLw8g0cnR0ZGQq1WAwBUKhUCAgJ0Q507L+m4zW0A\nkKSKbSDoz3/Nv719u+38/twWdzstLU33efB3ni8NMemVwIQJE7By5crqXt2gvn37YsWKFWjbti1m\nz56N0tJSAIC7uzveeustaDQaFBcX6w2H+UpAWVpamu6BQH9hLsqYiz57z6TOXgm89NJLdVLQkiVL\n8Pzzz+PmzZto3bo1Vq1ahfLycoSFhSE2NhZqtRqJiYl1si8iIjLMpFcC3bp1wy+//GLOeoziKwEi\nItPV2bmD+ARMRGRfTGoC7733nrnqoFq4MxCiypiLMuaiT+RMTGoCw4YNM1cdRERkBSbNBKyNMwEi\nItPV2UyAiIjsC5uAHRB5PdMY5qKMuegTORM2ASIigXEmQERk52o0E1i4cCH279+PsrIysxVGRETW\nZbAJnDt3DjExMWjatCn69u2LmTNnIjk5We/MnmR9Iq9nGsNclDEXfSJnYvDcQfPnzwcA3LhxAwcO\nHMCePXuwcuVKREdHQ6VS4ejRoxYrkoiIzKPKmUBxcTH27NmD9PR0pKeno7i4GF26dMGqVassVaMO\nZwJERKYz9txpsAlER0cjMzMTzs7OCAwMxOOPP46ePXvCzc3NrMUawyZARGS6Gg2Gz549ixs3bsDL\nyws+Pj7w8fGBSqUyW5FUcyKvZxrDXJQxF30iZ2JwJrB161bcvn0bR44cwZ49e7BgwQIcPnwY7u7u\n6NmzJ+bOnWvJOomIyAyqdZxATk4O0tPTsXv3biQnJ+PSpUu4fPmyJeqrhMtBRESmq9FMYPHixUhP\nT8eePXtQv359PPHEE+jVqxeeeOIJdOrUCfXq1TNr0UrYBIiITFejmYBWq0VYWBj27t2L06dPIyEh\nAVOmTIG/v79VGgAZJvJ6pjHMRRlz0SdyJgZnArNmzQJQ0UGUDhBr0qSJ+aoii5Aka1dgfpZ84cg8\n6X5kcDnIwcEBvr6+in/1S5KE06dPm704pf1yOYiIyDTGnjsNvhJ45ZVX8MMPP6B3794YM2YM+vTp\nA0mEP3WIiARicCawaNEiHDx4ECNHjkRCQgICAgLw5ptvIjs725L1UTWIvJ5pDHNRxlz0iZyJ0c8T\ncHBwwN/+9jd8/PHHmDx5MuLi4vDdd99ZqjYiIjIzgzOBq1evYtOmTVi/fj0uXryIZ599FqNHj0aL\nFi0sXaMOZwJERKar0XECjRs3Rps2bTB69Gi0bdu20h1JkoRnn33WfBUbwCZARGS6GjWByMhIo4Ng\nnkXUdqSlpSEoKMjaZdgc5qKMueiz90xq9O6guLg4c9VDREQ2gp8xTERk52p02ggiIrJ/bAJ2QOT3\nOBvDXJQxF30iZ2JwJnC33bt3Q6vVoqysDEDFS4vx48ebtTAiIjK/KmcC48aNw+nTpxEQEFDpPEJL\nliwxe3H34kyAiMh0NXqL6B0dOnRAZmamTZw3iE2AiMh0tRoMd+rUCXl5eXVeFNUdkdczjWEuypiL\nPpEzqXImcPHiRfj5+SEwMBAPPPAAgIqukpSUZPbiiIjIvKpcDjLUIa1xdB2Xg4iITFermYC5lJeX\no3v37vD19cU333yDwsJCjB49GmfOnIFarUZiYiJUKlXlYtkEiIhMVqOZQK9evQAATk5OcHZ2rvTl\n4uJS66IWL14MPz8/3cBZo9EgNDQUWVlZCAkJgUajqfU+RCHyeqYxzEUZc9EnciYGm8Du3bsBVJxS\n+sqVK5W+SkpKarXTc+fOYfPmzZg0aZKuOyUlJSEiIgIAEBERgY0bN9ZqH0REVDWrLAeNGjUKM2fO\nRElJCf75z3/im2++gZubG4qKigAAsiyjSZMmum1dsVwOIiIymU2dOyg5ORkeHh7o2rWr4UGFJNnE\ncQlERPauWqeNqEvp6elISkrC5s2bcf36dZSUlCA8PByenp7Iz8+Hl5cX8vLy4OHhoXh7SYoEoP5z\nSwUgAEDQn9tpf/4r2vady0y//fbtf73T6866qL1sL1q0CAEBATZTj61s37nMVuqxhW1Jqvi+QtCf\n/6bdx9tpAOL+3FbDGKueSnrHjh265aDp06fD3d0db731FjQaDYqLi/WGw1wOUmbvH4hRU8xFGXPR\nZ++Z1Ogtok5OTgaXZCRJqvVwGKhoAvPnz0dSUhIKCwsRFhaGs2fP8i2iRER1qFbHCcyaNQvNmjXD\nuHHjAABr1qzB+fPn8f7779d9pVVgEyAiMl2tBsNJSUl48cUX4eLiAhcXF0yZMgWbNm2q8yKp5kR+\nj7MxzEUZc9EnciZVNoHGjRsjISEB5eXlKC8vx5o1a+Dk5GSJ2oiIyMyqXA7Kzs7Gq6++ivT0dAAV\nRxIvXrwYarXaEvVVwuUgIiLT2eS5g2qCTYCIyHTGnjurPE7gjz/+QGxsLDIzM3H9+nXd5StXrqy7\nCqlW7P3tbTXFXJQxF30iZ1LlTCA8PBwFBQVITU1Fv379kJOTw5kAEZGdqHI5KCAgAAcPHkSXLl1w\n6NAh3Lp1C71798a+ffssVaMOl4OIiExXq7eINmjQAADg6uqKw4cPo7i4GBcvXqzbComIyCqqbALR\n0dEoLCzEBx98gKFDh8LPzw/Tp0+3RG1UTSK/x9kY5qKMuegTOZMqB8PR0dEAgH79+iE7O9vsBRER\nkeVUORMoLi7GnDlz8OOPPwKoOOPeu+++C1dXV4sUeDfOBIiITFermcCECRPg4uKC//73v0hMTISz\nszOioqLqvEgiIrK8KpvAqVOnMGfOHDz88MNo3bo1Zs+ejVOnTlmiNqomkdczjWEuypiLPpEzqbIJ\nNGzYEDt37tRt79q1C40aNTJrUUREZBlVzgQOHjyI8ePH4/LlywAANzc3xMfHw9/f3yIF3o0zASIi\n09XJuYPuNAFXV1csWrQIMTExdVdhNbEJEBGZrk4+aN7V1VX3jqD58+fXTWVUJ0RezzSGuShjLvpE\nzqTaTYCIiOxPjU4l3bx5c+Tk5JijHqO4HEREZLoanUra2AfNl5aW1k1lRERkVQaXg65evYorV64o\nfpWXl1uyRqqCyOuZxjAXZcxFn8iZcCZARCQwfrwkEZGdq5O3iBIRkf1hE7ADIq9nGsNclDEXfSJn\nwiZARCQwzgSIiOwcZwJERKSITcAOiLyeaQxzUcZc9ImcCZsAEZHAOBMgIrJznAkQEZEiNgE7IPJ6\npjHMRRlz0SdyJmwCREQC40yAiMjOcSZARESKLN4EcnJyEBwcjI4dO6JTp0749NNPAQCFhYUIDQ1F\n27ZtMWDAABQXF1u6tPuWyOuZxjAXZcxFn8iZWLwJODo6YuHChThy5Aj27t2LpUuX4ujRo9BoNAgN\nDUVWVhZCQkKg0WgsXRoRkXCsPhMYNmwYpk6diqlTp2LHjh3w9PREfn4+goKCcOzYsUrX5UyAiMh0\nxp47rdoEtFot+vXrh99++w0tWrRAUVERAECWZTRp0kS3fQebABGR6Wr0QfPmdvXqVYwYMQKLFy+G\ns7NzpZ9JkmTwQ+4jIyOhVqsBACqVCgEBAQgKCgLw17qeaNt3LrOVemxle9GiRXx8KGzfucxW6rGF\n7XuzsXY9dfH7xMXFAYDu+dIQq7wSuHXrFgYPHoyBAwciJiYGANC+fXukpaXBy8sLeXl5CA4O5nJQ\nNaWlpekeCPQX5qKMueiz90xsajlIlmVERETA3d0dCxcu1F0+ffp0uLu746233oJGo0FxcbHecJhN\ngIjIdDbVBHbt2oW+ffuiS5cuuiWfefPmITAwEGFhYTh79izUajUSExOhUqkqF8smQERkMptqArXB\nJqDM3l/K1hRzUcZc9Nl7JjximIiIFPGVABGRneMrASIiUsQmYAfufo8z/YW5KGMu+kTOhE2AiEhg\nnAkQEdk5zgSIiEgRm4AdEHk90xjmooy56BM5EzYBIiKBcSZARGTnOBMgIiJFbAJ2QOT1TGOYizLm\nok/kTNgEiIgExpkAEZGd40yAiIgUsQnYAZHXM41hLsqYiz6RM2ETICISGGcCRER2jjMBIiJSxCZg\nB0RezzSGuShjLvpEzoRNgIhIYJwJEBHZOc4EiIhIEZuAHRB5PdMY5qKMuegTORM2ASIigXEmQERk\n5zgTICIiRWwCdkDk9UxjmIsy5qJP5EzYBIiIBMaZABGRneNMgIiIFLEJ2AGR1zONYS7KmIs+kTNh\nEyAiEhhnAkREdo4zASIiUmRTTSA1NRXt27dHmzZt8NFHH1m7nPuGyOuZxjAXZcxFn8iZ2EwTKC8v\nx9SpU5GamorMzEysXbsWR48etXZZ94WDBw9auwSbxFyUMRd9ImdiM01g//79eOSRR6BWq+Ho6Igx\nY8Zg06ZN1i7rvlBcXGztEmwSc1HGXPSJnInNNIHc3Fw0b95ct+3r64vc3FwrVkREZP9spglIkmTt\nEu5bWq3W2iXYJOaijLnoEzmT+tYu4A4fHx/k5OTotnNycuDr61vpOq1bt2azMCA+Pt7aJdgk5qKM\nueiz50z8/f0N/sxmjhMoKytDu3bt8P3336NZs2YIDAzE2rVr0aFDB2uXRkRkt2zmlUD9+vXx2Wef\n4cknn0R5eTkmTpzIBkBEZGY280qAiIgsz2YGw1XhgWTK1Go1unTpgq5duyIwMNDa5VjNhAkT4Onp\nic6dO+suKywsRGhoKNq2bYsBAwYI9zZApUxmz54NX19fdO3aFV27dkVqaqoVK7SOnJwcBAcHo2PH\njujUqRM+/fRTAOI+Xu6LJsADyQyTJAlpaWnIyMjA/v37rV2O1URFRek9oWk0GoSGhiIrKwshISHQ\naDRWqs46lDKRJAnTpk1DRkYGMjIy8NRTT1mpOutxdHTEwoULceTIEezduxdLly7F0aNHhX283BdN\ngAeSGccVPaBPnz5wc3OrdFlSUhIiIiIAABEREdi4caM1SrMapUwAPl68vLwQEBAAAHByckKHDh2Q\nm5sr7OPlvmgCPJDMMEmS0L9/f3Tv3h3Lly+3djk2paCgAJ6engAAT09PFBQUWLki27BkyRL4+/tj\n4sSJwix5GKLVapGRkYHHHntM2MfLfdEEeGyAYbt370ZGRga2bNmCpUuXYufOndYuySZJksTHEYAp\nU6YgOzsbBw8ehLe3N15//XVrl2Q1V69exYgRI7B48WI4OztX+plIj5f7oglU50AyUXl7ewMAmjZt\niuHDhws9F7iXp6cn8vPzAQB5eXnw8PCwckXW5+HhoXuCmzRpkrCPl1u3bmHEiBEIDw/HsGHDAIj7\neLkvmkD37t1x4sQJaLVa3Lx5E+vXr8fQoUOtXZbVlZaW4sqVKwCAa9eu4dtvv630ThDRDR06VHcU\naHx8vO5/dpHl5eXpvv/f//4n5ONFlmVMnDgRfn5+iImJ0V0u7ONFvk9s3rxZbtu2rdy6dWv5ww8/\ntHY5NuH06dOyv7+/7O/vL3fs2FHoXMaMGSN7e3vLjo6Osq+vr7xy5Ur50qVLckhIiNymTRs5NDRU\nLioqsnaZFnVvJrGxsXJ4eLjcuXNnuUuXLvIzzzwj5+fnW7tMi9u5c6csSZLs7+8vBwQEyAEBAfKW\nLVuEfbzwYDEiIoHdF8tBRERkHmwCREQCYxMgIhIYmwARkcDYBIiIBMYmQEQkMDYBsppLly7pTmns\n7e2tO8VgaeccAAAEiElEQVSxs7Mzpk6dWuf7W7ZsGVavXl3t66elpWHIkCF1XgeRLbGZTxYj8bi7\nuyMjIwMAMGfOHDg7O2PatGlm298LL7xgtvs2RVlZGerXt/7/esXFxVCpVNYug6yMrwTIZtw5bvHu\nv8Bnz56NiIgI9O3bF2q1Gl9//TXeeOMNdOnSBQMHDkRZWRkA4Oeff0ZQUBC6d++Op556SncOmLvN\nnj0b8+fPBwAEBQVhxowZeOyxx9CuXTvs2rVL7/qSJOHq1asYNWoUOnTogHHjxul+9v3336Nbt27o\n0qULJk6ciJs3bwKo+JCfwsJCAMCBAwcQHBys23d4eDh69+6NiIgIHDlyBIGBgejatSv8/f1x8uTJ\nuoqx2tatW4fOnTtjwYIF+P333y2+f7INbAJk87Kzs7F9+3YkJSVh3LhxCA0NxaFDh9CwYUOkpKTg\n1q1bePnll/HVV1/hwIEDiIqKwv/93//p3c/dZ4aUJAnl5eXYt28fFi1ahDlz5uhdX5ZlZGRkYPHi\nxcjMzMTp06eRnp6O69evIyoqComJiTh06BDKysrwxRdf6O7XkGPHjuH777/HmjVrsGzZMsTExCAj\nIwM///yzVU6IOHnyZGzZsgWlpaXo27cvRo0aha1btwr/eQOiYRMgmyZJEgYOHIh69eqhU6dOuH37\nNp588kkAQOfOnaHVapGVlYUjR46gf//+6Nq1K/7xj39U6/Mmnn32WQBAt27doNVqFa8TGBiIZs2a\nQZIkBAQEIDs7G8ePH0erVq3wyCOPAKj4AJIff/yxyt9j6NCheOCBBwAAjz/+OD788EN8/PHH0Gq1\nePDBB6sbSZ3y9fXFrFmzkJmZiaioKERFRWH48OFWqYWsw/oLk0RVaNCgAQDAwcEBjo6OussdHBxQ\nVlYGWZbRsWNHpKenm3S/d56Q69Wrp1tWMnSdu69371/7sizrLqtfvz5u374NALh+/Xql6zVq1Ej3\n/dixY9GzZ08kJydj0KBBWLZsmW7pyJicnBzdGXQnT56M8vJyLF++HJIkISUlBZGRkbhw4QJ69OiB\nSZMm6eYgc+fOxb59+5CSkgJJkvDLL7/o7nP//v1YtWoVtm3bhjFjxiA6OrrKOsh+sAmQTavO0kS7\ndu1w8eJF7N27Fz179sStW7dw4sQJ+Pn51ej+jJEkCe3atYNWq8WpU6fQunVrrF69Gv369QNQMRM4\ncOAAnnrqKXz11VcG95udnY1WrVrh5ZdfxtmzZ3H48OFqNYHmzZvrhul3vPjii7rvt27dWulnd193\nyJAh+OCDD3Tb3377Ld588014e3tj0qRJWLJkiU0MrMmy+F+cbMbd6/VK3999nbu3HR0dsWHDBrzy\nyiu4fPkyysrK8Nprryk2AUNr9kqXG/p0qQceeACrVq3CqFGjUFZWhsDAQEyePBkA8N5772HixIlw\ncXFBUFCQwd8jMTERq1evhqOjI7y9vRVnGOb20EMPITk5udJHt5J4eCppIiKBcTBMRCQwNgEiIoGx\nCRARCYxNgIhIYGwCREQCYxMgIhIYmwARkcDYBIiIBPb/pozSJIWf61MAAAAASUVORK5CYII=\n", "text": [ "" ] } ], "prompt_number": 31 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.11, Page Number: 54" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "%pylab inline\n", "\n", "#Calculation:\n", "M = 350.0 #Maximum demand(kW)\n", "DF = (200+100+50+100)/M #Diversity factor\n", "E = 100*6+(100+50)*2+(200+100+50)*2+(200+100)*8+100*6 #kWh/day\n", "LF = E/(24*M) #load factor\n", "\n", "n1 = linspace(0,6,10);\n", "M1 = linspace(100,100,10);\n", "plot(n1,M1);\n", "\n", "\n", "hold(True);\n", "\n", "n2 = linspace(6,8,10);\n", "M2 = linspace(150,150,10);\n", "plot(n2,M2,'b');\n", "\n", "n3 = linspace(8,10,10);\n", "M3 = linspace(350,350,10);\n", "plot(n3,M3,'b');\n", "\n", "n4 = linspace(10,18,10);\n", "M4 = linspace(300,300,10);\n", "plot(n4,M4,'b');\n", "\n", "n5 = linspace(18,24,10);\n", "M5 = linspace(100,100,10);\n", "plot(n5,M5,'b');\n", "\n", "ylim(0,400);\n", "xlim(0,24);\n", "grid(linewidth=0.5);\n", "ylabel(\"Load in kW ------>\");\n", "xlabel(\"Time in hours ----->\");\n", "title(\"Daily Load Curve\")\n", "\n", "#Results:\n", "print \"Diversity factor is \",round(DF,3)\n", "print \"Unis generated per day is \",E,\"kWh\"\n", "print \"Load factor is \",round(LF*100,1),\"%\"\n", "print \"The daily load curve is shown below:\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Populating the interactive namespace from numpy and matplotlib\n", "Diversity factor is " ] }, { "output_type": "stream", "stream": "stdout", "text": [ " 1.286\n", "Unis generated per day is 4600 kWh\n", "Load factor is 54.8 %\n", "The daily load curve is shown below:\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEZCAYAAACaWyIJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYVQW6x/HvJqk0UCgTyW3R5AW3IZs0ccwKRzCpIKuJ\nCVOxsJM2NXlpjDhdpDoDnWZyzJNzmsYLaWo+TYmjaWaJmVZoQXUiRQ0SEclCNMcUwXX+MHfSvsBW\nt3vL+n2ex0fW2pf18or7Zb3vulgMwzAQERHTCvJ3ACIi4l8qBCIiJqdCICJicioEIiImp0IgImJy\nKgQiIianQiCtwo4dOwgNDeX40dAJCQnMmjXLz1G5FxQUxNdff+3vMEQAFQIJEFFRUbRr14727dsT\nHh7ONddcw0svvURLT3O59NJL+eGHH7BYLABYLBbH196YO3cu1157rdevO93efvttrrvuOtq3b0+n\nTp1ISEjgX//6l7/DklZKhUACgsViYdmyZezfv58dO3aQlZXFs88+S2Zmpr9DO+Nef/110tLSGDNm\nDFVVVXz77bc89dRTJ1UIDMNocTEV81IhkIATGhpKSkoKr732Gvn5+Xz55ZcALF++nLi4ODp06MCl\nl15KTk6O4zUVFRUEBQVx9OjRJu9VX1/PhRdeyP/93/851n377bdccMEFfP/9917FtWHDBq6++mrC\nwsLo378/H374oeOxOXPmYLPZaN++PVdccQV///vfm7z2ueee45JLLsFqtTJ79my32zAMg0mTJvHE\nE09wzz33EBoaCsB1113neM+pU6cyatQot997QkICjz32GNdccw0XXHABzz33HFdffXWT7UybNo1b\nbrkFgMOHD/Pwww9z2WWX0blzZ8aPH8+hQ4e8yo2c3VQIJGBdffXVWK1WPvjgAwBCQkKYP38++/bt\nY/ny5fztb3+joKDA43uce+65pKenM3/+fMe6hQsXkpiYyEUXXdTiWGpra7npppuYMGECtbW1TJo0\niZtuuona2loAIiIiWL58Ofv372fOnDlMnDiR4uJiAFauXMlf/vIXVq9eTVlZGatXr3a7nS1btrBz\n505++9vfun1OS1pe8+fP5x//+AcHDhxg3LhxbNmyhW3btjkeX7BgAXfddRcAWVlZbNu2jc8++4xt\n27ZRVVXFU0891aK8SOugQiAB7ZJLLnF82F5//fX07t0bgJiYGO68807Wrl3b7HuMHj2ahQsXOpbn\nzZvX5Dfqlli+fDk9e/bkrrvuIigoiDvvvJPo6GhHu+bGG2/k8ssvB4799j506FDWrVsHwOLFi7nn\nnnuw2Wy0a9euyZ7MLx3fS4mMjHT7nOZaPRaLhTFjxtCrVy+CgoJo3749t9xyiyMHW7duZcuWLaSm\npmIYBi+//DLPP/88YWFhhISE8Oijj7Jo0aKWJ0fOeioEEtCqqqq48MILAfj4448ZPHgwnTp1Iiws\njJdeeqlF7Z34+Hjatm1LYWEhmzdvZvv27aSmpnoVx65du7j00kubrLvsssvYtWsXACtWrGDAgAFc\ndNFFhIeH89Zbbzliq66upmvXro7X/fJ9TnR8L6W6utqr+H7pxO0BjBgxwlEIFixYwK233sr555/P\nnj17OHjwIH379iU8PJzw8HCSk5P57rvvTmn7cnZRIZCAtXHjRqqqqhg0aBBw7MNs+PDh7Ny5k7q6\nOsaNG+c0E3AnIyOD+fPnM2/ePO644w7OPfdcr2Lp0qUL33zzTZN133zzDV26dOHw4cPcfvvtTJky\nhW+//Za9e/dy4403On5zj4yMZMeOHY7Xnfj1L/Xs2ZOuXbvy+uuvu31OSEgIBw8edCzv3r3b6Tm/\nbB8lJiayZ88ePvvsMxYtWsSIESMA6NixI23btqW0tJS9e/eyd+9e6urq2L9/v4dsSGujQiAB4/