{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 09: Mechanical properties of Matter"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex9.1:pg-269"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Mass Mu= 0.149  Kg\n",
      "\n",
      "Side length of ice cube is= 5.46 cm\n"
     ]
    }
   ],
   "source": [
    "  import math   #Example9_1\n",
    " \n",
    "  \n",
    "#To find its mass and how large a cube of ice has the same mass\n",
    "pu=18680.0     #units in Kg/meter**3\n",
    "s=2*10**-2     #units in meters\n",
    "vu=s**3.0     #units in meter**3\n",
    "mu=pu*vu      #units in Kg\n",
    "print \"Mass Mu=\",round(mu,3),\" Kg\\n\"\n",
    "pi=920     #units in Kg/meter**3\n",
    "vi=mu/pi     #units in meter**3\n",
    "ss=vi**(1/3.0)*10**2     #units in cm\n",
    "print \"Side length of ice cube is=\",round(ss,2),\"cm\" \n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex9.2:pg-269"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The radius of the wire should be r= 1.6  mm and the cross sectional area is A= 0.0 meter**2\n",
      "\n",
      "The ball stretches the wire a distance of deltaL= 3.6 mm\n"
     ]
    }
   ],
   "source": [
    "  import math   #Example9_2\n",
    " \n",
    "  \n",
    "#To calculate the cross sectional area and how far the ball will stretch the wire\n",
    "m=40.0     #units in Kg\n",
    "g=9.8     #units in meter/sec**2\n",
    "F=m*g     #units in Kg meter/sec**2\n",
    "stress=0.48*10**8     #units in Newton/meter**2\n",
    "A=F/stress     #units in meter**2\n",
    "r=math.sqrt(A/math.pi)*10.0**3     #units in mm\n",
    "print \"The radius of the wire should be r=\",round(r,1),\" mm and the cross sectional area is A=\",round(A),\"meter**2\"\n",
    "y=200.0*10**9      #units in Newton/meter**2\n",
    "strain=stress/y\n",
    "L0=15     #units in meters\n",
    "deltaL=strain*L0     #units in meters\n",
    "deltaL=deltaL*10**3      #units in mm\n",
    "print \"\\nThe ball stretches the wire a distance of deltaL=\",round(deltaL,2),\"mm\" \n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex9.7:pg-273"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The flow rate is reduced by a factor of  16.0\n"
     ]
    }
   ],
   "source": [
    "  import math   #Example9_7\n",
    " \n",
    "  \n",
    "  #To find out by what factor the blood flow in an artery is reduced\n",
    "r1_r2=1/2.0    #The ratio by which the radius is altered in arterys\n",
    "R1_R2=1/r1_r2**4           #Ratio by which flow is altered\n",
    "print \"The flow rate is reduced by a factor of \",round(R1_R2)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex9.9:pg-274"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Pressure Difference at A and B is Pa-Pb= 1980.0  Pa therefore Preasure at A is High than at B\n"
     ]
    }
   ],
   "source": [
    "  import math   #Example9_9\n",
    " \n",
    "  \n",
    "  #To compare the pressures at A and at B\n",
    "p=1000      #Units in Kg/Meter**3\n",
    "va=0.2     #units in meters/sec\n",
    "vb=2     #units in meters/sec\n",
    "Pa_Pb=-0.5*p*(va**2-vb**2)      #units in Pa\n",
    "print \"Pressure Difference at A and B is Pa-Pb=\",round(Pa_Pb),\" Pa therefore Preasure at A is High than at B\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex9.10:pg-276"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The speed of the rain drop is Vc= 0.049  meters/sec\n"
     ]
    }
   ],
   "source": [
    "  import math   #Example9_10\n",
    " \n",
    "  \n",
    "  #To  find out how fast a raindrop becomes turbulent\n",
    "Nr=10     #Number of molecules\n",
    "n=1.9*10**-5     #Units in PI\n",
    "p=1.29     #Units in Kg/Meter**3\n",
    "d=3*10**-3     #Units in meters\n",
    "vc=(Nr*n)/(p*d)       #units in meters/sec\n",
    "print \"The speed of the rain drop is Vc=\",round(vc,3),\" meters/sec\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex9.11:pg-277"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The required power is= 95.0  hp\n"
     ]
    }
   ],
   "source": [
    "  import math   #Example9_11\n",
    " \