gH\n5/79+1m2bBnp6emMGjXK0Q46cOAA4eHhnHvuuRQVFbFgwQKP/fITWygjR47kjTfe4NVXX2X06NHN\nxnH48GEOHTrk+HPjjTdSVlbGwoULaWho4LXXXmPz5s3cfPPN1NfXU19fT8eOHQkKCmLFihWsWrXK\n8X5paWnMnTuXr776ioMHD3psDVksFp5//nmefvpp5s6dy/79+zl69CgffPAB9913HwCxsbG8//77\nVFZWsm/fPnJzcz1+7wDBwcHccccdPPzww+zdu5ekpCTg2PkM9957LxMmTGDPnj3Asb2wE+MXEzBE\nAkBUVJTRtm1bIzQ01OjQoYMxcOBAY+bMmcbRo0cdz3n99deNyy67zAgNDTVuvvlm48EHHzRGjRpl\nGIZhlJeXG0FBQUZjY6NhGIaRkJBgzJo1q8k2hgwZYlx++eUe45g7d65hsVia/Dn+vh988IHRt29f\no0OHDka/fv2M9evXO1734osvGhEREUZYWJgxatQoIz093Xj88ccdj+fl5RmdO3c2unTpYsyePdsI\nCgoytm/f7jaOlStXGtdee60REhJiXHzxxcbgwYONt956y/H473//eyMsLMzo3r278fLLLzf7vRuG\nYaxbt86wWCzGAw880GT9oUOHjOzsbONXv/qV0b59e6NXr17GjBkzPOZJWheLYfj2IOPGxkb69euH\n1WrlX//6F7W1tfzud7/jm2++ISoqisWLFxMWFgZAbm4us2fP5pxzzuGFF15g6NChvgxNTCYzM5Mu\nXbroiBiRX/B5a2j69OnYbDbHLnxeXh5JSUmUlZUxZMgQ8vLyACgtLeW1116jtLSUlStXcv/997e4\n/yvSnIqKCt544w1TnqAm0hyfFoKdO3fy1ltvMXbsWEfPcunSpWRkZADHBnhLliwBoKCggPT0dIKD\ng4mKiqJbt24UFRX5Mjwxiccff5yYmBimTJnCZZdd5u9wRAKOTwvBxIkTee655wgK+nkzNTU1RERE\nAMdOwqmpqQGOHZ5ntVodz7NarVRVVfkyPDGJp59+mh9++IFHH33U36GIBCSfFYJly5bRqVMn4uLi\n3J4A09yFwU7momEiIuKdNr564w0bNrB06VLeeustDh06xP79+xk1ahQRERHs3r2bzp07U11dTadO\nnYBjx2lXVlY6Xr9z5066dOni9L5dunRxnMQjIiItExsbS0lJiesHz8ShSYWFhcbNN99sGIZh/PGP\nfzTy8vIMwzCM3Nxc45FHHjEMwzC+/PJLIzY21jh8+LDx9ddfG7/61a+aHDp43BkK+azz5JNP+juE\ngKS8OFNOXGvtefH02emzPYJfOt7mycrKIi0tjVmzZjkOHwWw2WykpaVhs9lo06YNM2fOVGvICxUV\nFf4OISApL86UE9fMnJczUgiuv/56rr/+egAuvPBCt1dfzM7OJjs7+0yEJCIiP9ElJlqJMWPG+DuE\ngKS8OFNOXDNzXnx+ZvHpZrFYdMclEREvefrs1B5BK1FYWOjvEAKS8uJMOXHNzHlRIRARMTm1hkRE\nTECtIRERcUuFoJUwc3/TE+XFmXLimpnzokIgImJymhGIiJiAZgQiIuKWCkErYeb+pifKizPlxDUz\n50WFQETE5DQjEBExAc0IRETELRWCVsLM/U1PlBdnyolrZs6LCoGIiMlpRiAiYgKaEYiIiFsqBK2E\nmfubnigvzpQT18ycF58VgkOHDhEfH4/dbsdms/Hoo48CMHXqVKxWK3FxccTFxbFixQrHa3Jzc+ne\nvTvR0dGsWrXKV6GJiMgJfDojOHjwIO3ataOhoYFBgwbx5z//mXfffZfQ0FAmTZrU5LmlpaWMGDGC\njRs3UlVVRWJiImVlZQQFNa1VmhGIiHjPbzOCdu3aAVBfX09jYyPh4eEALoMpKCggPT2d4OBgoqKi\n6NatG0VFRb4MT0RE8HEhOHr0KHa7nYiICAYPHkzv3r0BmDFjBrGxsWRmZlJXVwfArl27sFqtjtda\nrVaqqqp8GV6rYub+pifKizPlxDUz58WnhSAoKIiSkhJ27tzJ+++/T2FhIePHj6e8vJySkhIiIyOZ\nPHmy29dbLBZfhiciIkCbM7GRDh06cNNNN7Fp0yYSEhIc68eOHUtKSgoAXbp0obKy0vHYzp076dKl\ni8v3GzNmDFFRUQCEhYVht9sd73u8qms5MJctlmPLkPDT375ehjVrCgPm+w+U5eMCJZ5AWE5ISAio\neE51ubCwkLlz5wI4Pi/d8dmw+LvvvqNNmzaEhYXx448/csMNN/Dkk0/Su3dvOnfuDMC0adPYuHEj\nCxYscAyLi4qKHMPibdu2Oe0VaFgsIuI9vwyLq6ur+c1vfoPdbic+Pp6UlBSGDBnClClT6NOnD7Gx\nsaxdu5Zp06YBYLPZSEtLw2azkZyczMyZM9Ua8sIvf9OTY5QXZ8qJa2bOi89aQzExMXz66adO6195\n5RW3r8nOziY7O9tXIYmIiAu61pCIiAnoWkMiIuKWCkErYeb+pifKizPlxDUz50WFQETE5DQjEBEx\nAc0IRETELRWCVsLM/U1PlBdnyolrZs6LCoGIiMlpRiAiYgKaEYiIiFsqBK2EmfubnigvzpQT18yc\nFxUCERGT04xARMQENCMQERG3VAhaCTP3Nz1RXpwpJ66ZOS8qBCIiJqcZgYiICWhGICIibqkQtBJm\n7m96orw4U05cM3NefFYIDh06RHx8PHa7HZvNxqOPPgpAbW0tSUlJ9OjRg6FDh1JXV+d4TW5uLt27\ndyc6OppVq1b5KjQRETmBT2cEBw8epF27djQ0NDBo0CD+/Oc/s3TpUjp27MiUKVN49tln2bt3L3l5\neZSWljJixAg2btxIVVUViYmJlJWVERTUtFZpRiAi4j2/zQjatWsHQH19PY2NjYSHh7N06VIyMjIA\nyMjIYMmSJQAUFBSQnp5OcHAwUVFRdOvWjaKiIl+GJyIi+LgQHD16FLvdTkREBIMHD6Z3797U1NQQ\nEREBQEREBDU1NQDs2rULq9XqeK3VaqWqqsqX4bUqZu5veqK8OFNOXDNzXtr48s2DgoIoKSlh3759\n3HDDDaxZs6bJ4xaLBYvF4vb17h4bM2YMUVFRAISFhWG320lISAB+/sc02/JxgRJPoCwPHlzCMQk/\n/V2oZUoCLB73y2vWHFsOlJ+ns2m5sLCQuXPnAjg+L905Y+cRPP3007Rt25Z//OMfFBYW0rlzZ6qr\nqxk8eDCbN28mLy8PgKysLACGDRtGTk4O8fHxTQPWjEBExGt+mRF89913jiOCfvzxR9555x3i4uJI\nTU0lPz8fgPz8fIYPHw5AamoqixYtor6+nvLycrZu3Ur//v19FZ6IiPzEZ4Wgurqa3/zmN9jtduLj\n40lJSWHIkCFkZWXxzjvv0KNHD9577z3HHoDNZiMtLQ2bzUZycjIzZ8702DaSpszc3/REeXGmnLhm\n5rz4bEYQExPDp59+6rT+wgsvZPXq1S5fk52dTXZ2tq9CEhERF3StIRERE9C1hkRExC0VglbCzP1N\nT5QXZ8qJa2bOiwqBiIjJaUYgImICmhGIiIhbKgSthJn7m54oL86UE9fMnJcWF4JNmzZx+PBhX8Yi\nIiJ+0KIZQXV1NZdeeilz5sxh5MiRZyIutzQjEBHxnqfPzhYVgtzcXLZv38727dudriB6pqkQiIh4\n75SGxYZhMG/ePPLy8jh8+DDbt28/7QHKqTNzf9MT5cWZcuKamfPSbCEoLCykV69edOzYkYyMDGbN\nmnUm4hIRkTOk2dbQyJEjSU9P56abbmLfvn307dvX5b2EzxS1hkREvHfSraG9e/fy0UcfkZycDECH\nDh0YMGAAy5cvP/1RioiIX3gsBOHh4Wzbtq3Jb//z588nJSXF54GJd8zc3/REeXGmnLhm5rx41d/5\n+9//7qs4RETET7y61lBcXBzFxcW+jKdZmhGIiHjvtF1rSB/AIiKtj1eFYNmyZb6KQ06Rmfubnigv\nzpQT18ycF68Kwbhx47x688rKSgYPHkzv3r258soreeGFFwCYOnUqVquVuLg44uLiWLFiheM1ubm5\ndO/enejoaFatWuXV9kRExHs+nRHs3r2b3bt3Y7fbOXDgAH379mXJkiUsXryY0NBQJk2a1OT5paWl\njBgxgo0bN1JVVUViYqLTOQuaEYiIeO+0zQji4uK82nDnzp2x2+0AhISE0KtXL6qqqgDX84aCggLS\n09MJDg4mKiqKbt26UVRU5NU2RUTEO14Vgt///vcnvaGKigqKi4sZMGAAADNmzCA2NpbMzEzq6uoA\n2LVrF1ar1fEaq9XqKBzimZn7m54oL86UE9fMnJc23jz53nvv5dNPP/V6IwcOHOC3v/0t06dPJyQk\nhPHjx/PEE08A8PjjjzN58mS31zCyWCxO68aMGUNUVBQAYWFh2O12EhISgJ//Mc22fFygxBMoyyUl\nJQEVTyAsl5SUBFQ8WvbNcmFhIXPnzgVwfF664/PzCI4cOcLNN99McnIyEyZMcHq8oqKClJQUvvji\nC/Ly8gDIysoCYNiwYeTk5BAfH/9zwJoRiIh47bTNCJ588kmvNmwYBpmZmdhstiZFoLq62vH1m2++\nSUxMDACpqaksWrSI+vp6ysvL2bp1K/379/dqmyIi4h2vCoG3ewPr169n/vz5rFmzpsmhoo888gh9\n+vQhNjaWtWvXMm3aNABsNhtpaWnYbDaSk5OZOXOmy9aQODu+SyhNKS/OlBPXzJwXr2YES5cuJScn\np8XPHzRoEEePHnVaf/xqpq5kZ2eTnZ3tTVgiInIKvJoR2O12x/DNXzQjEBHx3infs/i4o0eP+u2G\nNMepEIiIeO+0DYv79et3WgKS08/M/U1PlBdnyolrZs6Lrj4qImJyXrWGHnvsMZ555hlfxtMstYZE\nRLx32lpDJ57YJSIirYNXheD4ZSEk8Ji5v+mJ8uJMOXHNzHnx7yFAIiLid17NCIqKivx+yQfNCERE\nvHfaziMIBCoEIiLeO23DYglcZu5veqK8OFNOXDNzXlQIRERMTq0hERETUGtIRETcUiFoJczc3/RE\neXGmnLhm5ry4LQQPPfQQixcv1s3jRURaObczghkzZvDhhx+yYcMGDMNg4MCBXHPNNVxzzTXExsb6\n7XLUmhGIiHjvlM8jqKqqchSFgoIC9uzZw/79+097oC2hQiAi4r2THhYbhsFnn33G0qVLKSgoYO3a\ntXTr1o3Jkyf7JFA5eWbub3qivDhTTlwzc17c3rM4KSmJ/fv3Y7fbiY+PJzs7m+joaK9uJl9ZWcno\n0aP59ttvsVgs/Md//Ad/+MMfqK2t5Xe/+x3ffPMNUVFRLF68mLCwMAByc3OZPXs255xzDi+88AJD\nhw499e9SRETcctsauu+++/jss89o164d8fHxDBw4kF//+td07NixxW++e/dudu/ejd1u58CBA/Tt\n25clS5YwZ84cOnbsyJQpU3j22WfZu3cveXl5lJaWMmLECDZu3EhVVRWJiYmUlZU1mUeoNSQi4r1T\nmhHs27ePjz76iA8//JAPP/yQ7777jt69e/PKK694Hcjw4cN54IEHeOCBB1i7di0RERHs3r2bhIQE\nNm/eTG5uLkFBQTzyyCMADBs2jKlTpzJgwIAWfTMiIuLaKZ1Qdv7559OuXTvatm3LeeedR2VlJZ9+\n+qnXQVRUVFBcXEx8fDw1NTVEREQAEBERQU1NDQC7du3CarU6XmO1WnX4aguZub/pifLiTDlxzcx5\ncTsjmDhxIhs2bKCsrIy4uDgGDhzI+PHjeeWVVxz9/JY6cOAAt99+O9OnTyc0NLTJYxaLxePcwdVj\nY8aMISoqCoCwsDDsdjsJCQnAz/+YZls+LlDiCZTlkpKSgIonEJZLSkoCKh4t+2a5sLCQuXPnAjg+\nL91x2xqaPn06gwYNwm63c84553h8E0+OHDnCzTffTHJyMhMmTAAgOjqawsJCOnfuTHV1NYMHD2bz\n5s3k5eUBkJWVBRxrDeXk5DS5RaZaQyIi3jup1tBDDz1E3759ycnJabK+sbGRESNGtGjDhmGQmZmJ\nzWZzFAGA1NRU8vPzAcjPz2f48OGO9YsWLaK+vp7y8nK2bt3q9xvhiIi0ds3OCHbs2EFubi4Ahw8f\n5rbbbqNHjx4tevP169czf/581qxZQ1xcHHFxcaxcuZKsrCzeeecdevTowXvvvefYA7DZbKSlpWGz\n2UhOTmbmzJleHa5qZsd3CaUp5cWZcuKamfPS7FFDR48e5a677qJPnz6899573HjjjUycOPFMxedE\nrSHXCgsLHX1C+Zny4kw5ca215+WkDh/95JNPHL+NHzlyhPvuu4+BAwcyduxYAK666iofheuZCoGI\niPdOqhAkJCQ0acsYhtFkec2aNac5zJZRIRAR8Z5uXm8CrX239mQpL86UE9dae150hzIREXFLewQi\nIiagPQIREXGrRYVg/fr1vPrqq+Tn55Ofn39SF5wT3zLzMdCeKC/OlBPXzJwXt9caOm7kyJF8/fXX\nTpeaGD16tE8DExGRM6PZGUGvXr0oLS0NmDN8NSMQEfHeKc0IrrzySqqrq097UCIiEhiaLQR79uzB\nZrMxdOhQUlJSSElJITU19UzEJl4wc3/TE+XFmXLimpnz0uyMYOrUqWcgDBER8RedRyAiYgInNSO4\n5pprAAgJCSE0NLTJn/bt2/smUhEROePcFoL169cDx24z+cMPPzT5s3///jMWoLSMmfubnigvzpQT\n18ycF51ZLCJicpoRiIiYgK41JCIibqkQtBJm7m96orw4U05cM3Ne3BYCV0cLeXvU0D333ENERAQx\nMTGOdVOnTsVqtTpuZr9ixQrHY7m5uXTv3p3o6GhWrVp1Ct+WiIi0VLMzgscee4xLLrmEkSNHAvDq\nq6+ya9cunn766WbffN26dYSEhDB69Gi++OILAHJycggNDWXSpElNnltaWsqIESPYuHEjVVVVJCYm\nUlZWRlBQ01qlGYGIiPdOaUawdOlS7r//ftq3b0/79u0ZP348BQUFLdrwtddeS3h4uNN6V8EUFBSQ\nnp5OcHAwUVFRdOvWjaKiohZtR0RETl6zheCCCy5g/vz5NDY20tjYyKuvvkpISMgpbXTGjBnExsaS\nmZlJXV0dALt27cJqtTqeY7VaqaqqOqXtmImZ+5ueKC/OlBPXzJyXZq81tGDBAh566CEmTJgAHDvj\neMGCBSe9wfHjx/PEE08A8PjjjzN58mRmzZrl8rnuLn09ZswYoqKiAAgLC8NutztuOn38H9Nsy8d5\n+3qL5fjrE46/g8+X16w5c/kpKSnx6fufjcslJSUBFY+WfbNcWFjI3LlzARyfl+74/DyCiooKUlJS\nHDMCd4/l5eUBkJWVBcCwYcPIyckhPj6+acCaEYiIeM3TZ2ezewQ//vgjs2bNorS0lEOHDjnWz549\n+6SCqa6uJjIyEoA333zTcURRamoqI0aMYNKkSVRVVbF161b69+9/UtsQEZGWa3ZGMGrUKGpqali5\nciXXX389lZWVLZ4RpKenM3DgQLZs2ULXrl2ZPXs2jzzyCH369CE2Npa1a9cybdo0AGw2G2lpadhs\nNpKTk5k5c2bA3BXtbPDLFpEco7w4U05cM3Nemm0N2e12SkpK6NOnD59//jlHjhxh0KBBfPzxx2cq\nxibUGnKtsLDQ0SeUnykvzpQT11p7Xk7p8NFzzz0XgA4dOvDFF19QV1fHnj17Tm+Ecspa8w/wqVBe\nnCknrpk5L83OCO69915qa2t55plnSE1N5cCBAy06mUxERM4OuvpoK9Had2tPlvLiTDlxrbXn5ZRa\nQ3V1dUycOJG+ffvSt29fJk+ezL59+057kCIi4h/N7hHcdtttxMTEkJGRgWEYzJs3j88//5w33njj\nTMXYhPYIRES85+mzs9lCEBsby2effdbsujNFhUBExHun1Bpq27Yt69atcyx/8MEHtGvX7vRFJ6eF\nmY+B9kR5caacuGbmvDR71ND//u//Mnr0aMdcIDw8nPz8fJ8HJiIiZ0aLjxo6Xgg6dOjAX//6V8dF\n6M40tYZERLx3SjMCV7p27UplZeUpB3YyVAhERLynm9ebgJn7m54oL86UE9fMnBcVAhERk3PbGgoJ\nCXF79c+DBw/S2Njo08DcUWtIRMR7p31G4E8qBCIi3tOMwATM3N/0RHlxppy4Zua8qBCIiJicWkMi\nIiag1pCIiLilQtBKmLm/6Yny4kw5cc3MefFpIbjnnnuIiIggJibGsa62tpakpCR69OjB0KFDqaur\nczyWm5tL9+7diY6OZtWqVb4MTUREfuLTGcG6desICQlh9OjRfPHFFwBMmTKFjh07MmXKFJ599ln2\n7t1LXl4epaWljBgxgo0bN1JVVUViYiJlZWUEBTWtVZoRiIh4z28zgmuvvZbw8PAm65YuXUpGRgYA\nGRkZLFmyBICCggLS09MJDg4mKiqKbt26UVRU5MvwREQEP8wIampqiIiIACAiIoKamhoAdu3ahdVq\ndTzParVSVVV1psM7a5m5v+mJ8uJMOXHNzHlp9n4EvmSxWNxexuL4467XjwGifloKA+xAwk/LhT/9\nbbZlmnnc/fKaNThu2n38P0NrWS4pKQmoeAJhuaSkJKDicbd87L//sWX///86G5cLgbk/LUfhic/P\nI6ioqCAlJcUxI4iOjqawsJDOnTtTXV3N4MGD2bx5M3l5eQBkZWUBMGzYMHJycoiPj28asGYEIiJe\nC6jzCFJTUx13OMvPz2f48OGO9YsWLaK+vp7y8nK2bt1K//79z3R4IiKm49NCkJ6ezsCBA9myZQtd\nu3Zlzpw5ZGVl8c4779CjRw/ee+89xx6AzWYjLS0Nm81GcnIyM2fO9Ng2kqbM3N/0RHlxppy4Zua8\n+HRGsHDhQpfrV69e7XJ9dnY22dnZvgxJRER+QdcaEhExgYCaEYiISGBRIWglzNzf9ER5caacuGbm\nvKgQiIiYnGYEIiImoBmBiIi4pULQSpi5v+mJ8uJMOXHNzHlRIRARMTnNCERETEAzAhERcUuFoJUw\nc3/TE+XFmXLimpnzokIgImJymhGIiJiAZgQiIuKWCkErYeb+pifKizPlxDUz50WFQETE5DQjEBEx\nAc0IRETELb8VgqioKPr06UNcXJzjJvW1tbUkJSXRo0cPhg4dSl1dnb/CO+uYub/pifLiTDlxzcx5\n8VshsFiu6z+tAAAK3UlEQVQsFBYWUlxcTFFREQB5eXkkJSVRVlbGkCFDyMvL81d4IiKm4bcZweWX\nX86mTZu46KKLHOuio6NZu3YtERER7N69m4SEBDZv3tzkdZoRiIh4LyBnBBaLhcTERPr168fLL78M\nQE1NDREREQBERERQU1Pjr/BEREzDb4Vg/fr1FBcXs2LFCl588UXWrVvX5HGLxYLFYvFTdGcfM/c3\nPVFenCknrpk5L238teHIyEgALr74Ym699VaKioocLaHOnTtTXV1Np06dXL52zJgxREVFARAWFobd\nbichIQH4+R/TbMvHBUo8gbJcUlISUPEEwnJJSUlAxaNl3ywXFhYyd+5cAMfnpTt+mREcPHiQxsZG\nQkND+fe//83QoUN58sknWb16NRdddBGPPPIIeXl51NXVOQ2MNSMQEfGep89OvxSC8vJybr31VgAa\nGhq46667ePTRR6mtrSUtLY0dO3YQFRXF4sWLCQsLaxqwCoGIiNcCrhCcChUC1woLCx27h/Iz5cWZ\ncuJaa89LQB41JCIigUF7BCIiJqA9AhERcUuFoJU4ftiYNKW8OFNOXDNzXlQIRERMTjMCERET0IxA\nRETcUiFoJczc3/REeXGmnLhm5ryoEIiImJxmBCIiJqAZgYiIuKVC0EqYub/pifLiTDlxzcx5USEQ\nETE5zQhERExAMwIREXFLhaCVMHN/0xPlxZly4pqZ86JCICJicpoRiIiYgGYEIiLiVsAVgpUrVxId\nHU337t159tln/R3OWcPM/U1PlBdnyolrZs5LQBWCxsZGHnjgAVauXElpaSkLFy7kq6++8ndYZ4WS\nkhJ/hxCQlBdnyolrZs5LQBWCoqIiunXrRlRUFMHBwdx5550UFBT4O6yzQl1dnb9DCEjKizPlxDUz\n5yWgCkFVVRVdu3Z1LFutVqqqqvwYkYhI6xdQhcBisfg7hLNWRUWFv0MISMqLM+XENTPnpY2/AzhR\nly5dqKysdCxXVlZitVqbPOeKK65QwXAjPz/f3yEEJOXFmXLiWmvOS2xsrNvHAuo8goaGBnr27Mm7\n777LJZdcQv/+/Vm4cCG9evXyd2giIq1WQO0RtGnThv/5n//hhhtuoLGxkczMTBUBEREfC6g9AhER\nOfMCaljcHJ1s5lpUVBR9+vQhLi6O/v37+zscv7jnnnuIiIggJibGsa62tpakpCR69OjB0KFDTXl4\noKu8TJ06FavVSlxcHHFxcaxcudKPEfpHZWUlgwcPpnfv3lx55ZW88MILgHl/Zs6aQqCTzdyzWCwU\nFhZSXFxMUVGRv8Pxi7vvvtvpAy0vL4+kpCTKysoYMmQIeXl5forOf1zlxWKxMGnSJIqLiykuLmbY\nsGF+is5/goODmTZtGl9++SUfffQRL774Il999ZVpf2bOmkKgk808M3uH79prryU8PLzJuqVLl5KR\nkQFARkYGS5Ys8UdofuUqL6Cfl86dO2O32wEICQmhV69eVFVVmfZn5qwpBDrZzD2LxUJiYiL9+vXj\n5Zdf9nc4AaOmpoaIiAgAIiIiqKmp8XNEgWPGjBnExsaSmZlpmvaHOxUVFRQXFxMfH2/an5mzphDo\n3AH31q9fT3FxMStWrODFF19k3bp1/g4p4FgsFv0M/WT8+PGUl5dTUlJCZGQkkydP9ndIfnPgwAFu\nv/12pk+fTmhoaJPHzPQzc9YUgpacbGZWkZGRAFx88cXceuutpp0T/FJERAS7d+8GoLq6mk6dOvk5\nosDQqVMnx4fc2LFjTfvzcuTIEW6//XZGjRrF8OHDAfP+zJw1haBfv35s3bqViooK6uvree2110hN\nTfV3WH538OBBfvjhBwD+/e9/s2rVqiZHiJhZamqq40zR/Px8x392s6uurnZ8/eabb5ry58UwDDIz\nM7HZbEyYMMGx3rQ/M8ZZ5K233jJ69OhhXHHFFcaf/vQnf4cTEL7++msjNjbWiI2NNXr37m3avNx5\n551GZGSkERwcbFitVmP27NnG999/bwwZMsTo3r27kZSUZOzdu9ffYZ5xv8zLrFmzjFGjRhkxMTFG\nnz59jFtuucXYvXu3v8M849atW2dYLBYjNjbWsNvtht1uN1asWGHanxmdUCYiYnJnTWtIRER8Q4VA\nRMTkVAhERExOhUBExORUCERETE6FQETE5FQIxK++//57x+WQIyMjHZdHDg0N5YEHHjjt23vppZeY\nN29ei59fWFhISkrKaY9DJJAE1B3KxHwuuugiiouLAcjJySE0NJRJkyb5bHv33Xefz97bGw0NDbRp\n4///fnV1dYSFhfk7DPEz7RFIQDl+fuOJv4lPnTqVjIwMrrvuOqKionjjjTd4+OGH6dOnD8nJyTQ0\nNADwySefkJCQQL9+/Rg2bJjjmjEnmjp1Kn/5y18ASEhIICsri/j4eHr27MkHH3zg9HyLxcKBAwe4\n44476NWrFyNHjnQ89u6773LVVVfRp08fMjMzqa+vB47dKKi2thaATZs2MXjwYMe2R40axaBBg8jI\nyODLL7+kf//+xMXFERsby7Zt205XGlts0aJFxMTE8Pzzz/Pdd9+d8e1LYFAhkLNCeXk5a9asYenS\npYwcOZKkpCQ+//xz2rZty/Llyzly5AgPPvgg//znP9m0aRN33303//mf/+n0PideUdJisdDY2MjH\nH3/MX//6V3JycpyebxgGxcXFTJ8+ndLSUr7++ms2bNjAoUOHuPvuu1m8eDGff/45DQ0N/O1vf3O8\nrzubN2/m3Xff5dVXX+Wll15iwoQJFBcX88knn/jlIorjxo1jxYoVHDx4kOuuu4477riDt99+2/T3\nKzAbFQIJeBaLheTkZM455xyuvPJKjh49yg033ABATEwMFRUVlJWV8eWXX5KYmEhcXBz/9V//1aL7\nVdx2220AXHXVVVRUVLh8Tv/+/bnkkkuwWCzY7XbKy8vZsmULl19+Od26dQOO3cTk/fffb/b7SE1N\n5bzzzgPg17/+NX/605/47//+byoqKjj//PNbmpLTymq18thjj1FaWsrdd9/N3Xffza233uqXWMQ/\n/N+kFGmBc889F4CgoCCCg4Md64OCgmhoaMAwDHr37s2GDRu8et/jH8rnnHOOo8Xk7jknPu+Xv/Ub\nhuFY16ZNG44ePQrAoUOHmjyvXbt2jq/T09MZMGAAy5Yt48Ybb+Sll15ytJE8qaysdFx5d9y4cTQ2\nNvLyyy9jsVhYvnw5Y8aM4dtvv+Xqq69m7NixjrnIU089xccff8zy5cuxWCx8+umnjvcsKipizpw5\nrF69mjvvvJN777232Tik9VAhkIDXkjZFz5492bNnDx999BEDBgzgyJEjbN26FZvNdlLv54nFYqFn\nz55UVFSwfft2rrjiCubNm8f1118PHJsRbNq0iWHDhvHPf/7T7XbLy8u5/PLLefDBB9mxYwdffPFF\niwpB165dHQP24+6//37H12+//XaTx058bkpKCs8884xjedWqVfzxj38kMjKSsWPHMmPGjIAYYsuZ\npX9xCSgn9u9dfX3ic05cDg4O5vXXX+cPf/gD+/bto6GhgYkTJ7osBO56+K7Wu7tL1XnnncecOXO4\n4447aGhooH///owbNw6AJ598kszMTNq3b09CQoLb72Px4sXMmzeP4OBgIiMjXc40fK1jx44sW7as\nyW1gxXx0GWoREZPTsFhExORUCERETE6FQETE5FQIRERMToVARMTkVAhERExOhUBExORUCERETO7/\nAV3udrfsY+WJAAAAAElFTkSuQmCC\n", "text": [ "" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.12, Page Number: 54" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "%pylab inline\n", "\n", "\n", "#Calculation:\n", "M1 = 800 #max demand of consumer 1(Watts)\n", "M2 = 1000 #max demand of consumer 2(Watts)\n", "M3 = 1200 #max demand of consumer 3(Watts)\n", "\n", "n1 = linspace(0,8,10);\n", "m1 = linspace(200,200,10);\n", "plot(n1,m1);\n", "\n", "hold(True);\n", "n2 = linspace(8,14,10);\n", "m2 = linspace(800,800,10);\n", "plot(n2,m2,'b');\n", "\n", "n3 = linspace(14,16,10);\n", "m3 = linspace(2400,2400,10);\n", "plot(n3,m3,'b');\n", "\n", "n4 = linspace(16,22,10);\n", "m4 = linspace(800,800,10);\n", "plot(n4,m4,'b');\n", "\n", "n5 = linspace(22,24,10);\n", "m5 = linspace(400,400,10);\n", "plot(n5,m5,'b');\n", "\n", "ylim(0,2500);\n", "xlim(0,24);\n", "grid(linewidth=0.5);\n", "ylabel(\"Load in Watts ------>\");\n", "xlabel(\"Time in hours ----->\");\n", "title(\"Daily Load Curve\");\n", "annotate(\"(Midnight)\",xy=(0,0));\n", "annotate(\"(Midnight)\",xy=(24,0));\n", "annotate(\"(Noon)\",xy=(12,0));\n", "\n", "#load factors of each consumers:\n", "LF1 = (600*6+200*2+800*6)/(24*M1)\n", "LF2 = (200*8+1000*2+200*2)/(24*M2)\n", "LF3 = (200*6+1200*2+200*2)/(24*M3)\n", "#The simultaneous maximum demand on the station is 200 + 1000 + 1200 = 2400 W\n", "#and occurs from 2 P.M. to 4 P.M.\n", "DF = (M1+M2+M3)/2400.0 #Diversity factor\n", "LF = (200*8+800*6+2400*2+800*6+400*2)/(24*2400.0) #load factor\n", "\n", "#Results:\n", "print \"(i) The maximum demand of individual consumers are:\"\n", "print \"\\tConsumer 1 =\",M1,\"W, Consumer 2 =\",M2,\"W, Consumer 3 =\",M3,\"W\"\n", "print \"\\n(ii)Load Factors of individual consumers are:\"\n", "print \"\\tConsumer 1 =\",round(LF1*100,1),\"%, Consumer 2 =\",round(LF2*100,1),\"\"\"%,\n", "\\tConsumer 3 =\"\"\",round(LF3*100,1),\"%\"\n", "print \"\\n(iii)Diversity factor is \",DF\n", "print \"\\n(iv) Load factor of the station is\",round(LF*100,1),\"%\"\n", "print \"\\n The load curve is shown below:\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Populating the interactive namespace from numpy and matplotlib\n", "(i) The maximum demand of individual consumers are:" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\tConsumer 1 = 800 W, Consumer 2 = 1000 W, Consumer 3 = 1200 W\n", "\n", "(ii)Load Factors of individual consumers are:\n", "\tConsumer 1 = 45.8 %, Consumer 2 = 16.7 %,\n", "\tConsumer 3 = 13.9 %\n", "\n", "(iii)Diversity factor is 1.25\n", "\n", "(iv) Load factor of the station is 29.2 %\n", "\n", " The load curve is shown below:\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAboAAAEZCAYAAADhf+DFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8DPf+P/DXREKRRIJKIquSusWSm8tG6xZfgqQVWhXi\nkovotzilKb1ozzkknCNxeijaOl9fjcuDCtE6KE3q6FcoKm4JjrgESSUrghNBULnN7w+/TMVOJGE3\nm515PR+PfTwys7Oz77yNzzufee/MCqIoiiAiIlIoK3MHQEREZEosdEREpGgsdEREpGgsdEREpGgs\ndEREpGgsdEREpGgsdKRoV65cgZ2dHSqvovH390dCQoKZo6qelZUVLl++bO4wiBSFhY4aNDc3NzRr\n1gz29vZwdHRE3759sXLlStT28s+XXnoJd+/ehSAIAABBEKSf62Lt2rXo379/nV9nbD/++CMGDBgA\ne3t7tGnTBv7+/vj+++/NHRZRg8ZCRw2aIAjYuXMn7ty5gytXrmDOnDlYtGgRoqKizB1avfv2228R\nEhKCiIgI6PV6XL9+HfPnz3+mQieKYq3/WCCydCx0ZDHs7OwwYsQIbN68GevWrcOZM2cAALt27YKv\nry9atGiBl156CbGxsdJrcnJyYGVlhYqKiir7KikpQcuWLfHvf/9bWnf9+nU0b94c//nPf+oU16FD\nh9C7d284ODhAp9Phl19+kZ5bs2YNtFot7O3t0aFDB/zv//5vldd+9tlnaNu2LTQaDVavXl3te4ii\niFmzZmHu3LmYPHky7OzsAAADBgyQ9hkTE4NJkyZV+7v7+/vjT3/6E/r27YvmzZvjs88+Q+/evau8\nz+eff46RI0cCAB4+fIgPPvgA7du3h7OzM6ZNm4bffvutTrkhaghY6Mji9O7dGxqNBgcOHAAA2Nra\nYsOGDbh9+zZ27dqFf/zjH9i+fftT99G4cWOEhoZiw4YN0rrExEQMGTIErVq1qnUshYWFeO211xAd\nHY3CwkLMmjULr732GgoLCwEATk5O2LVrF+7cuYM1a9bg/fffR3p6OgAgJSUFixcvxp49e3DhwgXs\n2bOn2vc5f/488vLy8NZbb1W7TW1OyW7YsAFff/01iouLMXXqVJw/fx4XL16Unt+4cSMmTJgAAJgz\nZw4uXryIkydP4uLFi9Dr9Zg/f36t8kLUkLDQkUVq27atVEwGDhyIbt26AQA8PT0xbtw47Nu3r8Z9\nhIWFITExUVpev359lRlRbezatQtdunTBhAkTYGVlhXHjxsHDw0M6nRgUFAR3d3cAj2ZfQ4cOxc8/\n/wwASEpKwuTJk6HVatGsWbMqM9EnVc4yXVxcqt2mplORgiAgIiICXbt2hZWVFezt7TFy5EgpB1lZ\nWTh//jyCg4MhiiJWrVqFJUuWwMHBAba2tvjkk0+wadOm2ieHqIFgoSOLpNfr0bJlSwBAWloaBg0a\nhDZt2sDBwQErV66s1elHPz8/NG3aFKmpqTh37hwuXbqE4ODgOsVx9epVvPTSS1XWtW/fHlevXgUA\nJCcno0+fPmjVqhUcHR3xww8/SLHl5+ejXbt20uue3M/jKmeZ+fn5dYrvSY+/HwCMHz9eKnQbN27E\nG2+8gRdeeAE3btzA/fv30bNnTzg6OsLR0RGBgYG4efPmc70/kTmw0JHFOXr0KPR6Pfr16wfg0WA9\natQo5OXloaioCFOnTjXoyVUnPDwcGzZswPr16zFmzBg0bty4TrG4urri119/rbLu119/haurKx4+\nfIjRo0fjo48+wvXr13Hr1i0EBQVJMy8XFxdcuXJFet3jPz+pS5cuaNeuHb799ttqt7G1tcX9+/el\n5WvXrhls8+TpzSFDhuDGjRs4efIkNm3ahPHjxwMAWrdujaZNmyIzMxO3bt3CrVu3UFRUhDt37jwl\nG0QNEwsdNXiVheHOnTvYuXMnQkNDMWnSJOl0ZXFxMRwdHdG4cWMcOXIEGzdufGq/6vFTfBMnTsTW\nrVvxzTffICwsrMY4Hj58iN9++016BAUF4cKFC0hMTERZWRk2b96Mc+fO4fXXX0dJSQlKSkrQunVr\nWFlZITk5Gbt375b2FxISgrVr1+Ls2bO4f//+U09dCoKAJUuWYMGCBVi7di3u3LmDiooKHDhwAO+8\n8w4AwNvbG/v370dubi5u376NuLi4p/7uAGBjY4MxY8bggw8+wK1btxAQEADg0fV8b7/9NqKjo3Hj\nxg0Aj2bRj8dPZClY6KjBGzFiBOzt7fHSSy8hLi4Os2fPxpo1a6TnV6xYgblz58Le3h4LFizA2LFj\nq7z+yaL3+HK7du3Qo0cPWFlZSTNEOYIg4NChQ2jatCmaNWuGZs2aoXnz5nBwcMDOnTuxePFitG7d\nGn//+9+xc+dOtGzZEnZ2dli+fDlCQkLQsmVLJCYmSp9oBIDhw4cjOjoa//Vf/4XOnTtj8ODBTy3Q\no0ePxubNm7F69Wq4urrC2dkZc+fOxahRowAAAQEBGDt2LLy8vNC7d2+MGDHiqb97pfHjx+Onn37C\nmDFjYGX1+5CwaNEidOzYEX369EGLFi0QEBCACxcuVBsfUUMlmOqLV3NzcxEWFobr169DEAT893//\nN2bOnImYmBh8/fXXePHFFwEACxcuRGBgIAAgLi4Oq1evRqNGjbB8+XIMHToUAHD8+HFERERIf0Ev\nW7bMFCGTSkVFRcHV1ZWfKCRSKJMVumvXruHatWvw8fFBcXExevbsiW3btiEpKQl2dnaYNWtWle0z\nMzMxfvx4qf8yZMgQZGVlQRAE6HQ6fPnll9DpdAgKCsLMmTMxfPhwU4RNKpOTkwNfX19kZGSgffv2\n5g6HiEzAZKcunZ2d4ePjA+BRk7xr167Q6/UA5D8GvX37doSGhsLGxgZubm7o2LEj0tLSkJ+fj7t3\n70Kn0wF49JHwbdu2mSpsUpE///nP8PT0xEcffcQiR6Rg9dKjy8nJQXp6Ovr06QMA+OKLL+Dt7Y2o\nqCgUFRUBePQxbY1GI71Go9FAr9cbrHd1dZUKJtHzWLBgAe7evYtPPvnE3KEQkQmZvNAVFxfjrbfe\nwrJly2Bra4tp06YhOzsbGRkZcHFxwezZs00dAhERqZi1KXdeWlqK0aNHY+LEidInw9q0aSM9P2XK\nFIwYMQLAo5labm6u9FxeXh40Gg1cXV2Rl5dXZb2rq6vBe7m6ukoX6RIRUe14e3sjIyPD3GGYlMlm\ndKIoIioqClqtFtHR0dL6x+/s8M9//hOenp4AgODgYGzatAklJSXIzs5GVlYWdDodnJ2dYW9vj7S0\nNIiiiPXr10tF83FXr16V7sjOx++PefPmmT2GhvhgXpgT5uXR4+TJk6YqAw2GyWZ0Bw8exIYNG+Dl\n5QVfX18Ajy4lSExMREZGBgRBgLu7O1auXAkA0Gq1CAkJgVarhbW1NVasWCFd87NixQpERETgwYMH\nCAoK4icu6yAnJ8fcITRIzIsh5kQe82L5TFbo+vXrJ3sbpspr5uR8+umn+PTTTw3W9+zZE6dPnzZq\nfEREpA68M4rCRUREmDuEBol5McScyGNeLJ/JLhivb4IgQCG/ChFRvVHD2MkZncKlpqaaO4QGiXkx\nxJzIY14sHwsdEREpGk9dEhGpmBrGTpNeME5E5vGUb/sxCYWPk2TheOpS4dhfkKf0vIhi3R9796Y+\n0+uUXuSUfqyoAQsdEREpGnt0REQqpoaxkzM6IiJSNBY6hWN/QR7zYog5kce8WD4WOiIiUjT26IiI\nVEwNYydndEREpGgsdArH/oI85sUQcyKPebF8LHRERKRo7NEREamYGsZOzuiIiEjRWOgUjv0FecyL\nIeZEHvNi+VjoiIhI0dijIyJSMTWMnZzRERGRorHQKRz7C/KYF0PMiTzmxfKx0BERkaKxR0dEpGJq\nGDs5oyMiIkVjoVM49hfkMS+GmBN5zIvlY6EjIiJFY4+OiEjF1DB2ckZHRESKxkKncOwvyGNeDDEn\n8pgXy8dCR0REisYeHRGRiqlh7OSMjoiIFI2FTuHYX5DHvBhiTuQxL5aPhY6IiBTNZIUuNzcXgwYN\nQrdu3dC9e3csX74cAFBYWIiAgAB07twZQ4cORVFRkfSauLg4dOrUCR4eHti9e7e0/vjx4/D09ESn\nTp3w3nvvmSpkRfL39zd3CA0S82KIOZHHvFg+kxU6GxsbfP755zhz5gwOHz6Mr776CmfPnkV8fDwC\nAgJw4cIFDB48GPHx8QCAzMxMbN68GZmZmUhJScH06dOlBum0adOQkJCArKwsZGVlISUlxVRhExGR\nwpis0Dk7O8PHxwcAYGtri65du0Kv12PHjh0IDw8HAISHh2Pbtm0AgO3btyM0NBQ2NjZwc3NDx44d\nkZaWhvz8fNy9exc6nQ4AEBYWJr2Gasb+gjzmxRBzIo95sXz10qPLyclBeno6/Pz8UFBQACcnJwCA\nk5MTCgoKAABXr16FRqORXqPRaKDX6w3Wu7q6Qq/X10fYRESkANamfoPi4mKMHj0ay5Ytg52dXZXn\nBEGAIAhGe6+IiAi4ubkBABwcHODj4yOdX6/8q4zLXK6UmpraYOJpKMuVGko8DWHZ39+/QcXzvMup\nqalYu3YtAEjjpdKZ9ILx0tJSvP766wgMDER0dDQAwMPDA6mpqXB2dkZ+fj4GDRqEc+fOSb26OXPm\nAACGDx+O2NhYtG/fHoMGDcLZs2cBAImJidi3bx/+53/+p+ovooKLHomIjE0NY6fJTl2KooioqCho\ntVqpyAFAcHAw1q1bBwBYt24dRo0aJa3ftGkTSkpKkJ2djaysLOh0Ojg7O8Pe3h5paWkQRRHr16+X\nXkM1e/IvdXqEeTHEnMhjXiyfyU5dHjx4EBs2bICXlxd8fX0BPLp8YM6cOQgJCUFCQgLc3NyQlJQE\nANBqtQgJCYFWq4W1tTVWrFghndZcsWIFIiIi8ODBAwQFBWH48OGmCpuIiBSG97okIlIxNYydvDMK\nEREpGgudwrG/II95McScyGNeLB8LHRERKRp7dEREKqaGsZMzOiIiUjQWOoVjf0Ee82KIOZHHvFg+\nFjoiIlI09uiIiFRMDWMnZ3RERKRoLHQKx/6CPObFEHMij3mxfCx0RESkaOzRERGpmBrGzlrN6O7d\nu4cWLVpgz549po6HiIjIqGpV6LZs2YJu3bohISHB1PGQkbG/II95McScyGNeLF+tCl1CQgISEhKQ\nkZGBW7dumTomIiIio6mxR3fu3DlMmTIFBw4cQGxsLFq2bIkZM2bUV3y1pobzzERExqaGsbPGGV1C\nQgIiIyMBAOHh4Vi9erXJgyIiIjKWpxa60tJSfPfddxg7diwAwM3NDa1atcKxY8fqJTh6fuwvyGNe\nDDEn8pgXy2f9tCcrC52tra207uuvv4a19VNfRkRE1GDU6Tq6EydOoEePHqaM55mp4TwzEZGxqWHs\nrNOdUaKiokwVBxERkUnwFmAKx/6CPObFEHMij3mxfHUqdPPmzTNVHERERCZRpx7dvHnzEBsba8p4\nnpkazjMTERmbGsbOOs3oduzYYao4iIiITKJOhU7pVV+J2F+Qx7wYYk7kMS+Wr06F7sSJE6aKg4iI\nyCTq1KPr0aNHgy12ajjPTERkbGoYO3nqkoiIFK1Ohe61114zVRxkIuwvyGNeDDEn8pgXy1enQufn\n52eqOIiIiEyiTj06X19fpKenmzKeZ6aG88xERMamhrGTtwAjIiJFq1OhW7lypaniIBNhf0Ee82KI\nOZHHvFi+OhW6r7/+2lRxEBERmUSdCt3Ro0frtPPJkyfDyckJnp6e0rqYmBhoNBr4+vrC19cXycnJ\n0nNxcXHo1KkTPDw8sHv3bmn98ePH4enpiU6dOuG9996rUwxq5+/vb+4QGiTmxRBzIo95sXx1KnRt\n2rSp084jIyORkpJSZZ0gCJg1axbS09ORnp6OwMBAAEBmZiY2b96MzMxMpKSkYPr06VKDdNq0aUhI\nSEBWVhaysrIM9klERFSdOhW6tWvX1mnn/fv3h6Ojo8F6uU/4bN++HaGhobCxsYGbmxs6duyItLQ0\n5Ofn4+7du9DpdACAsLAwbNu2rU5xqBn7C/KYF0PMiTzmxfKZ5YLxL774At7e3oiKikJRUREA4OrV\nq9BoNNI2Go0Ger3eYL2rqyv0er1R4iAiIuWr91uATZs2DdnZ2cjIyICLiwtmz5793Puk6rG/II95\nMcScyGNeLJ91XTZ+++23n/sNH+/zTZkyBSNGjADwaKaWm5srPZeXlweNRgNXV1fk5eVVWe/q6iq7\n74iICLi5uQEAHBwc4OPjIx2klacfuMxlLnNZzcupqalSG6pyvFQ80cSys7PF7t27S8tXr16Vfl6y\nZIkYGhoqiqIonjlzRvT29hYfPnwoXr58WXz55ZfFiooKURRFUafTiYcPHxYrKirEwMBAMTk52eB9\n6uFXsUh79+41dwgNEvNiiDmRp/S8qGHsrNOMrq5CQ0Oxb98+3Lx5E+3atUNsbCxSU1ORkZEBQRDg\n7u4uXYSu1WoREhICrVYLa2trrFixAoIgAABWrFiBiIgIPHjwAEFBQRg+fLgpwyYiIgWp070uGzI1\n3K+NiMjY1DB28l6XRESkaCx0ClfZhKaqmBdDzIk85sXysdAREZGi1alHV1hYiLy8PHh5eZkypmei\nhvPMRETGpoaxs8YZ3cCBA3Hnzh0UFhaiZ8+emDJlCt5///36iI2IiOi51Vjobt++DXt7e2zduhVh\nYWE4cuQI9uzZUx+xkRGwvyCPeTHEnMhjXixfjYWuvLwc+fn5SEpKku51WXl9GxERUUNXY6GbO3cu\nhg0bhg4dOkCn0+HSpUvo1KlTfcRGRlB5CyCqinkxxJzIY14sX413RnFxccGpU6ek5Q4dOrBHR0RE\nFqPGGd2MGTMM1s2cOdMkwZDxsb8gj3kxxJzIY14sX7Uzul9++QWHDh3CjRs3sGTJEunjp3fv3kV5\neXm9BUhERPQ8qi10JSUlUlG7e/eutN7e3h7ffvttvQRHz4/9BXnMiyHmRB7zYvmqLXQDBw7EwIED\n0axZM3z00UdVntuyZQs/kEJERBahxh5dYmKiwbqFCxeaJBgyPvYX5DEvhpgTecyL5at2RpecnIwf\nfvgBer0eM2fOrNKjs7GxqbcAiYiInke197o8efIk0tPTMXfuXCxYsEAqdPb29hg0aBAcHR3rNdCa\nqOF+bURExqaGsbPGmzqXlJSgcePG9RXPM1PDPxYRkbGpYeyssUeXk5ODt956C1qtFu7u7nB3d8fL\nL79cH7GREbC/II95McScyGNeLF+NhS4yMhJTp06FtbU1UlNTER4ejgkTJtRHbERERM+txlOXPXr0\nwIkTJ+Dp6YnTp09XWdeQqGH6TURkbGoYO2u81+ULL7yA8vJydOzYEV9++SXatm2Le/fu1UdsRERE\nz63GU5fLli3D/fv3sXz5chw7dgwbNmzAunXr6iM2MgL2F+QxL4aYE3nMi+Wrdkbn7e2Nvn37om/f\nvmjdujXc3d2xdu3aegyNiIjo+VXbozt9+jQOHTqEQ4cO4ZdffkFxcTFeffVV9O3bF6+++ir8/Pzq\nO9anUsN5ZiIiY1PD2Fnjh1Eq3bx5E5s2bcLSpUuRnZ3d4L7BQA3/WERExqaGsbPaHl15eTmOHj2K\nZcuWYezYsRg2bBj+9a9/YcqUKfi///u/+oyRngP7C/KYF0PMiTzmxfJV26Ozs7ODVqvFH/7wB8TF\nxfEicSIiskjVnrpMTEzEoUOHcOLECVhZWUGn0+GVV17BK6+8AldX1/qOs0ZqmH4TERmbGsbOWvXo\n7t+/jyNHjuDgwYNYs2YNSkpKcOXKlfqIr9bU8I9FRGRsahg7n3od3b179/DTTz9h8eLFWLRoET7/\n/HPY2toiODi4vuKj58T+gjzmxRBzIo95sXzV9uh8fX1x5coV9OrVC3379sXs2bPh5+cHOzu7+oyP\niIjouTz1++g8PT1hZVXjzVMaBDVMv4mIjE0NY2etr6Nr6NTwj0VEZGxqGDstY7pGz4z9BXnMiyHm\nRB7zYvlY6IiISNFqdery4MGDyMnJQVlZ2aMXCQLCwsJMHlxdqGH6TURkbGoYO2uc0U2cOBEffvgh\nDh48iGPHjuHYsWM4evRorXY+efJkODk5wdPTU1pXWFiIgIAAdO7cGUOHDkVRUZH0XFxcHDp16gQP\nDw/s3r1bWn/8+HF4enqiU6dOeO+99+ry+xERkdqJNfDw8BArKipq2kzW/v37xRMnTojdu3eX1n34\n4YfiokWLRFEUxfj4ePHjjz8WRVEUz5w5I3p7e4slJSVidna22KFDB+l9e/fuLaalpYmiKIqBgYFi\ncnKywXvV4ldRpb1795o7hAaJeTHEnMhTel7UMHbWOKPr3r078vPzn6mI9u/fH46OjlXW7dixA+Hh\n4QCA8PBwbNu2DQCwfft2hIaGwsbGBm5ubujYsSPS0tKQn5+Pu3fvQqfTAQDCwsKk1xAREdWk2gvG\nK924cQNarRY6nQ5NmjQB8Oic7o4dO57pDQsKCuDk5AQAcHJyQkFBAQDg6tWr6NOnj7SdRqOBXq+H\njY0NNBqNtN7V1RV6vf6Z3luN/P39zR1Cg8S8GGJO5DEvlq/GQhcTE2OyNxcEAYIgmGz/RERENRY6\nY/814+TkhGvXrsHZ2Rn5+flo06YNgEcztdzcXGm7vLw8aDQauLq6Ii8vr8r66r49ISIiAm5ubgAA\nBwcH+Pj4SPFXXgujtuXKdQ0lnoayvHTpUh4fTyxnZGQgOjq6wcTTUJaf/L9k7niM8fusXbsWAKTx\nUvGqa969+uqroiiKYvPmzUVbW9sqDzs7u1o3AbOzsw0+jBIfHy+KoijGxcUZfBjl4cOH4uXLl8WX\nX35Z+jCKTqcTDx8+LFZUVPDDKHWk9Eb6s2JeDDEn8pSeFzWMnSa9BVhoaCj27duHmzdvwsnJCfPn\nz8fIkSMREhKCK1euwM3NDUlJSXBwcAAALFy4EKtXr4a1tTWWLVuGYcOGAXh0eUFERAQePHiAoKAg\nLF++3OC91HAtCBGRsalh7OS9LomIVEwNYydvAaZwj/cX6HfMiyHmRB7zYvlY6IiISNF46pKISMXU\nMHZWe3mBra1ttde4CYKAO3fumCwoIiIiY6n21GVxcTHu3r2L9957D4sWLYJer4der8ff/vY33ljZ\ngrC/II95McScyGNeLF+NPbodO3Zg+vTpsLe3h729PaZNm4bt27fXR2xERETPrcZC17x5c2zYsAHl\n5eUoLy/HN998A1tb2/qIjYyg8s4IVBXzYog5kce8WL4aC93GjRuRlJQEJycnODk5ISkpCRs3bqyP\n2IiIiJ4bP3WpcKmpqfyLVAbzYog5kaf0vKhh7Kzxps4PHjxAQkICMjMz8dtvv0nrV69ebdLAiIiI\njKHGU5eTJk1CQUEBUlJSMHDgQOTm5rJHZ0GU/Jfo82BeDDEn8pgXy1fjqUsfHx9kZGTAy8sLp06d\nQmlpKfr164e0tLT6irFW1DD9JiIyNjWMnTXO6Bo3bgwAaNGiBU6fPo2ioiLcuHHD5IGRcfAaIHnM\niyHmRB7zYvlq7NG9/fbbKCwsxF/+8hcEBwejuLgYCxYsqI/YSEX4RfPGV19/pPPfzvgUPsGqd/zU\nJRGRiqlh7Kzx1GVRURHef/999OzZEz179sTs2bNx+/bt+oiNiIjoudVY6CZPngx7e3ts2bIFSUlJ\nsLOzQ2RkZH3ERkbA/oI85sUQcyKPebF8NfboLl26hK1bt0rLMTEx8Pb2NmlQRERExlLjjK5p06b4\n+eefpeUDBw6gWbNmJg2KjIfXAMljXgwxJ/KYF8tX44dRMjIyEBYWJvXlHB0dsW7dugY3q1NDQ5WI\nyNjUMHbWOKPz8fHBqVOnpEdGRgb27t1bH7GREbC/II95McScyGNeLF+Nha5SixYt0KJFCwDA4sWL\nTRYQERGRMT3TdXTt2rVDbm6uKeJ5ZmqYfhMRGZsaxs5az+iIiIgsUbWFztbWFnZ2drKPq1ev1meM\n9BzYX5DHvBhiTuQxL5av2uvoiouL6zMOIiIik+C9LomIVEwNYyd7dEREpGgsdArH/oI85sUQcyKP\nebF8LHRERKRo7NEREamYGsZOzuiIiEjRWOgUjv0FecyLIeZEHvNi+VjoiIhI0dijIyJSMTWMnZzR\nERGRopmt0Lm5ucHLywu+vr7Q6XQAgMLCQgQEBKBz584YOnQoioqKpO3j4uLQqVMneHh4YPfu3eYK\n2+KwvyCPeTHEnMhjXiyf2QqdIAhITU1Feno6jhw5AgCIj49HQEAALly4gMGDByM+Ph4AkJmZic2b\nNyMzMxMpKSmYPn06KioqzBU6ERFZELP16Nzd3XHs2DG0atVKWufh4YF9+/bByckJ165dg7+/P86d\nO4e4uDhYWVnh448/BgAMHz4cMTEx6NOnj/RaNZxnJiIyNjWMnWad0Q0ZMgS9evXCqlWrAAAFBQVw\ncnICADg5OaGgoAAAcPXqVWg0Gum1Go0Ger2+/oMmIiKLU+3X9JjawYMH4eLighs3biAgIAAeHh5V\nnhcEAYIgVPt6ueciIiLg5uYGAHBwcICPjw/8/f0B/H6eXW3LlesaSjwNZXnp0qU8Pp5YzsjIQHR0\ndIOJp6EsP/l/ydzxGOP3Wbt2LQBI46XSNYjLC2JjY2Fra4tVq1YhNTUVzs7OyM/Px6BBg3Du3Dmp\nVzdnzhwAj05dxsbGws/PT9qHGqbfzyI1NVU62Ol3zIsh5kSe0vOihrHTLIXu/v37KC8vh52dHe7d\nu4ehQ4di3rx52LNnD1q1aoWPP/4Y8fHxKCoqQnx8PDIzMzF+/HgcOXIEer0eQ4YMwcWLF6vM6tTw\nj0VEZGxqGDvNcuqyoKAAb7zxBgCgrKwMEyZMwNChQ9GrVy+EhIQgISEBbm5uSEpKAgBotVqEhIRA\nq9XC2toaK1aseOppTSIiokoN4tSlMajhr5JnofTTLs+KeTHEnMhTel7UMHbyzihERKRonNEREamY\nGsZOzuiIiEjRWOgU7vFrgOh3zIsh5kQe82L5zHbBOBERGeIHyo2PPToiIhVTw9jJU5dERKRoLHQK\nx/6CPOb5sx9jAAAObklEQVTFEHMij3mxfCx0RESkaOzRERGpmBrGTs7oiIhI0VjoFI79BXnMiyHm\nRB7zYvlY6IiISNHYoyMiUjE1jJ2c0RERkaKx0Ckc+wvymBdDzIk85sXysdAREZGisUdHRKRiahg7\nOaMjIiJFY6FTOPYX5DEvhpgTecyL5WOhIyIiRWOPjohIxdQwdirqG8b5zbyWTeH/14jITBR16lIU\n+XjysXdvqtljqO2jPrHvYog5kce8WD5FFToiIqInsUdHRKRiahg7OaMjIiJFY6FTOPYX5DEvhpgT\necyL5WOhIyIiRWOPjohIxdQwdnJGR0REisZCp3DsL8hjXgwxJ/KYF8unqEL38OFDDBw4EJcvX4aV\nlRX+/Oc/S8/dvHkTNjY2mDFjBgBg5cqVWL9+vcE+cnJy4OnpWeN7vfbaa7hz585Tt/H398fx48cN\n1p88eRLJycnS8o4dO7BgwYIa35Ms25PH55dffik99+6772LdunVGfb9Tp04hKirKqPskZVL62Kmo\nQvfNN9/g9ddfR6NGjeDu7o4ffvhBem7Lli3o3r07hP9/n7B33nkHkyZNeub32rVrF+zt7Z+6jVDN\nPcnS09OrxDZixAh89913KC0tfeZ4quPv72/0fSqBOfLy+PHZpk0bLF++XPo3r+5YeR5eXl64dOkS\nrl+/XqvteazIU0NelD52KqrQJSYmYuTIkRBFEc2aNUPXrl2lvwqSkpIQEhIiNV1jYmKwePFiAMDx\n48fh7e0NHx8frFixQtrf2rVr8eabbyIwMBCdO3fGxx9/LD3n5uaGwsJCAMCCBQvg4eGB/v37Y/z4\n8dJ+gUcHiZ+fH7p06YIDBw6gtLQUc+fOxebNm+Hr64stW7ZAEAS88sor2L17t8lzRObz+PH54osv\nYvDgwbKzuIyMDPTp0wfe3t548803UVRU9NT1/v7+mDNnTpXjrFJgYCC2bNlSP78gWSylj50WU+hS\nUlLg4eGBTp06YdGiRbLb/Pvf/0bnzp2l5XHjxmHTpk3Iy8tDo0aN0LZtW+k5QRCkvxoiIyPx1Vdf\nISMjw2CfJ0+eRFJSEk6fPo3NmzdDr9dLrweAo0ePYuvWrTh16hSSk5Nx7NixKn+NlJeXIy0tDUuX\nLkVsbCxsbGywYMECjBs3Dunp6RgzZgwAQKfTYf/+/c+ZJUPsL8ir77yUl5cbHJ8fffQR/v73v6Oi\nogLA78dUWFgYPvvsM5w8eRKenp6IjY196npBEAyOs0p1Oa54rMhTQ16UPnZaRKErLy/Hu+++i5SU\nFGRmZiIxMRFnz5412M7Ozq7K8rBhw/Cvf/0LmzZtwtixY2X3ffv2bdy+fRv9+vUDAIMp+eDBg2Fn\nZ4cmTZpAq9Xi119/lZ4TRREHDx7EqFGj0LhxY9ja2mLEiBFVXv/mm28CAHr06IGcnBzpdU9+nLdt\n27bS88YkdwBS/efl5s2bBsenu7s7/Pz8sHHjRmld5fHYv39/AEB4eDj279+PO3fuyK6vJHecAYCL\ni0utjyseK/LUkBelj50WUeiOHDmCjh07ws3NDTY2Nhg3bhy2b99usN2TCbCxsUHPnj2xZMkSjBkz\nplbXijy5TZMmTaSfGzVqhLKysirPP3kNSnWvl3vt4yoqKkzSp6k8vUVVmSMvcsffp59+ikWLFkn/\ngZ88Bqo7Zmt7nMntszo8VuSpIS9KHzstotDp9Xq0a9dOWtZoNNI0+HHFxcUG62bPno1FixbBwcGh\nyvrKgaVFixZwcHDAwYMHATxqytaWIAjo27cvvv/+ezx8+BDFxcXYtWtXja+zt7fH3bt3q6zLz89H\n+/bta/3eZFlat24te3x26dIFWq0W33//PQRBgL29PRwdHaU+2/r16+Hv71/t+prwuKLaUPrYaRGF\nrrZ/kXbv3h3nz5+v8hqtVitNqR8/t/z4z2vWrMEf/vAH+Pr6Vnnt49tUp1evXggODoaXlxeCgoLg\n6emJFi1aPPX3GDRoEDIzM6WGKvBo1jpgwIBa/Z51YYrToUpQ33lp1KiR7PEJAH/84x+Rl5cnLa9b\ntw4ffvghvL29cerUKcydO/ep65/0+L7rclzxWJGnhrwofuwULcAvv/wiDhs2TFpeuHChGB8fX2Wb\nDh06iAD44IMPPviow8Pb21tcs2aNwZhaH4qLi0VRFMV79+6JvXr1EtPT0+v0+vLyctHb21ssLS19\n6nYWUehKS0vFl19+WczOzhYfPnwoent7i5mZmQbbPXz4UOzfv79YUVFRr/GNHz9e9PHxET08PJ7p\nYNm+fbu4YMECE0RGDUl9H58nT54Uo6Ki6uW9yLIpfey0mJs6JycnIzo6GuXl5YiKisInn3xi7pCI\niMgCWEyhIyIiehYW8WGUmtTmYnI1cnNzg5eXF3x9faHT6cwdjllMnjwZTk5OVe7BV1hYiICAAHTu\n3BlDhw5VxcfHnySXl5iYGGg0Gvj6+sLX1xcpKSlmjNA8cnNzMWjQIHTr1g3du3fH8uXLAfCYsXQW\nX+hqezG5GgmCgNTUVKSnp+PIkSPmDscsIiMjDQbs+Ph4BAQE4MKFCxg8eDDi4+PNFJ35yOVFEATM\nmjUL6enpSE9Px/Dhw80UnfnY2Njg888/x5kzZ3D48GF89dVXOHv2LI8ZC2fxha62F5OrldrPTPfv\n3x+Ojo5V1u3YsQPh4eEAHt1hZNu2beYIzazk8gLweHF2doaPjw8AwNbWFl27doVer+cxY+EsvtDV\n9mJyNRIEAUOGDEGvXr2watUqc4fTYBQUFMDJyQkA4OTkhIKCAjNH1HB88cUX8Pb2RlRUlOpPz+Xk\n5CA9PR1+fn48ZiycxRc6U9w2SykOHjyI9PR0JCcn46uvvsLPP/9s7pAanNpc2KoW06ZNQ3Z2NjIy\nMuDi4oLZs2ebOySzKS4uxujRo7Fs2TKD+0DymLE8Fl/oXF1dkZubKy3n5uZCo9GYMaKGw8XFBQDw\n4osv4o033lBtn+5JTk5OuHbtGoBHtw9q06aNmSNqGNq0aSMN4lOmTFHt8VJaWorRo0dj0qRJGDVq\nFAAeM5bO4gtdr169kJWVhZycHJSUlGDz5s0IDg42d1hmd//+femecPfu3cPu3btr9e2/ahAcHCx9\nD9y6deukwUzt8vPzpZ//+c9/qvJ4EUURUVFR0Gq1iI6OltbzmLFsiriOjheTG8rOzsYbb7wBACgr\nK8OECRNUmZfQ0FDs27cPN2/ehJOTE+bPn4+RI0ciJCQEV65cgZubG5KSkgxuXKt0T+YlNjYWqamp\nyMjIgCAIcHd3x8qVK6W+lFocOHAAAwYMgJeXl3R6Mi4uDjqdTvXHjCVTRKEjIiKqjsWfuiQiInoa\nFjoiIlI0FjoiIlI0FjoiIlI0FjoiIlI0FjoiIlI0FjpqkP7zn/9IXxfj4uIifX2MnZ0d3n33XaO/\n38qVK7F+/fpab5+amooRI0YYPQ4iMj5rcwdAJKdVq1ZIT08HAMTGxsLOzg6zZs0y2fu98847Jtt3\nXZSVlcHa2vz/LYuKinhBNCkGZ3RkESrva/D4TComJgbh4eEYMGAA3NzcsHXrVnzwwQfw8vJCYGAg\nysrKAADHjx+Hv78/evXqheHDh0v3LHxcTEwMFi9eDADw9/fHnDlz4Ofnhy5duuDAgQMG2wuCgOLi\nYowZMwZdu3bFxIkTped++ukn9OjRA15eXoiKikJJSQmAR1+EW1hYCAA4duwYBg0aJL33pEmT0K9f\nP4SHh+PMmTPQ6XTw9fWFt7c3Ll68aKw01tqmTZvg6emJJUuW4ObNm/X+/kTGxEJHFi07Oxt79+7F\njh07MHHiRAQEBODUqVNo2rQpdu3ahdLSUsyYMQPfffcdjh07hsjISPzxj3802M/jd6QXBAHl5eVI\nS0vD0qVLERsba7C9KIpIT0/HsmXLkJmZicuXL+PQoUP47bffEBkZiaSkJJw6dQplZWX4xz/+Ie23\nOufOncNPP/2Eb775BitXrkR0dDTS09Nx/Phxs9ykfOrUqUhOTsb9+/cxYMAAjBkzBj/++KPqv6+O\nLBMLHVksQRAQGBiIRo0aoXv37qioqMCwYcMAAJ6ensjJycGFCxdw5swZDBkyBL6+vvjrX/9aq+8r\nfPPNNwEAPXr0QE5Ojuw2Op0Obdu2hSAI8PHxQXZ2Ns6fPw93d3d07NgRwKMv6dy/f3+Nv0dwcDCa\nNGkCAHjllVewcOFC/O1vf0NOTg5eeOGF2qbEqDQaDf70pz8hMzMTkZGRiIyMlO6fSmRJzN8MIHoO\njRs3BgBYWVnBxsZGWm9lZYWysjKIoohu3brh0KFDddpvZdFp1KiRdAq0um0e3+7JWZsoitI6a2tr\nVFRUAAB+++23Kts1a9ZM+jk0NBR9+vTBzp07ERQUhJUrV0qnOZ8mNzdX+uaOqVOnory8HKtWrYIg\nCNi1axciIiJw/fp19O7dG1OmTJH6kvPnz0daWhp27doFQRBw4sQJaZ9HjhzBmjVrsGfPHowbNw5v\nv/12jXEQNTQsdGSxanMarUuXLrhx4wYOHz6MPn36oLS0FFlZWdBqtc+0v6cRBAFdunRBTk4OLl26\nhA4dOmD9+vUYOHAggEc9umPHjmH48OH47rvvqn3f7OxsuLu7Y8aMGbhy5QpOnz5dq0LXrl076QM8\nlaZPny79/OOPP1Z57vFtR4wYgb/85S/S8u7du/Hhhx/CxcUFU6ZMwRdffNEgPiRD9Cx45JJFeLx/\nJvfz49s8vmxjY4Nvv/0WM2fOxO3bt1FWVob3339fttBV10OTW1/dt0w3adIEa9aswZgxY1BWVgad\nToepU6cCAObNm4eoqCjY29vD39+/2t8jKSkJ69evh42NDVxcXGR7iqbWunVr7Ny5E+3atav39yYy\nNn5NDxERKRo/jEJERIrGQkdERIrGQkdERIrGQkdERIrGQkdERIrGQkdERIrGQkdERIrGQkdERIr2\n/wAb/9x823/nZQAAAABJRU5ErkJggg==\n", "text": [ "" ] } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.13, Page Number: 55" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "\n", "#Variable declaration:\n", "A = 12 #Area of load curve(cm**2)\n", "Lo = 1000 #load under 1cm length(kW)\n", "To = 2 #time under 1cm length(hr)\n", "M = 3000 #maximum demand(kW)\n", "\n", "#Calculation:\n", "L = Lo*To*A/24 #Average load(kW)\n", "LF = L/M #load factor\n", "\n", "\n", "#Results:\n", "print \"Load factor is\",round(LF*100,1),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Load factor is 33.3 %\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.14, Page Number: 56" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "#Variable declaration:\n", "C = 75 #Capacity of each generator(MW)\n", "n = 4 #No. of generators\n", "CV = 10000 #Calorific value of oil used(kcal/kg)\n", "H = 2860 #Avg heat rate(kcal/kWh)\n", "\n", "\n", "#Calculation:\n", "E = (260*6+200*8+160*4+100*6) #Units generated per day(MWh)\n", "L = E/24 #Avg load(MW)\n", "LF =L/260 #Load factor\n", "PCF = L/(n*C) #Plant capacity\n", "TH = H*E*10**3 #heat generated per day(kcal)\n", "w = TH/CV #daily fuel requirement(kg)\n", "\n", "print \"Daily load factor is\",round(LF*100,1),\"%\"\n", "print \"Plant capacity factor is\",round(PCF*100,1),\"%\"\n", "print \"Daily fuel requirement is (\",w/1000,\"* 10^3) kg\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Daily load factor is 70.5 %\n", "Plant capacity factor is 61.1 %\n", "Daily fuel requirement is ( 1258.4 * 10^3) kg\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.15, Page Number: 56" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "%pylab inline\n", "\n", "#Calculations:\n", "E = 20*2+40*4+60*4+20*4+50*4+20*6 #Units generated per day(MWh)\n", "\n", "#1st plot\n", "subplot(1,3,1)\n", "n1 = linspace(0,8,10);\n", "m1 = linspace(20,20,10);\n", "plot(n1,m1);\n", "\n", "hold(True);\n", "n2 = linspace(8,12,10);\n", "m2 = linspace(40,40,10);\n", "plot(n2,m2,'b');\n", "\n", "n3 = linspace(12,16,10);\n", "m3 = linspace(60,60,10);\n", "plot(n3,m3,'b');\n", "\n", "n4 = linspace(16,20,10);\n", "m4 = linspace(20,20,10);\n", "plot(n4,m4,'b');\n", "\n", "n5 = linspace(20,24,10);\n", "m5 = linspace(40,40,10);\n", "plot(n5,m5,'b');\n", "\n", "ylim(0,100);\n", "xlim(0,24);\n", "grid(linewidth=0.5);\n", "ylabel(\"Load in MW ------>\");\n", "xlabel(\"Time in hours ----->\");\n", "title(\"$(i)$ Daily Load Curve\");\n", "\n", "#next plot\n", "subplot(1,3,3)\n", "n1 = linspace(0,4,10);\n", "m1 = linspace(60,60,10);\n", "plot(n1,m1);\n", "\n", "hold(True);\n", "n2 = linspace(4,8,10);\n", "m2 = linspace(50,50,10);\n", "plot(n2,m2,'b');\n", "\n", "n3 = linspace(8,12,10);\n", "m3 = linspace(40,40,10);\n", "plot(n3,m3,'b');\n", "\n", "n4 = linspace(12,24,10);\n", "m4 = linspace(20,20,10);\n", "plot(n4,m4,'b');\n", "\n", "ylim(0,100);\n", "xlim(0,24);\n", "grid(linewidth=0.5);\n", "ylabel(\"Load in MW ------>\");\n", "xlabel(\"Hours duration ----->\");\n", "title(\"$(ii)$ Load Duration Curve\");\n", "\n", "\n", "#Results:\n", "print \"Energy generated per day is (\",E,\"* 10^3) kWh\"\n", "print \"\\nThe daily load curve and load duration curves are shown below:\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Populating the interactive namespace from numpy and matplotlib\n", "Energy generated per day is (" ] }, { "output_type": "stream", "stream": "stdout", "text": [ " 840 * 10^3) kWh\n", "\n", "The daily load curve and load duration curves are shown below:\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEcCAYAAAAV2MmlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYFFe6BvC3EWJcQNCwqKhtXIjIPgY1bjCKySRuiYor\nAhoyZuKWZBy9ibnGxBnQGY3LJDM+EyPGnWyKJGoSlSzuG3HBJTeCorYmirihYTv3D0MPjd3Q3XRV\nV3W9v+fh0SqqT33Nqa+/rnOqq3VCCAEiIiIJuDk7ACIicl0sMkREJBkWGSIikgyLDBERSYZFhoiI\nJMMiQ0REkmGRISIiybDIEBGRZBRXZPLy8h5YZzAYUFxc7IRoiLTFXP5Vx3wkWyiqyJw9exZ79+59\nYL2vry/mz58v+f5DQkLw7bffGpf1ej22b98u+X7tkZSUhDfeeMPZYZALsZR/1cmVj9ZQSx5Uf23R\nEkUVmWXLlmHUqFEPrHd3d8czzzyDDz/8sMbH6/V6NGzYEF5eXvDx8UGPHj2wbNkyWHvnnOPHj6N3\n797GZZ1OB51OZ9uTgDzFyZrY1q5diy5dusDT0xMtWrTA008/jV27dkkaF6mXpfyrzpZ8dHYe1PU1\nwR56vR47duwwWVf9tcWRlJ7niikyP/zwAwIDA03WzZw5E19++SUA4PHHH8fXX39dYxs6nQ5ZWVm4\nefMmzp8/j5kzZ2LevHmYMGGCZHFbisOe4mSrmhJl4cKFePnllzFr1iz8/PPPKCgowEsvvYTMzEyb\n91NWVlaXMEkFasu/6svW5qOz88DRrwnW5IJOp5O0iFWlijwXCjF37lxx/PjxGrd55ZVXxI8//mjx\n93q9Xmzfvt1k3f79+4Wbm5s4ceKEEEKI1NRU0a5dO+Hp6SmCg4PFZ599Zty2TZs24uuvvzZp7+uv\nvxbz588XQ4cONWl38uTJYurUqVbHUSk3N1f06dNHeHt7i86dO4vMzEzj72qK7fDhwyIyMlJ4enqK\nESNGiJEjR4pZs2aZ3UdRUZFo3Lix+Pjjj83+XgghdDqd+Omnn4zLiYmJJu21adNGzJs3T4SGhor6\n9euLefPmiWHDhpm0MWXKFDFlyhQhhBAXL14Uzz33nPD19RVt27YVS5YssbhvUh5r8q86e/Kxkhx5\nYCmG6q8JtubC3LlzLcY3duxY4ebmJho0aCAaN24s/v73vxvbqHxtqem5t2nTRvzjH/8QYWFhokmT\nJmLEiBHi3r17Zp+bWvJcMUVm8ODBoqKiosZtVq5cKdavX2/x95YO6tatW4t///vfQgghPvroI2Ew\nGIQQQmzYsEE0atRIXL582ezjK5cNBoNo1KiRKCoqEkIIUVpaKvz8/MThw4dtiqOkpES0a9dOpKam\nitLSUrFjxw7h6ekpTp8+XWNsv/76q2jdurVYtGiRKCsrEx9//LHw8PAQb7zxhtn9b9myRbi7u4vy\n8nKLf6vqB19SUpJJe23atBGRkZHiwoUL4t69e+LcuXOiYcOG4tatW0IIIcrKykTz5s3Fvn37RHl5\nuYiKihJvv/22KC0tFWfPnhWPPvqo2LZtm8X9k7JYk3/V2ZuPcuVBTTFUfU2wJRfu3r1rNr7KZUv7\nrFxn6bmfOXPGuK+uXbsKg8EgCgsLRadOnYxxVqeWPFfMcFlxcbHx1LqwsBAbNmxAfHy8yTY+Pj64\ncOGCzW23aNEChYWFAIBhw4YhICAAABAfH48OHTpg//79NT4+ICAAvXr1wkcffQQA2Lp1K3x9fREZ\nGWlTHHv37sWdO3cwc+ZMuLu7IzY2FgMGDMC6dessxrZv3z7s3bsXZWVlmDp1KurVq4ehQ4fi8ccf\nt7ifa9eu4ZFHHoGbm23dK6qc4ut0OkyZMgUtW7ZE/fr10bp1a0RFReGzzz4DAOzYsQMNGzZEdHQ0\nDhw4gKtXr2LWrFlwd3dH27Zt8fzzz2P9+vU27Z+cp6b8c3Q+ypUHNan6mmCOpVx4+OGH7XoNqe25\nr1271mRfAQEB8PHxwcCBA5GTk2O2LbXkuWKKTHl5ufH/hw8fxpNPPvnA5ZQNGjRASUmJzW1fuHAB\nTZs2BQB8+OGHiIyMhI+PD3x8fHD8+HFcvXq11jYSExOxevVqAMDq1auRkJBgcxyXLl1Cq1atTNa1\nadMGFy9erDE2g8GAli1bPvA4YWHct1mzZrh69SoqKipsjrGq6rGOHj3a+EKwdu1ajBkzBgBw7tw5\nXLp0yRi3j48PUlNT8fPPP9dp/ySfmvLP0fkoVx7UpOprgjWqxmsuvmvXrlnVjqXnfunSJeNyZQED\n7v+Nb9++bbYtteS5YoqMu7u78f/9+vVDeno6kpKSTLa5ceOGTQcGABw4cACXLl1Cz549ce7cObzw\nwgt49913UVhYiOvXryMkJMSqg3Tw4ME4evQojh8/js8//9z4h7dFixYtUFBQYLK/c+fOITAwEOfO\nnUNKSsoDsQFA8+bNjQlY9XGWJlW7d++O+vXrG9+NmNOwYUOTzzoYDIYH2qu+PGzYMGRnZ+PixYvY\nuHEjRo8eDQBo3bo12rZti+vXrxt/bt68iaysLCv+KqQENeWfI/MRkC8PLKn6mgDYlgvWvIbUFE/L\nli3NPvfqxdOattSS54opMgEBASYVe926dRg7diw+//xz4zqDwYD27dvX2E5l51U++VGjRiEhIQGd\nO3fGnTt3oNPp8Mgjj6CiogIrVqzA8ePHrYqvQYMGGDp0KEaPHo2uXbs+cCVOdSUlJbh3757xp7y8\nHN26dUPDhg0xf/58lJaWIjs7G1lZWRg5ciTu3LkDNzc3s7F1794d7u7uWLJkCUpLS/Hpp5/iwIED\nFvfdpEkTvPXWW3jppZewadMmFBcXo7S0FFu2bMGMGTMAABEREVizZg3Ky8uxdetWq67h9/X1RUxM\nDJKSkvDoo48iKCgIABAdHQ1PT0/Mnz8fd+/eRXl5OY4fP46DBw9a9bcl56st/+zNR2fmQaWaXhMA\n23LBmtcQf39//PTTT2Yf37VrV4vPvabYzVFLniumyPTp08dkXPPRRx9FVlYWoqOjjetycnLQo0eP\nGtsZOHAgvLy80Lp1a6SmpuLVV1/FihUrAADBwcF49dVX0b17dwQEBOD48ePGdzPWSExMxPHjx60a\nKnv66afRsGFD48+cOXPg4eGBzZs3Y8uWLfD19cWkSZOwatUqdOzYscbYPDw88OmnnyI9PR3NmjVD\nRkYGhg4dWuP+X3nlFSxcuBBz586Fn58fWrdujffeew/PPvssAGDx4sXYvHkzfHx8sHbtWuP62owe\nPRrbt283vrsBADc3N2RlZSEnJwePPvoofH198cILL+DmzZtWtUnOZyn/unbtarJsaz46Ow+Aml8T\nANtywZrXkP/5n//B3Llz4ePjg4ULF5r8rqbnbk5tl4GrIs9rvCygDpKTk4Wfn58ICQkxrrt27Zro\n16+f6NChg4iLixPXr183/u6NN94QPj4+IigoyOzVCnfv3hUvv/yyVOFa5fz58yZXXhC5iuvXr4uw\nsDCrc/bu3buiR48eon379hZzlkgICa8uS05OxtatW03WpaWlIS4uDmfOnEHfvn2RlpYGAMjNzUVm\nZiZef/11rF27Fn/6058emMxav349/vjHP0oVbq0qKiqwYMECjBo1Co0bN3ZaHERS8Pb2Ru/evY0T\nvpUs5eyCBQtw9epV5ObmYuvWrWZzlgiQcLisV69e8PHxMVmXmZmJxMREAPeHnjZu3AgA2LRpE0aN\nGoVXXnkFhw4dQvv27U1O3QsKCuDj42McG5TbnTt34OXlhe3bt2POnDlOiYFIakuWLMG+fftM1pnL\n2YKCApw6dQrJycnw8PCAXq9/IGeJKsk6J3PlyhX4+/sDuD85duXKFQD3L+sLDAyETqdDSkoKAgMD\nTa4iadWqFQYPHixnqCYaNWqE27dv49ixYxavAiFSO51O98C9y8zlbKtWreDt7W1y8Uv1nCWq5LSJ\n/9omtOS45xERWY85S/Zwr30Tx/H398fly5cREBAAg8EAPz8/AP+9drzShQsXzJ4xtGzZ0uRDS+Q8\n4eHhFj+JTK6DOesanJmvsp7JDBo0CCtXrgQArFy5EkOGDDGuX79+PUpKSpCXl4cff/zR5FLJSpcu\nXYK4f781h/3Mnj1b0e0ptc0ffvhBzkOHnERpOavEXFBDjM7MV8nOZEaNGoVvvvkGV69eRatWrfDW\nW29h5syZiI+Px/Lly6HX65GRkQHg/rXn8fHxCA4Ohru7O9577z3ZTr3z8/MV3Z6a2iR1U0POqiEX\n1BCjnCQrMtUvhaxk6TsoXnvtNbz22mtShUNEtWDOkhQU84l/Z6l+PyaltaemNomkpoZcUEOMctIJ\nIeT5CjcHkPMb56hm7AuyBo8TZXBmP2j+TCY7O1vR7ampTSKpqSEX1BCjnDRfZIiISDocLiO7sC/I\nGjxOlIHDZURE5JI0X2S0Oh6r5jFe0i415IIaYpST5osMERFJh3MyZBf2BVmDx4kycE6GiIhckuaL\njFbHY9U8xkvapYZcUEOMctJ8kSEiIulwTobswr4ga/A4UQbOyRARkUvSfJHR6nismsd4SbvUkAtq\niFFOmi8yREQkHc7JkF3YF2QNHifKwDkZIiJySZovMlodj1XzGC9plxpyQQ0xyknzRYaIiKTDORmy\nC/uCrMHjRBk4J0NERC5J80VGq+Oxah7jJe1SQy6oIUY5ab7IEBGRdDgnQ3ZhX5A1eJwoA+dkiIjI\nJWm+yGh1PFbNY7ykXWrIBTXEKCfNFxkiIpIO52TILuwLsgaPE2XgnAwREbkkzRcZrY7HqnmMl7RL\nDbmghhjlpPkiQ0RE0uGcDNmFfUHW4HGiDJyTISIil6T5IqPV8Vg1j/GSdqkhF9QQo5w0X2SIiEg6\nTpmTSU1NxerVq+Hm5obQ0FCsWLECd+7cwYgRI3Du3Dno9XpkZGTA29vbNFiO7yoG+0I77M1XgMeJ\nUmhqTiY/Px//+c9/cPjwYRw7dgzl5eVYv3490tLSEBcXhzNnzqBv375IS0uTOzQiqob5SnUle5Hx\n8vKCh4cHiouLUVZWhuLiYrRo0QKZmZlITEwEACQmJmLjxo2yxKPV8Vg1j/GSfFw9X6VoUw0xykn2\nItO0aVO8+uqraN26NVq0aAFvb2/ExcXhypUr8Pf3BwD4+/vjypUrcodGRNUwX6mu3OXe4U8//YRF\nixYhPz8fTZo0wfDhw7F69WqTbXQ6HXQ6ndnHJyUlQa/XAwC8vb0RERGBmJgYAP+t9rYuV7L38VK3\nJ8VyTEyMTdtnZ2cjPT0dAIx/f3J9dc1XwLE5W7nO0TlRtW0ltmfP/rOzs5Gfnw9nk33if8OGDfjq\nq6/w/vvvAwBWrVqFvXv3YseOHdi5cycCAgJgMBgQGxuLU6dOmQbLSUTFYF9oQ13yFeBxohSamvh/\n7LHHsHfvXty9exdCCHz99dcIDg7GwIEDsXLlSgDAypUrMWTIEFni0ep4rJrHeEk+rp6vUrSphhjl\nJPtwWXh4OMaNG4cuXbrAzc0NUVFReOGFF3Dr1i3Ex8dj+fLlxksiici5mK9UV7x3GdmFfUHW4HGi\nDJoaLiMiIu3QfJHR6nismsd4SbvUkAtqiFFOmi8yREQkHc7JkF3YF2QNHifKwDkZIiJySZovMlod\nj1XzGC9plxpyQQ0xyknzRYaIiKTDORmyC/uCrMHjRBk4J0NERC5J80VGq+Oxah7jJe1SQy6oIUY5\nab7IEBGRdDgnQ3ZhX5A1eJwoA+dkiIjIJWm+yGh1PFbNY7ykXWrIBTXEKCfNFxkiIpIO52TILuwL\nsgaPE2VQxZzM5cuXUVFRIWUsRORAzFlSAquKTGFhIdq2bYvMzEyp45GdVsdj1TzGS7Vz1ZxVQy6o\nIUY5WVVk1qxZg7i4OCxfvlzqeIjIAZizpBRWzclERUVh06ZNGDhwILZs2YLmzZvLEdsDOL6rHOwL\nZWPOUlWKnpM5ePAgfH190apVKyQkJCA9PV2GsIjIXsxZUpJai8z777+P8ePHAwASEhLw4YcfSh6U\nnLQ6HqvmMV6qmSvnrBpyQQ0xyqnGInPnzh1s27YNzz77LADAz88PQUFBqn7CRK6MOUtKU+OcTGlp\nKQoLC+Hv729cd/PmTQCAl5eX9NFVw/Fd5WBfKBNzlsxR7JyMh4eHycGalZUFLy8vpxysRFQ75iwp\njU23lXnjjTekisNptDoey+ETbXC1nFVDLqghRjnx3mVERCQZm+5dtn//fkRHR0sZT404vqsc7At1\nYM4SoOA5meref/99qeIgIgkwZ8nZbCoyBw4ckCoOp9HqeKyax3jJeq6Ws2rIBTXEKCebioyfn59U\ncRCRBJiz5Gw2zckYDAan3QMJ4PiukrAv1IE5S4CK5mSeeeYZqeIgIgkwZ8nZbCoyrviORKvjsWoe\n4yXruVrOqiEX1BCjnGwqMikpKVLFQUQSYM6Ss9lUZOrVq+eQnRYVFWHYsGHo1KkTgoODsW/fPhQW\nFiIuLg4dO3ZE//79UVRU5JB91SYmJkbR7ampTVIeV8tZNeSCGmKUk01F5t///rdDdjp16lQ8/fTT\nOHnyJI4ePYrHHnsMaWlpiIuLw5kzZ9C3b1+kpaU5ZF9EWsacJacTNggPD7dlc7OKiopE27ZtH1gf\nFBQkLl++LIQQwmAwiKCgoAe2sTFcq+zcuVPR7Sm1TSn6ghzP1XJWibkgdXuOaNOZ+WrTmUxWVlad\ni1peXh58fX2RnJyMqKgopKSk4M6dO7hy5Yrx7rH+/v64cuVKnfdFpHXMWXI2mz4nM2DAgDoftAcP\nHkT37t2xe/duPP7445g2bRo8PT3xz3/+E9evXzdu17RpUxQWFpoGy2vuFYN9oQ7MWQKc2w/utmx8\n8eLFOu8wMDAQgYGBePzxxwEAw4YNQ2pqKgICAnD58mUEBATAYDBY/KRyUlIS9Ho9AMDb2xsRERHG\nSbHKy/yUvhwbG/Pbs8n+7V/bl4WQN/7s7Gzjd8VX/v1J+ZSQszpdEgD9b0veACJgyzG/c6fzc1Zt\ny5X/z8/Ph9PZMraWnJzskDG6Xr16idOnTwshhJg9e7aYPn26mD59ukhLSxNCCJGamipmzJjxwONs\nDNcqWhiPlaJNKfqCHM/VclaJuSB1e45o05n5atOZzEsvveSQwrZ06VKMGTMGJSUlaNeuHVasWIHy\n8nLEx8dj+fLl0Ov1yMjIcMi+iLSMOUvOZtOcTFRUFA4fPixlPDXi+K5ysC/UgTlLgIruXcaDhUhd\nmLPkbDYVmdmzZ0sVh9No9b5Far4XElnP1XJWDbmghhjlZFORGTJkiFRxEJEEmLPkbDbNyTgbx3eV\ng31B1uBxogyqmZMhIiKyheaLjFbHY9U8xkvapYZcUEOMctJ8kSEiIulwTobswr4ga/A4UQZFzsm8\n88472L9/P8rKyuSMh4jsxJwlJbJYZC5cuIBp06bB19cXvXv3xmuvvYasrKwH7rKqdlodj1XzGC+Z\np4WcVUMuqCFGOVm8d9mCBQsAAL/++isOHjyIPXv24IMPPkBKSgq8vb1x8uRJ2YIkotoxZ0mJap2T\nKSoqwp49e7B7927s3r0bRUVFCAsLw4oVK+SK0Yjju8rBvlAu5ixV58x+sFhkUlJSkJubC09PT0RH\nR6N79+7o1q0bfHx85I7RiAescrAvlIc5S5YocuL//Pnz+PXXXxEQEICWLVuiZcuW8Pb2ljM2WWh1\nPFbNY7xknhZyVg25oIYY5WRxTmbbtm2oqKjAiRMnsGfPHixcuBDHjh1Ds2bN0K1bN7z11ltyxklE\ntWDOkhJZ9TmZgoIC7N69G7t27UJWVhauXbuGGzduyBGfCZ56Kwf7QtmYs1SVIudkFi9ejN27d2PP\nnj1wd3fHE088gR49euCJJ55ASEgI6tWrJ3esPGAVhH2hPMxZskSRczL5+fmIj4/H3r17cfbsWaxe\nvRovvvgiwsPDnXKwSkWr47FqHuMl87SQs2rIBTXEKCeLczKzZs0CcL8CmvswV9OmTaWLiohs5oo5\nq9M5ph2eTDmPxeEyNzc3BAYGmn0HpNPpcPbsWcmDM7dfnnorA/tCeZizZIkz+8HimcyUKVOwY8cO\n9OzZEyNHjkSvXr2gc9TbCiJyOOYsKZHFOZlFixYhJycHw4YNw+rVqxEREYHp06cjLy9Pzvgkp9Xx\nWDWP8ZJ5WshZNeSCGmKUU43fJ+Pm5obf//73mD9/PiZOnIj09HR89dVXcsVGRDZizpLSWJyTuX37\nNjZt2oQNGzbgl19+wXPPPYcRI0agdevWcsdoxPFd5WBfKA9zlixR5OdkGjVqhA4dOmDEiBHo2LHj\n/Y1/C1Sn0+G5556TNdCq+yfnY18oD3OWLFFkkUlKSqpx0tBV7uianZ2NmJgYxban1Db54qE8WshZ\nJeaC1O05ok1FXl2Wnp4uYxhEVFfMWVIiq+5dphR896wc7AuyBo8TZVDkbWWIiIjqSvNFRqvXyKv5\nunvSLjXkghpilJPFOZmqdu3ahfz8fJSVlQG4f+o1btw4SQMjIvsxZ0kpap2TGTt2LM6ePYuIiAiT\neyItXbpU8uCq4/iucrAvlIs5S9Up8hLmSp06dUJubq4i7oHEA1Y52BfKxZyl6hQ98R8SEgKDwSBH\nLE6h1fFYNY/xUs1cOWfVkAtqiFFOtc7J/PLLLwgODkZ0dDTq168P4H5VzMzMlDw4IrIdc5aUpNbh\nMksV1NGfaLUGT72Vg32hXMxZqk7RczJSKS8vR5cuXRAYGIjNmzejsLAQI0aMwLlz56DX65GRkQFv\nb2/TYHnAKgb7QlvsyVeAx4lSKHJOpkePHgCAxo0bw9PT0+THy8urzjtevHgxgoODjZOTaWlpiIuL\nw5kzZ9C3b1+kpaXVeR/W0Op4rJrHeMk8KXPWVfNVijbVEKOcLBaZXbt2Abh/+/Bbt26Z/Ny8ebNO\nO71w4QK++OILPP/888bqmpmZicTERABAYmIiNm7cWKd9EGmNVDnLfKW6cMpw2fDhw/Haa6/h5s2b\n+Mc//oHNmzfDx8cH169fBwAIIdC0aVPjsjFYnnorBvtCO+zNV4DHiVIocrhMKllZWfDz80NkZKTF\nJ63T6RRxjT+R1jFfqa6suq2MI+3evRuZmZn44osvcO/ePdy8eRMJCQnw9/fH5cuXERAQAIPBAD8/\nP7OPT0pKgl6vBwB4e3sjIiLCeNVM5bilLcs5OTmYNm2a1dvHxgJAzG/RZP/2b9XlHADTavj9/WUh\nrI+3cp09z8/Ssk7337Zrfj6Vy9kA0n9b1oO0oa75Cjg2ZxctWmTz4x2Rs0JYvz9bX1OsWa5cZ8v2\n2dnZyM/Ph9MJJ8rOzhYDBgwQQggxffp0kZaWJoQQIjU1VcyYMeOB7aUId+fOnYpuT6ltOvnQISew\nNV+FcPxxosRckLo9R7TpzHy1OCfTuHFji6fAOp2uzpP/APDNN99gwYIFyMzMRGFhIeLj43H+/Hle\nwqwC7AvlkTpnbc3Xyv3yOHE+RX9OZtasWWjRogXGjh0LAFizZg0uXbqEt99+W5YAq+IBqxzsC+Vi\nzlJ1Tu2H2k51QkNDrVonByvCtZkWTpWlaFOKviDHcOWcVWIuSN2eI9p0Zr7WenVZo0aNsHr1apSX\nl6O8vBxr1qxB48aNpa59RGQn5iwpSa3DZXl5eZg6dSp2794N4P6nihcvXmy8WkROPPVWDvaFcjFn\nqTpFz8koCQ9Y5WBfkDV4nCiDM/uh1s/J3L17F8uXL0dubi7u3btnXP/BBx9IGphcsrOzHXp3Wke3\np6Y2SRlcOWfVkAtqiFFOtc7JJCQk4MqVK9i6dSv69OmDgoICju8SKRhzlpSk1uGyiIgI5OTkICws\nDEePHkVpaSl69uyJffv2yRWjEU+9lYN9oVzMWapO0fcue+ihhwAATZo0wbFjx1BUVIRffvlF8sCI\nyD7MWVKSWotMSkoKCgsLMXfuXAwaNAjBwcH4y1/+IkdsstDqd0mo+fspqGaunLNqyAU1xCinWif+\nU1JSAAB9+vRBXl6e5AERUd0wZ0lJap2TKSoqwpw5c/Dtt98CuH+3z//93/9FkyZNZAmwKo7vKgf7\nQrmYs1Sdoudkxo8fDy8vL3z00UfIyMiAp6cnkpOT5YiNiOzAnCVFqe2+M2FhYVatk4MV4dpMC/ct\nkqJNKfqCHMOVc1aJuSB1e45o05n5WuuZTIMGDfDdd98Zl7///ns0bNhQsqJHRHXDnCUlqXVOJicn\nB+PGjcONGzcAAD4+Pli5ciXCw8NlCbAqju8qB/tCuZizVJ0q7l1WecA2adIEixYtMn69qJx4wCoH\n+0L5mLNUSdET/5WaNGlivDplwYIFkgUkN61eI6/m6+7JOq6Ys2rIBTXEKCeriwwREZGt7LrVf6tW\nrVBQUCBFPDXiqbdysC/UhTmrbYq81X/jxo2h0+nM/q64uFiygIjIPsxZUiKLw2W3b9/GrVu3zP6U\nl5fLGaOktDoeq+YxXjJPCzmrhlxQQ4xy4pwMERFJhl+/THZhX5A1eJwogyouYSYiIrKV5ouMVsdj\n1TzGS9qlhlxQQ4xy0nyRISIi6XBOhuzCviBr8DhRBs7JEBGRS9J8kdHqeKyax3hJu9SQC2qIUU6a\nLzJERCQdzsmQXdgXZA0eJ8rAORkiInJJmi8yWh2PVfMYL2mXGnJBDTHKSfNFhoiIpMM5GbIL+4Ks\nweNEGTgnQ0RELkn2IlNQUIDY2Fh07twZISEhWLJkCQCgsLAQcXFx6NixI/r374+ioiJZ4tHqeKya\nx3hJXkrKWTXkghpilJPsRcbDwwPvvPMOTpw4gb179+Ldd9/FyZMnkZaWhri4OJw5cwZ9+/ZFWlqa\n3KERkRnMWaoLp8/JDBkyBJMmTcKkSZPwzTffwN/fH5cvX0ZMTAxOnTplsi3Hd5WDfaFdzFn1cWY/\nOLXI5Ofno0+fPjh+/Dhat26N69evAwCEEGjatKlxuRIPWOVgX2gTc1adnNkP7k7ZK+5/H/nQoUOx\nePFieHp6mvxOp9NBp9OZfZxOlwRA/9uSN4AIADG/LWf/9q8tyzkAptn0eCHuL1eOk8bE/Hc5JycH\n06ZNs/g10RCbAAAQAklEQVR7e5Yr11Uux8ba8vwsLWdj587/tl1bPNnZ2UhPTwcA6PV6kPbYm7NJ\nSUnGY8bb2xsRERF258SiRYvq9Hh7cjY2FpD6NaX25cp1tmyfDSAfTiecoKSkRPTv31+88847xnVB\nQUHCYDAIIYS4dOmSCAoKeuBxUoS7c+dORben1DaddOiQkyglZ5WYC1K354g2nZmvsg+XCSGQmJiI\nZs2a4Z133jGu/8tf/oJmzZphxowZSEtLQ1FR0QMTiTz1Vg72hXYwZ9VPU3My33//PXr37o2wsDDj\n6XVqaiqio6MRHx+P8+fPQ6/XIyMjA97e3qbB8oBVDPaFdjBn1U9TRaYupPhDZWdnG8dfldieUtvk\niwdZw9HHiRJzQer2HNEmP/FPREQuSfNnMmQf9gVZg8eJMvBMhoiIXJLmi4xW71uk5nshkXapIRfU\nEKOcNF9kiIhIOpyTIbuwL8gaPE6UgXMyRETkkjRfZLQ6HqvmMV7SLjXkghpilJPmiwwREUmHczJk\nF/YFWYPHiTJwToaIiFyS5ouMVsdj1TzGS9qlhlxQQ4xy0nyRISIi6XBOhuzCviBr8DhRBs7JEBGR\nS9J8kdHqeKyax3hJu9SQC2qIUU6aLzJERCQdzsmQXdgXZA0eJ8rAORkiInJJmi8yWh2PVfMYL2mX\nGnJBDTHKSfNFhoiIpMM5GbIL+4KsweNEGTgnQ0RELknzRUar47FqHuMl7VJDLqghRjlpvsgQEZF0\nOCdDdmFfkDV4nCgD52SIiMglab7IaHU8Vs1jvKRdasgFNcQoJ80XGSIikg7nZMgu7AuyBo8TZeCc\nDBERuSTNFxmtjseqeYyXtEsNuaCGGOWk+SJDRETS4ZwM2YV9QdbgcaIMnJMhIiKXpKgis3XrVjz2\n2GPo0KED5s2bJ8s+tToeq+YxXlIOuXNWDbmghhjlpJgiU15ejkmTJmHr1q3Izc3FunXrcPLkScn3\nm5OTo+j21NQmaYszclYNuaCGGOWkmCKzf/9+tG/fHnq9Hh4eHhg5ciQ2bdok+X6LiooU3Z6a2iRt\ncUbOqiEX1BCjnBRTZC5evIhWrVoZlwMDA3Hx4kUnRkRENWHOkjUUU2R0Op1T9pufn6/o9tTUJmmL\nM3JWDbmghhjl5O7sACq1bNkSBQUFxuWCggIEBgaabNOuXTtJDuyVK1cquj0lthkeHu7ASEiNnJWz\nSssFOdqra5vOzFfFfE6mrKwMQUFB2L59O1q0aIHo6GisW7cOnTp1cnZoRGQGc5asoZgzGXd3d/zz\nn//Ek08+ifLyckyYMIEHK5GCMWfJGoo5kyEiItejmIn/2kjxoS+9Xo+wsDBERkYiOjra5sePHz8e\n/v7+CA0NNa4rLCxEXFwcOnbsiP79+9t86aG5Nt98800EBgYiMjISkZGR2Lp1q9XtFRQUIDY2Fp07\nd0ZISAiWLFnikDiJasJ8Zb4aCRUoKysT7dq1E3l5eaKkpESEh4eL3NzcOrer1+vFtWvX7H78t99+\nKw4fPixCQkKM66ZPny7mzZsnhBAiLS1NzJgxo85tvvnmm2LBggV2xWgwGMSRI0eEEELcunVLdOzY\nUeTm5tY5TiJLmK/M16pUcSYj5Ye+RB1GC3v16gUfHx+TdZmZmUhMTAQAJCYmYuPGjXVusy5xBgQE\nICIiAgDQuHFjdOrUCRcvXqxznESWMF+Zr1WposhI9aEvnU6Hfv36oUuXLvjPf/5T5/YA4MqVK/D3\n9wcA+Pv748qVKw5pd+nSpQgPD8eECRPsPlXOz8/HkSNH0LVrV8niJGK+Ml+rUkWRkepDX7t27cKR\nI0ewZcsWvPvuu/juu+8c2r5Op3NI7C+++CLy8vKQk5OD5s2b49VXX7W5jdu3b2Po0KFYvHgxPD09\nJYmTCGC+Ml9NqaLIWPOhL3s0b94cAODr64tnn30W+/fvr3Ob/v7+uHz5MgDAYDDAz8+vzm36+fkZ\nD6znn3/e5jhLS0sxdOhQJCQkYMiQIZLFSQQwX5mvplRRZLp06YIff/wR+fn5KCkpwYYNGzBo0KA6\ntVlcXIxbt24BAO7cuYMvv/zS5AoRew0aNMj4ydyVK1caD5K6MBgMxv9/9tlnNsUphMCECRMQHByM\nadOmSRonEcB8Zb5W48yrDmzxxRdfiI4dO4p27dqJv/3tb3Vu7+zZsyI8PFyEh4eLzp0729XmyJEj\nRfPmzYWHh4cIDAwUH3zwgbh27Zro27ev6NChg4iLixPXr1+vU5vLly8XCQkJIjQ0VISFhYnBgweL\ny5cvW93ed999J3Q6nQgPDxcREREiIiJCbNmypc5xEtWE+cp8rcQPYxIRkWRUMVxGRETqxCJDRESS\nYZEhIiLJsMgQEZFkWGSIiEgyLDJERCQZVRSZa9euGW+b3bx5c+NttD09PTFp0iSH72/ZsmVYtWqV\n1dtnZ2dj4MCBDo+DSI0aN25sspyeno7Jkyc7JZb8/HyHfGiz0sqVK00+bJmSkoKTJ086rH1XpJhv\nxqxJs2bNcOTIEQDAnDlz4OnpiVdeeUWy/f3xj3+UrG1blJWVwd3d+V1UVFQEb29vZ4dBKlH9vlqO\nus+WXPlQUVEBNzfz77/T09MREhJivMWNo27UKYXS0lKUlJSgUaNGTo1DFWcy1VV+frTqGcSbb76J\nxMRE9O7dG3q9Hp9++in+/Oc/IywsDH/4wx9QVlYGADh06BBiYmLQpUsXPPXUU8b7AVX15ptvYsGC\nBQCAmJgYzJw5E127dkVQUBC+//77B7bX6XS4ffs2hg8fjk6dOmHs2LHG323fvh1RUVEICwvDhAkT\nUFJSAuD+FzAVFhYCAA4ePIjY2FjjvhMSEtCzZ08kJibixIkTiI6ORmRkJMLDw/F///d/jvozWm39\n+vUIDQ3FwoULcfXqVdn3T+pW9fPe+fn5+P3vf4/w8HD069fPeI+zpKQkfPLJJ8btKs+GsrOz0atX\nLwwePBghISEoLi7GM888g4iICISGhiIjI+OB/R06dAjh4eGIiIjAe++9Z1xf/YxqwIAB+Pbbb437\n+/Of/4yIiAjs2bMHb7/9NqKjoxEaGmp80/nxxx/j4MGDGDNmDKKionDv3j3ExMTg0KFDAIB169Yh\nLCwMoaGhmDlzpslzmTVrFiIiItC9e3f8/PPPdf6bWqOwsBAhISGYOHEiDh48KMs+zVFlkbEkLy8P\nO3fuRGZmJsaOHYu4uDgcPXoUDRo0wOeff47S0lJMnjwZn3zyCQ4ePIjk5GS8/vrrD7RT9S6nOp0O\n5eXl2LdvHxYtWoQ5c+Y8sL0QAkeOHMHixYuRm5uLs2fPYvfu3bh37x6Sk5ORkZGBo0ePoqysDP/6\n17+M7Vpy6tQpbN++HWvWrMGyZcswbdo0HDlyBIcOHXLIjQZtNXHiRGzZsgXFxcXo3bs3hg8fjm3b\nttXpuz3Idd29e9c4vB0ZGYnZs2cbj/fJkycjOTkZP/zwA8aMGYMpU6YAqPns58iRI1iyZAlOnTqF\nLVu2oGXLlsjJycGxY8fw1FNPPbD/5ORkvPvuu8jJyakxzqr7KC4uRrdu3ZCTk4MePXpg0qRJ2L9/\nP44dO4a7d+8iKysLw4YNQ5cuXbB27VocPnwYDz/8sPG14tKlS5g5cyZ27tyJnJwcHDhwwPgdOsXF\nxejevTtycnLQu3dv2c5+/P39cfr0acTGxuL1119HVFQUli5danxzKxeXKTI6nQ5/+MMfUK9ePYSE\nhKCiogJPPvkkACA0NBT5+fk4c+YMTpw4gX79+iEyMhJ//etfrfqei+eeew4AEBUVhfz8fLPbREdH\no0WLFtDpdIiIiEBeXh5Onz6Ntm3bon379gDuf9lQ5Tunmp7HoEGDUL9+fQBA9+7d8be//Q3z589H\nfn4+Hn74YWv/JA4VGBiIWbNmITc3F8nJyUhOTsazzz7rlFhI2Ro0aIAjR44Yf9566y3jG5K9e/di\n9OjRAICxY8eaHRmoLjo6Gm3atAEAhIWF4auvvsLMmTPx/fffw8vLy2TboqIi3LhxAz179gQAJCQk\nWBVzvXr1MHToUOPyjh070K1bN4SFhWHHjh3Izc01/q76myshBA4cOICYmBg0a9YM9erVw5gxY4y5\n/tBDD+GZZ54BAPzud7+z+BoihYceeggjRozAtm3bsGnTJnz11Vdo2bKl2REcqbhMkQHu/0EBwM3N\nDR4eHsb1bm5uKCsrgxACnTt3Nh78R48eter7tytf8OvVq2ccdrO0TdXtqr87E0IY17m7u6OiogIA\ncO/ePZPtGjZsaPz/qFGjsHnzZjRo0ABPP/00du7cWWu8wP3bq1e+k1y2bBnee+89REZGIioqCgaD\nAU8++SQiIyPxwgsvYP/+/cZtN2/ejFmzZhm3rWr//v148cUXMXXqVIwcORKpqalWxULaZu5Fubqq\n+VBRUWEcVgZgMqfQoUMHHDlyBKGhoZg1axbefvttq/dddR+Aad5VnpVUrn/ppZfwySef4OjRo0hJ\nSTHZ1twoRE25bu61qCbjx49HZGQkBgwYgAsXLiAiIsLmPM7KyjK29/PPP2PBggUYOHAghBBYt26d\nrF8V4PxZZQexZugmKCgIv/zyC/bu3Ytu3bqhtLQUP/74I4KDg+1qryY6nQ5BQUHIz8/HTz/9hHbt\n2mHVqlXo06cPgPtzMgcPHsRTTz1lMhZdfb95eXlo27YtJk+ejPPnz+PYsWPG+ZuatGrVynixRKU/\n/elPxv9v27bN5HdVtx04cCDmzp1rXP7yyy8xffp0NG/eHM8//zyWLl2qiAsSSH2eeOIJrF+/HmPH\njsWaNWvQu3dvAPfz4dChQxg+fDgyMzNRWlpq9vEGgwE+Pj4YM2YMmjRpguXLl5v83tvbG97e3ti1\naxd69OiBNWvWGH+n1+vxr3/9C0IIXLhwweL3vFQWlGbNmuH27dv46KOPEB8fDwDw9PTEzZs3TbbX\n6XSIjo7GlClTcO3aNXh7e2P9+vXGoUBbffDBBybL1Yf9rM3jmzdvYty4cTh9+jTGjRuHLVu2GC9Y\nkJMqXymqzpeY+3/Vbaoue3h44OOPP8aUKVNw48YNlJWV4eWXXzZbZCzNmVh6F2Nuff369bFixQoM\nHz4cZWVliI6OxsSJEwEAs2fPxoQJE+Dl5YWYmBiLzyMjIwOrVq2Ch4cHmjdvbnYOSWqPPPIIsrKy\nTL5Sl8gSc7lXuW7p0qVITk7G3//+d/j5+WHFihUA7l8KPHjwYEREROCpp54yuQy6anvHjh3D9OnT\n4ebmhoceesg4x1nVihUrMH78eOh0OvTv39/4+J49e6Jt27YIDg5Gp06d8Lvf/c7sPry9vZGSkoKQ\nkBAEBASga9euxt8lJSVh4sSJaNiwIXbv3m1cHxAQgLS0NMTGxkIIgQEDBhgvSqr+uiTnt1pOmzYN\nMTExsu3PHN7qn4iIJONSczJERKQsLDJERCQZFhkiIpIMiwwREUmGRYaIiCTDIkNERJJhkSEiIsmw\nyBARkWT+H5YlVY/jFClJAAAAAElFTkSuQmCC\n", "text": [ "" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.16, Page Number: 57" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "#Variable declaration:\n", "c1 = 10 #Capacity of each of 2 generators(MW)\n", "c2 = 5 #Capacity of 3rd generator(MW)\n", "\n", "#Calculation:\n", "C = 2*c1+c2 #Installed capacity(MW)\n", "A = (1/2)*(20+4) #Avg load, seen from the curve(MW)\n", "PF = A/C #plant factor\n", "E = 8760*A #Units generated per annum(MWh)\n", "LF = A/20 #Load factor\n", "PUF = 20/C #Plant capacity factor\n", "\n", "#Results:\n", "print \"(i) Installed capacity is \",C,\"MW\"\n", "print \"(ii) Plant factor is \",round(PF*100,1),\"%\"\n", "print \"(iii) Units generated per annum is \",(E/1000),\"* 10^3 kWh\"\n", "print \"(iv) Load factor is \",round(LF*100,1),\"%\"\n", "print \"(V) Utilisation factor is \",round(PUF*100,1),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) Installed capacity is 25 MW\n", "(ii) Plant factor is 48.0 %\n", "(iii) Units generated per annum is 105.12 * 10^3 kWh\n", "(iv) Load factor is 60.0 %\n", "(V) Utilisation factor is 80.0 %\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.17, Page Number: 57 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration:\n", "n = 0.72 #efficiency of the load\n", "\n", "#Calculation:\n", "Ma = (10*0.746/0.72)* 0.65 + 5 * 0.60 #kW\n", "Mb = (7.5*0.746/0.72)*0.75+4*0.60 #kW\n", "Mc = (15*0.746/0.72)*0.65 #kW\n", "Md = (5*0.746/0.72)*0.75+2*0.60 #kW\n", "\n", "SM = Ma+Mb+Mc+Md #Sum of maximum demands(kW)\n", "\n", "#The diversity factor between consumers of this type of service is 1\u00b75 from above table.\n", "M1 = SM/1.5 #Maximum demand on transformer 1(kW)\n", "\n", "#In a similar manner, the other transformer loads are determined to be\n", "# Total Simultaneous\n", "#Transformer 2 26 kW 7\u00b743 kW\n", "#Transformer 3 29\u00b713 kW 19\u00b740 kW\n", "\n", "#The diversity factor between transformers is 1\u00b73\n", "M2 = 7.43; M3 = 19.40\n", "MF = (M1+M2+M3)/1.3 #Maximum load on feeder(kW)\n", "\n", "\n", "#Results:\n", "print \"The maximum load on the feeder is \",round(MF,2),\"kW\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum load on the feeder is 37.64 kW\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.18, Page Number: 61" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "%pylab inline\n", "\n", "\n", "#Calculation:\n", "E = 10**3*(20*2+40*3+50*5+35*3+70*3+40*2+20*6) #Units generated per day(kWh)\n", "A = E/24 #Average load(kW)\n", "LF = A/(70*10**3) #Load factor\n", "\n", "n1 = linspace(0,8,10);\n", "m1 = linspace(20,20,10);\n", "plot(n1,m1);\n", "\n", "hold(True);\n", "n2 = linspace(8,11,10);\n", "m2 = linspace(40,40,10);\n", "plot(n2,m2,'b');\n", "\n", "n3 = linspace(11,16,10);\n", "m3 = linspace(50,50,10);\n", "plot(n3,m3,'b');\n", "\n", "n4 = linspace(16,19,10);\n", "m4 = linspace(35,35,10);\n", "plot(n4,m4,'b');\n", "\n", "n5 = linspace(19,22,10);\n", "m5 = linspace(70,70,10);\n", "plot(n5,m5,'b');\n", "\n", "n6 = linspace(22,24,10);\n", "m6 = linspace(40,40,10);\n", "plot(n6,m6,'b');\n", "\n", "\n", "ylim(0,100);\n", "xlim(0,24);\n", "grid(linewidth=0.5);\n", "ylabel(\"Load in MW ------>\");\n", "xlabel(\"Time in hours ----->\");\n", "title(\"Daily Load Curve\");\n", "\n", "#Results:\n", "print \"Load factor is \",round(LF*100,2),\"%\"\n", "print \"\"\"\\nOperational schedule: Referring to the load curve shown\n", "below, the operational schedule will be as under :\n", " (i) Set No. 1 will run for 24 hours.\n", " (ii) Set No. 2 will run from 8.00 hours to midnight.\n", " (iii)Set No. 3 will run from 11.00 hours to 16 hours and \n", " again from 19 hours to 22 hours.\"\"\"\n", "print \"\\nThe Load curve is shown below:\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Populating the interactive namespace from numpy and matplotlib\n", "Load factor is " ] }, { "output_type": "stream", "stream": "stdout", "text": [ " 55.06 %\n", "\n", "Operational schedule: Referring to the load curve shown\n", "below, the operational schedule will be as under :\n", " (i) Set No. 1 will run for 24 hours.\n", " (ii) Set No. 2 will run from 8.00 hours to midnight.\n", " (iii)Set No. 3 will run from 11.00 hours to 16 hours and \n", " again from 19 hours to 22 hours.\n", "\n", "The Load curve is shown below:\n" ] }, { "output_type": "stream", "stream": "stderr", "text": [ "WARNING: pylab import has clobbered these variables: ['tri', 'axes', 'legend', 'stackplot', 'figure', 'rc_context', 'quiver', 'streamplot', 'rc', 'text', 'colors', 'contour', 'axis', 'colorbar', 'test', 'rcdefaults', 'table']\n", "`%pylab --no-import-all` prevents importing * from pylab and numpy\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEZCAYAAABxbJkKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVHX6B/DPQbFULoMkF0EdM294AU3J8gaLWJqapqKW\nCKhsWlZkZebPNrU2p1pvmbWuorBiKmutEiiWFabiJQvTRMULo4iAJiAqeQHP7w9jVpwzAwPMhfl+\n3q/XvOQMw5yHT9M8zPeZc0aSZVkGEREJycHaBRARkfWwCRARCYxNgIhIYGwCREQCYxMgIhIYmwAR\nkcDYBKjeO3fuHJydnVHxbuegoCDExsZauSrDHBwccObMGWuXQQSATYBsgFqtRpMmTeDi4gI3Nzf0\n6dMHK1asQHUPYWnVqhWuXr0KSZIAAJIk6b42RVxcHPr162fyz9W17du3o3///nBxcYGHhweCgoLw\n9ddfW7ssslNsAmR1kiQhOTkZJSUlOHfuHGbNmoUPP/wQkydPtnZpFrdp0yaEhYUhMjISubm5uHjx\nIubPn1+jJiDLcrUbKYmLTYBsirOzM4YNG4aNGzciPj4eR48eBQCkpKSge/fucHV1RatWrTBv3jzd\nz2i1Wjg4OODOnTuV7uvWrVto1qwZfvvtN911Fy9eRNOmTXH58mWT6kpPT0evXr2gUqkQGBiIvXv3\n6r63Zs0a+Pn5wcXFBW3btsW//vWvSj/78ccfo0WLFvD19cXq1asN7kOWZcyYMQN/+9vfMGnSJDg7\nOwMA+vfvr7vPuXPnIjw83ODvHhQUhDlz5qBPnz5o2rQpPv74Y/Tq1avSfhYvXoxnnnkGAHDz5k28\n8cYbaN26Nby8vDBt2jTcuHHDpGyofmMTIJvUq1cv+Pr6Yvfu3QAAJycnJCQk4MqVK0hJScHnn3+O\nLVu2GL2PRo0aYfz48UhISNBdt379egwcOBDu7u7VrqWwsBBPP/00YmJiUFhYiBkzZuDpp59GYWEh\nAMDT0xMpKSkoKSnBmjVr8NprryEjIwMAkJqaioULF2LHjh3IysrCjh07DO7nxIkTOH/+PEaPHm3w\nNtVZ5kpISMCqVatw7do1TJ06FSdOnMCpU6d03//iiy/w/PPPAwBmzZqFU6dO4ddff8WpU6eQm5uL\n+fPnVysXsg9sAmSzWrRooXuiHTBgADp37gwA6Nq1K8aNG4edO3dWeR8TJ07E+vXrddtr166t9Jd0\ndaSkpKBDhw54/vnn4eDggHHjxqFjx466JZohQ4agTZs2AO7+1T5o0CDs2rULAJCYmIhJkybBz88P\nTZo0qfQK5n4Vr068vb0N3qaq5R1JkhAZGYlOnTrBwcEBLi4ueOaZZ3QZnDx5EidOnMDw4cMhyzJW\nrlyJRYsWQaVSwcnJCW+//TY2bNhQ/XCo3mMTIJuVm5uLZs2aAQD279+P4OBgeHh4QKVSYcWKFdVa\n0nnsscfQuHFjpKWl4fjx4zh9+jSGDx9uUh0XLlxAq1atKl3XunVrXLhwAQCwbds29O7dG+7u7nBz\nc8PWrVt1teXl5aFly5a6n7v/fu5V8eokLy/PpPrud+/+AOC5557TNYEvvvgCI0eOxIMPPohLly6h\ntLQUjz76KNzc3ODm5obBgwfj999/r9X+qX5hEyCb9NNPPyE3Nxd9+/YFcPeJbMSIETh//jyKi4sx\ndepUvRmAIREREUhISMDatWsxZswYNGrUyKRafHx8cPbs2UrXnT17Fj4+Prh58yZGjRqFmTNn4uLF\niygqKsKQIUN0f7F7e3vj3Llzup+79+v7dejQAS1btsSmTZsM3sbJyQmlpaW67fz8fL3b3L9kNHDg\nQFy6dAm//vorNmzYgOeeew4A8NBDD6Fx48bIzMxEUVERioqKUFxcjJKSEiNpkL1hEyCbUPGkWVJS\nguTkZIwfPx7h4eG6JaBr167Bzc0NjRo1woEDB/DFF18YXR+/d9lkwoQJ+Oqrr7Bu3TpMnDixyjpu\n3ryJGzdu6C5DhgxBVlYW1q9fj7KyMmzcuBHHjx/H0KFDcevWLdy6dQsPPfQQHBwcsG3bNnzzzTe6\n+wsLC0NcXByOHTuG0tJSo8tBkiRh0aJFeO+99xAXF4eSkhLcuXMHu3fvxgsvvAAA8Pf3x48//oic\nnBxcuXIFCxYsMPq7A4CjoyPGjBmDN954A0VFRQgNDQVw93iF6OhoxMTE4NKlSwDuvvq6t34SgExk\nZWq1Wm7cuLHs7Owsu7q6yk888YT82WefyXfu3NHdZtOmTXLr1q1lZ2dneejQofLLL78sh4eHy7Is\ny9nZ2bKDg4NcXl4uy7IsBwUFybGxsZX2ERISIrdp08ZoHXFxcbIkSZUuFfe7e/du+dFHH5VdXV3l\nnj17ynv27NH93PLly2VPT09ZpVLJ4eHh8vjx4+V33nlH932NRiN7eXnJPj4+8urVq2UHBwf59OnT\nButITU2V+/XrJzs5OcnNmzeXg4OD5a1bt+q+/9JLL8kqlUpu166dvHLlyip/d1mW5V27dsmSJMnT\np0+vdP2NGzfk2bNnyw8//LDs4uIid+rUSV62bJnRnMi+SLJsnjcST5o0CSkpKfDw8MCRI0cA3H2X\nxdixY3H27Fmo1WokJiZCpVIBABYsWIDVq1ejQYMG+OSTTzBo0CBzlEWCmjx5Mnx8fPjOF6L7mG05\nKCoqCqmpqZWu02g0CA0NRVZWFkJCQqDRaAAAmZmZ2LhxIzIzM5GamooXX3yx2uu9RFXRarX46quv\nhDz4jKgqZmsC/fr1g5ubW6XrkpKSEBERAeDusG7z5s0AgC1btmD8+PFwdHSEWq3GI488ggMHDpir\nNBLIO++8g65du2LmzJlo3bq1tcshsjkWHQwXFBTA09MTwN0DbAoKCgDcfQuer6+v7na+vr7Izc21\nZGlkp9577z1cvXoVb7/9trVLIbJJVnt3UFUn+arJCcCIiMg0DS25M09PT+Tn58PLywt5eXnw8PAA\ncPd92Dk5ObrbnT9/Hj4+Pno/7+PjoztAh4iIqsff3x+HDh1S/J5FXwkMHz4c8fHxAID4+HiMGDFC\nd/2GDRtw69YtZGdn4+TJkwgMDNT7+QsXLujOjMjL/y7vvvuu1WuwxQtzYS7M5O7l119/Nfi8bLZX\nAuPHj8fOnTvx+++/o2XLlpg/fz5mzZqFsLAwxMbG6t4iCgB+fn4ICwuDn58fGjZsiM8++4zLQSbQ\narXWLsEmMRdlzEWfyJmYrQnce9Kuexk6i+Ls2bMxe/Zsc5VDREQKeNoIOxAZGWntEmwSc1HGXPSJ\nnInZjhg2B0mSUI/KJSKyCcaeO/lKwA6kpaVZuwSbxFyUMRd9ImfCJkBEJDAuBxER2TkuBxERkSI2\nATsg8nqmMcxFGXPRJ3ImbAJERALjTICIyM5xJkBERIrYBOyAyOuZxjAXZcxFn8iZsAkQEQmMMwEi\nIjvHmQARESliE7ADIq9nGsNclDEXfSJnwiZARCQwzgSIiOwcZwJERKSITcAOiLyeaQxzUcZc9Imc\nCZsAEZHAOBMgIrJznAkQEZEiNgE7IPJ6pjHMRRlz0SdyJmwCREQC40yAiMjOcSZARESK2ATsgMjr\nmcYwF2XMRZ/ImbAJEBEJjDMBIiI7x5kAEREpYhOwAyKvZxrDXJQxF30iZ8ImQEQkMM4EiIjsHGcC\nRESkiE3ADoi8nmkMc1HGXPSJnAmbABGRwKwyE1iwYAESEhLg4OCArl27Ys2aNbh+/TrGjh2Ls2fP\nQq1WIzExESqVqnKxnAkQEZnMpmYCWq0WK1euxC+//IIjR46gvLwcGzZsgEajQWhoKLKyshASEgKN\nRmPp0oiIhGPxJuDi4gJHR0eUlpairKwMpaWlaNGiBZKSkhAREQEAiIiIwObNmy1dWr0l8nqmMcxF\nGXPRJ3ImFm8CzZo1w+uvv45WrVqhRYsWUKlUCA0NRUFBATw9PQEAnp6eKCgosHRpRETCaWjpHZ4+\nfRpLliyBVquFq6srxowZg4SEhEq3kSQJkiQp/nxkZCTUajUAQKVSISAgAEFBQQD+1825ze0KaWlp\nNlMPt213OygoyKbqqe12Wloa4uLiAED3fGmIxQfDGzduxLfffotVq1YBANauXYt9+/bh+++/xw8/\n/AAvLy/k5eUhODgYx48fr1wsB8NERCazqcFwx44dsW/fPvzxxx+QZRk7duyAn58fhg0bhvj4eABA\nfHw8RowYYenS6q2KvwCoMuaijLnoEzkTiy8H+fv7Y+LEiejZsyccHBzQo0cP/PWvf8XVq1cRFhaG\n2NhY3VtEiYjIvHjuICIiO2dTy0FERGQ72ATsgMjrmcYwF2XMRZ/ImbAJEBEJjDMBIiI7x5kAEREp\nYhOwAyKvZxrDXJQxF30iZ8ImQEQkMM4EiIjsHGcCRESkiE3ADoi8nmkMc1HGXPSJnAmbABGRwDgT\nICKyc5wJEBGRIjYBOyDyeqYxzEUZc9EnciZsAkREAuNMgIjIztXJTCA/Px937typs6KIiMj6qtUE\nCgsL0aZNGyQlJZm7HqoBkdczjWEuypiLPpEzqVYTWLduHUJDQxEbG2vueoiIakWSTL8EB9fs52pz\nsRXVmgn06NEDW7ZswbBhw7Bt2zZ4e3tbojY9nAkQEZmuVjOBgwcPonnz5mjZsiXCw8MRFxdX1/UR\nEZGVVNkEVq1ahUmTJgEAwsPD8e9//9vsRZFpRF7PNIa5KGMu+kTOxGgTuH79OrZv346RI0cCADw8\nPNChQwehAyMisidGZwK3b99GYWEhPD09ddeVlJQAAFxcXMxf3X04EyAiMl2NZwKOjo6VGkBycjJc\nXFys0gCIiKjumXTaiHfeecdcdVAtcHlOGXNRxlz0iZwJzx1ERCQwk84ddODAAQQGBpqzHqM4EyAi\nMl2dfZ7AqlWr6qQgIiKyDSY1gZ9++slcdVAtiLyeaQxzUcZc9ImciUlNwMPDw1x1EBGRFZg0E8jL\ny7PaeYMAzgSIiGqizmYCTz/9dJ0UREREtsGkJsC/wm2TyOuZxjAXZcxFn8iZmNQEoqOjzVUHERFZ\ngUlNoEGDBnWy0+LiYowePRqdOnWCn58f9u/fj8LCQoSGhqJ9+/YYNGgQiouL62RfIggKCrJ2CTaJ\nuShjLvpEzsSkJvDPf/6zTnb66quvYsiQITh27BgOHz6Mjh07QqPRIDQ0FFlZWQgJCYFGo6mTfRER\nkWEWnwlcuXIFu3bt0n1GQcOGDeHq6oqkpCREREQAACIiIrB58+Za70sUIq9nGsNclDEXfSJnYlIT\nSE5OrvUOs7Oz0bx5c0RFRaFHjx6Ijo7G9evXUVBQoDtjqaenJwoKCmq9LyIiMs6k4wSGDh1a60Zw\n8OBBPP7440hPT0evXr0QExMDZ2dnfPrppygqKtLdrlmzZigsLKxcLI8TICIymbHnzoam3FFubm6t\ni/H19YWvry969eoFABg9ejQWLFgALy8v5Ofnw8vLC3l5eQaPTo6MjIRarQYAqFQqBAQE6IY6FS/p\nuM1tbnNb5O20tDTd58FXPF8aYtIrgUmTJmH16tXVvblB/fv3x6pVq9C+fXvMnTsXpaWlAAB3d3e8\n9dZb0Gg0KC4u1hsO85WAsrS0NN0Dgf6HuShjLvrsPZM6eyXw0ksv1UlBy5Ytw/PPP49bt26hbdu2\nWLNmDcrLyxEWFobY2Fio1WokJibWyb6IiMgwk14J9OjRA7/88os56zGKrwSIiExXZ+cO4hMwEZF9\nMakJvPvuu+aqg2qhYiBElTEXZcxFn8iZmNQERowYYa46iIjICkyaCVgbZwJERKars5kAERHZFzYB\nOyDyeqYxzEUZc9EnciZsAkREAuNMgIjIztVoJrB48WIcOHAAZWVlZiuMiIisy2ATOH/+PGJiYtC8\neXP0798fs2fPRnJyst6ZPcn6RF7PNIa5KGMu+kTOxOC5gxYuXAgAuHnzJg4ePIi9e/di9erViI6O\nhkqlwrFjxyxWJBERmUeVM4Hi4mLs3bsX6enpSE9PR3FxMbp164Y1a9ZYqkYdzgSIiExn7LnTYBOI\njo5GZmYmnJ2dERgYiMcffxy9e/eGm5ubWYs1hk2AiMh0NRoMnzt3Djdv3oSXlxd8fHzg4+MDlUpl\ntiKp5kRezzSGuShjLvpEzsTgTGD79u24c+cOjh49ir1792LRokU4cuQI3N3d0bt3b8yfP9+SdRIR\nkRlU6ziBnJwcpKenY8+ePUhOTsbly5dx5coVS9RXCZeDiIhMV6OZwNKlS5Geno69e/eiYcOGeOKJ\nJ9CnTx888cQT6NKlCxo0aGDWopWwCRARma5GMwGtVouwsDDs27cPZ86cQUJCAqZNmwZ/f3+rNAAy\nTOT1TGOYizLmok/kTAzOBObMmQPgbgdROkCsWbNm5quKyIokydoV2C6+ELc/BpeDHBwc4Ovrq/hX\nvyRJOHPmjNmLU9ovl4OIiExj7LnT4CuBV155Bd9//z369u2LcePGoV+/fpD4JxIRkV0xOBNYsmQJ\nDh06hNGjRyMhIQEBAQF48803kZ2dbcn6qBpEXs80hrkoYy76RM7E6OcJODg44C9/+Qs++ugjTJ06\nFXFxcfj2228tVRsREZmZwZnAtWvXsGXLFmzcuBGXLl3Cs88+i7Fjx6JVq1aWrlGHMwEiItPV6DiB\npk2bol27dhg7dizat29f6Y4kScKzzz5rvooNYBMgIjJdjZpAZGSk0UEwzyJqO9LS0hAUFGTtMmwO\nc1HGXPTZeyY1endQXFycueohIiIbwc8YJiKyczU6bQQREdk/NgE7IPJ7nI1hLsqYiz6RMzE4E7jX\nnj17oNVqUVZWBuDuS4uJEyeatTAiIjK/KmcCEyZMwJkzZxAQEFDpPELLli0ze3H340yAiMh0NXqL\naIVOnTohMzPTJs4bxCZARGS6Wg2Gu3Tpgry8vDoviuqOyOuZxjAXZcxFn8iZVDkTuHTpEvz8/BAY\nGIgHHngAwN2ukpSUZPbiiIjIvKpcDjLUIa1xdB2Xg4iITFermYC5lJeXo2fPnvD19cXXX3+NwsJC\njB07FmfPnoVarUZiYiJUKlXlYtkEiIhMVqOZQJ8+fQAATk5OcHZ2rnRxcXGpdVFLly6Fn5+fbuCs\n0WgQGhqKrKwshISEQKPR1HofohB5PdMY5qKMuegTORODTWDPnj0A7p5S+urVq5UuJSUltdrp+fPn\nsXXrVkyZMkXXnZKSkhAREQEAiIiIwObNm2u1DyIiqppVloPGjBmD2bNno6SkBP/4xz/w9ddfw83N\nDUVFRQAAWZbRrFkz3bauWC4HERGZzKbOHZScnAwPDw90797d8KBCkmziuAQiIntXrdNG1KX09HQk\nJSVh69atuHHjBkpKShAeHg5PT0/k5+fDy8sLeXl58PDwUPz5yMhIqNVqAIBKpUJAQIDunUoV63qi\nbVdcZyv1GNqWpIp6g/7819zbSwAE1OjnZdn6eYn+eLHk9v3ZmHt/d//Grdhn0J//1uV2GoC4P7fV\nMMaqp5LeuXOnbjlo5syZcHd3x1tvvQWNRoPi4mK94TCXg5Sl2fkHYtQUc1HGXPTZeyY1eouok5OT\nwSUZSZJqPRwG7jaBhQsXIikpCYWFhQgLC8O5c+f4FlEiojpUq+ME5syZgxYtWmDChAkAgHXr1uHC\nhQt477336r7SKrAJEBGZrlaD4aSkJLz44otwcXGBi4sLpk2bhi1bttR5kVRz965n0v8wF2XMRZ/I\nmVTZBJo2bYqEhASUl5ejvLwc69atg5OTkyVqIyIiM6tyOSg7Oxuvvvoq0tPTAdw9knjp0qW6d+hY\nEpeDiIhMZ5PnDqoJNgEiItMZe+6s8jiBP/74A7GxscjMzMSNGzd0169evbruKqRasfe3t9UUc1HG\nXPSJnEmVM4Hw8HAUFBQgNTUVAwYMQE5ODmcCRER2osrloICAABw6dAjdunXD4cOHcfv2bfTt2xf7\n9++3VI06XA4iIjJdrZaDGjVqBABwdXXFkSNH4OXlhUuXLtVthURk8+rT6bz4t2L1VbkcFB0djcLC\nQrz//vsYPnw4/Pz8MHPmTEvURtUk8nucjWEuymqaiyzXn4ulMrEHVb4SiI6OBgAMGDAA2dnZZi+I\niIgsp8qZQHFxMebNm4cff/wRwN0z4P3tb3+Dq6urRQq8F2cCRESmq9VpIyZNmgQXFxf85z//QWJi\nIpydnREVFVXnRRIRkeVV2QROnz6NefPm4eGHH0bbtm0xd+5cnD592hK1UTWJvJ5pDHNRxlz0iZxJ\nlU2gcePG2LVrl2579+7daNKkiVmLIiIiy6hyJnDo0CFMnDgRV65cAQC4ubkhPj4e/v7+FinwXpwJ\nEBGZrk7OHVTRBFxdXbFkyRLExMTUXYXVxCZARGS6OvmgeVdXV907ghYuXFg3lVGdEHk90xjmooy5\n6BM5k2o3ASIisj81OpV0y5YtkZOTY456jOJyEBGR6Wp07iBjHzRfWlpaN5UREZFVGVwOunbtGq5e\nvap4KS8vt2SNVAWR1zONYS7KmIs+kTPhTICISGD8eEkiIjtXJ28RJSIi+8MmYAdEXs80hrkoYy76\nRM6ETYCISGCcCRAR2TnOBIiISBGbgB0QeT3TGOaijLnoEzkTNgEiIoFxJkBEZOc4EyAiIkVsAnZA\n5PVMY5iLMuaiT+RM2ASIiATGmQARkZ3jTICIiBRZvAnk5OQgODgYnTt3RpcuXfDJJ58AAAoLCxEa\nGor27dtj0KBBKC4utnRp9ZbI65nGMBdlzEWfyJlYvAk4Ojpi8eLFOHr0KPbt24fly5fj2LFj0Gg0\nCA0NRVZWFkJCQqDRaCxdGhGRcKw+ExgxYgSmT5+O6dOnY+fOnfD09ER+fj6CgoJw/PjxSrflTICI\nyHTGnjut2gS0Wi0GDBiA3377Da1atUJRUREAQJZlNGvWTLddgU2AiMh0NfqgeXO7du0aRo0ahaVL\nl8LZ2bnS9yRJMvgh95IUCUD955YKQACAoD+30/78V7TtiutspR7D2z/8AAQF3d2uWIc11/aSJUsQ\nEBBgsf3Vl+2K62ylHlvYvj8ba9dTF79PXFwcAECtVsMYq7wSuH37NoYOHYrBgwcjJiYGANCxY0ek\npaXBy8sLeXl5CA4O5nJQNaWlpekeCPQ/zEUZc9Fn75nY1HKQLMuIiIiAu7s7Fi9erLt+5syZcHd3\nx1tvvQWNRoPi4mK94TCbABGR6WyqCezevRv9+/dHt27ddEs+CxYsQGBgIMLCwnDu3Dmo1WokJiZC\npVJVLpZNgIjIZDbVBGqDTUCZvb+UrSnmooy56LP3THjEMBERKeIrASIiO8dXAkREpIhNwA6IfN4T\nY5iLMuaiT+RM2ASIiATGmQARkZ3jTICIiBSxCdgBkdczjWEuypiLPpEzYRMgIhIYZwJERHaOMwEi\nIlLEJmAHRF7PNIa5KGMu+kTOhE2AiEhgnAkQEdk5zgSIiEgRm4AdEHk90xjmooy56BM5EzYBIiKB\ncSZARGTnOBMgIiJFbAJ2QOT1TGOYizLmok/kTNgEiIgExpkAEZGd40yAiIgUsQnYAZHXM41hLsqY\niz6RM2ETICISGGcCRER2jjMBIiJSxCZgB0RezzSGuShjLvpEzoRNgIhIYJwJEBHZOc4EiIhIEZuA\nHRB5PdMY5qKMuegTORM2ASIigXEmQERk5zgTICIiRTbVBFJTU9GxY0e0a9cOH374obXLqTdEXs80\nhrkoYy76RM7EZppAeXk5pk+fjtTUVGRmZmL9+vU4duyYtcuqFw4dOmTtEmwSc1HGXPSJnInNNIED\nBw7gkUcegVqthqOjI8aNG4ctW7ZYu6x6obi42Nol2CTmooy56BM5E5tpArm5uWjZsqVu29fXF7m5\nuVasiIjI/tlME5Akydol1FtardbaJdgk5qKMuegTOZOG1i6ggo+PD3JycnTbOTk58PX1rXSbtm3b\nslkYEB8fb+0SbBJzUcZc9NlzJv7+/ga/ZzPHCZSVlaFDhw747rvv0KJFCwQGBmL9+vXo1KmTtUsj\nIrJbNvNKoGHDhvj000/x5JNPory8HJMnT2YDICIyM5t5JUBERJZnM4PhqvBAMmVqtRrdunVD9+7d\nERgYaO1yrGbSpEnw9PRE165dddcVFhYiNDQU7du3x6BBg4R7G6BSJnPnzoWvry+6d++O7t27IzU1\n1YoVWkdOTg6Cg4PRuXNndOnSBZ988gkAcR8v9aIJ8EAywyRJQlpaGjIyMnDgwAFrl2M1UVFRek9o\nGo0GoaGhyMrKQkhICDQajZWqsw6lTCRJwowZM5CRkYGMjAw89dRTVqrOehwdHbF48WIcPXoU+/bt\nw/Lly3Hs2DFhHy/1ognwQDLjuKIH9OvXD25ubpWuS0pKQkREBAAgIiICmzdvtkZpVqOUCcDHi5eX\nFwICAgAATk5O6NSpE3Jzc4V9vNSLJsADyQyTJAkDBw5Ez549sXLlSmuXY1MKCgrg6ekJAPD09ERB\nQYGVK7INy5Ytg7+/PyZPnizMkochWq0WGRkZeOyxx4R9vNSLJsBjAwzbs2cPMjIysG3bNixfvhy7\ndu2ydkk2SZIkPo4ATJs2DdnZ2Th06BC8vb3x+uuvW7skq7l27RpGjRqFpUuXwtnZudL3RHq81Ism\nUJ0DyUTl7e0NAGjevDlGjhwp9Fzgfp6ensjPzwcA5OXlwcPDw8oVWZ+Hh4fuCW7KlCnCPl5u376N\nUaNGITw8HCNGjAAg7uOlXjSBnj174uTJk9Bqtbh16xY2btyI4cOHW7ssqystLcXVq1cBANevX8c3\n33xT6Z0gohs+fLjuKND4+Hjd/+wiy8vL03393//+V8jHiyzLmDx5Mvz8/BATE6O7XtjHi1xPbN26\nVW7fvr3ctm1b+YMPPrB2OTbhzJkzsr+/v+zv7y937txZ6FzGjRsne3t7y46OjrKvr6+8evVq+fLl\ny3JISIjcrl07OTQ0VC4qKrJ2mRZ1fyaxsbFyeHi43LVrV7lbt27yM888I+fn51u7TIvbtWuXLEmS\n7O/vLwcEBMgBAQHytm3bhH288GAxIiKB1YvlICIiMg82ASIigbEJEBEJjE2AiEhgbAJERAJjEyAi\nEhibAFnLj+EcAAAElklEQVTN5cuXdac09vb21p3i2NnZGdOnT6/z/a1YsQJr166t9u3T0tIwbNiw\nOq+DyJbYzCeLkXjc3d2RkZEBAJg3bx6cnZ0xY8YMs+3vhRdeMNt9m6KsrAwNG1r/f73i4mKoVCpr\nl0FWxlcCZDMqjlu89y/wuXPnIiIiAv3794darcZXX32FN954A926dcPgwYNRVlYGAPj5558RFBSE\nnj174qmnntKdA+Zec+fOxcKFCwEAQUFBmDVrFh577DF06NABu3fv1ru9JEm4du0axowZg06dOmHC\nhAm673333Xfo0aMHunXrhsmTJ+PWrVsA7n7IT2FhIQDg4MGDCA4O1u07PDwcffv2RUREBI4ePYrA\nwEB0794d/v7+OHXqVF3FWG0bNmxA165dsWjRIvz+++8W3z/ZBjYBsnnZ2dn44YcfkJSUhAkTJiA0\nNBSHDx9G48aNkZKSgtu3b+Pll1/Gl19+iYMHDyIqKgr/93//p3c/954ZUpIklJeXY//+/ViyZAnm\nzZund3tZlpGRkYGlS5ciMzMTZ86cQXp6Om7cuIGoqCgkJibi8OHDKCsrw+eff667X0OOHz+O7777\nDuvWrcOKFSsQExODjIwM/Pzzz1Y5IeLUqVOxbds2lJaWon///hgzZgy2b98u/OcNiIZNgGyaJEkY\nPHgwGjRogC5duuDOnTt48sknAQBdu3aFVqtFVlYWjh49ioEDB6J79+74+9//Xq3Pm3j22WcBAD16\n9IBWq1W8TWBgIFq0aAFJkhAQEIDs7GycOHECbdq0wSOPPALg7geQ/Pjjj1X+HsOHD8cDDzwAAHj8\n8cfxwQcf4KOPPoJWq8WDDz5Y3UjqlK+vL+bMmYPMzExERUUhKioKI0eOtEotZB3WX5gkqkKjRo0A\nAA4ODnB0dNRd7+DggLKyMsiyjM6dOyM9Pd2k+614Qm7QoIFuWcnQbe693f1/7cuyrLuuYcOGuHPn\nDgDgxo0blW7XpEkT3dfjx49H7969kZycjCFDhmDFihW6pSNjcnJydGfQnTp1KsrLy7Fy5UpIkoSU\nlBRERkbi4sWL6NWrF6ZMmaKbg8yfPx/79+9HSkoKJEnCL7/8orvPAwcOYM2aNdixYwfGjRuH6Ojo\nKusg+8EmQDatOksTHTp0wKVLl7Bv3z707t0bt2/fxsmTJ+Hn51ej+zNGkiR06NABWq0Wp0+fRtu2\nbbF27VoMGDAAwN2ZwMGDB/HUU0/hyy+/NLjf7OxstGnTBi+//DLOnTuHI0eOVKsJtGzZUjdMr/Di\niy/qvt6+fXul791722HDhuH999/XbX/zzTd488034e3tjSlTpmDZsmU2MbAmy+J/cbIZ967XK319\n723u3XZ0dMSmTZvwyiuv4MqVKygrK8Nrr72m2AQMrdkrXW/o06UeeOABrFmzBmPGjEFZWRkCAwMx\ndepUAMC7776LyZMnw8XFBUFBQQZ/j8TERKxduxaOjo7w9vZWnGGY20MPPYTk5ORKH91K4uGppImI\nBMbBMBGRwNgEiIgExiZARCQwNgEiIoGxCRARCYxNgIhIYGwCREQCYxMgIhLY/wPvzB87kxUFaQAA\nAABJRU5ErkJggg==\n", "text": [ "" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 3.19, Page Number: 61" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration:\n", "#peak loads(MW) are:\n", "P1 = 10\n", "P2 = 5\n", "P3 = 8\n", "P4 = 7\n", "\n", "DF = 1.5 #Diversity factor\n", "LF = 0.60 #Avg annual load factor\n", "\n", "#Calculation:\n", "M = (P1+P2+P3+P4)/DF #Max demand on the station(MW)\n", "E = (LF*M)*8760 #Annual energy supplied(MWh)\n", "#the installed capacity should be 15% to 20% more than the\n", "#maximum demand to meet the future needs.\n", "#Taking Installed capacity to be 20% more than the maximum demand,\n", "IC = 1.2*M #MW\n", "\n", "\n", "#Results:\n", "print \"(i) The maximum demand on the station is\",M,\"MW\"\n", "print \"(ii) Annual energy supplied by the station is (\",E/1000,\"* 10^6) kWh\"\n", "print \"(iii)Installed capacity is\",IC,\"MW\"\n", "print \" Suitable unit sizes are 4, each of 6 MW capacity.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) The maximum demand on the station is 20.0 MW\n", "(ii) Annual energy supplied by the station is ( 105.12 * 10^6) kWh\n", "(iii)Installed capacity is 24.0 MW\n", " Suitable unit sizes are 4, each of 6 MW capacity.\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.20, Page Number: 64" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "#Variable declaration:\n", "c1 = 20 #capacity of standby station(MW)\n", "c2 = 18 #Capacity of base load station(MW)\n", "E1 = 7.35*10**6 #Annual standby output(kWh)\n", "E2 = 101.35*10**6 #Annual base load station output(kWh)\n", "P3 = 12 #peak load on standby station(MW)\n", "t = 2190 #hours of use by standby station/year\n", "\n", "\n", "#Calculation:\n", "LF1 = E1/(t*P3*10**3) #Annual load factor of standby station\n", "PCF1 = E1/(8760*c1*10**3) #Plant capacity factor of standby station\n", "LF2 = E2/(8760*c2*10**3) #Annual load factor of base load station\n", "#for base load station,\n", "PCF2 = LF2 #Plant capacity factor of base load station\n", "\n", "#Results:\n", "print \"Annual load factor of standby station is\",round(LF1*100,1),\"%\"\n", "print \"Plant capacity factor of standby station is\",round(PCF1*100,1),\"%\"\n", "print \"Annual load factor of base load station is\",round(LF2*100,1),\"%\"\n", "print \"Plant capacity factor of base load station is\",round(PCF2*100,1),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Annual load factor of standby station is 28.0 %\n", "Plant capacity factor of standby station is 4.2 %\n", "Annual load factor of base load station is 64.3 %\n", "Plant capacity factor of base load station is 64.3 %\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.21, Page Number: 64" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from sympy import *\n", "\n", "#Variable declaration:\n", "M = 60000 #maximum load of hydro plant(kW)\n", "m = 20000 #minimum load of hydro pland(kW)\n", "P = 50000 #peak load of plant per day(kW)\n", "\n", "\n", "#Calculation:\n", "#Let OE = Capacity of steam plant\n", "#EC = Capacity of hydro plant\n", "x,y = symbols('x,y') #two variables as indicated in given curve\n", "# As steam electric conversion is 60%,\n", "#\u2234 Area HEFI = 0\u00b76 \u00d7 Area FGB ... (i)\n", "#But Area HEFI = Area CFE \u2212 Area CHI\n", "# = 1/2*(x*y-50000)\n", "# Now Area FGB = 1/2*(FG*GB) = 1/2*(24-x)*(40000-y)\n", "# or 0.2*x*y + 12000*x + 7.2*y \u2212 338000 = 0\n", "#Also from similar triangles CEF and CDB, we get,\n", "# y/40000 = x/24\n", "y = x/24*40000\n", "x1 = round(solve(0.2*x*y + 12000*x + 7.2*y-338000,x)[1])\n", "y1 = x1/24*40000\n", "\n", "\n", "\n", "#Result:\n", "print \"Capacity of the hydro plant is\",y1,\"kW\"\n", "print \"Capacity of the steam plant is\",60000-y1,\"kW\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Capacity of the hydro plant is 20000.0 kW\n", "Capacity of the steam plant is 40000.0 kW\n" ] } ], "prompt_number": 32 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.22, Page Number: 65" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from sympy import *\n", "\n", "#Variable declaration:\n", "#Suppose the maximum demand of reservoir plant is y MW and it \n", "#operates for x hours\n", "x,y = symbols('x y')\n", "\n", "\n", "#Calculation:\n", "E = 10**3*(1/2*(320+160)*8760) #Units generated/annum\n", "#As the steam plant, run-of-river plant and hydro plant generate \n", "#units in the ratio of 7 : 4 : 1, so, units generated by \n", "#each plant are:\n", "\n", "E1 = E*7/12 #by steam plant\n", "E2 = E*4/12 #by run-of-river plant\n", "E3 = E/1/12 #by reservoir plant\n", "\n", "#(i) Maximum demand on run-of-river plant = Area OEBA/OA\n", "M2 = 700.8*10**6/8760 #kW\n", "\n", "#Now,\n", "x = 8760*y/160\n", "E33 = 10**3*1/2*(x*y)\n", "#But the units generated by reservoir plant are E3 kWh\n", "y1 = solve(E33-E3,y)[1]\n", "M3 = y1 #maximum demand on reservoir station(MW)\n", "M1 = 320-80-M2/1000 #Maximum demand on steam station(MW)\n", "LF2 = 100 #load factor of river plant(%), because it acts \n", " #as a base station.\n", "\n", "LF1 = E1*100/(M1*1000*8760) #load factor of of run-of-river plant(%)\n", "LF3 = E3*100/(M3*1000*8760) #load factor of reservoir plant(%)\n", "\n", " \n", "\n", "#Result:\n", "print \"(i)Maximum demand on run-of-river plant is\",round(M1),\"MW\"\n", "print \" Maximum demand on steam station is\",round(M2),\"MW\"\n", "print \" Maximum demand on reservoir station is\",round(y1),\"MW\"\n", "print \"\\n(ii)Load factor of steam plant plant is\",LF1,\"%\"\n", "print \" Load factor of of run-of-river plant is\",LF2,\"%\"\n", "print \" Load factor of of reservoir plant is\",round(LF3),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i)Maximum demand on run-of-river plant is 160.0 MW\n", " Maximum demand on steam station is 80000.0 MW\n", " Maximum demand on reservoir station is 80.0 MW\n", "\n", "(ii)Load factor of steam plant plant is 87.5 %\n", " Load factor of of run-of-river plant is 100 %\n", " Load factor of of reservoir plant is 25.0 %\n" ] } ], "prompt_number": 5 } ], "metadata": {} } ] }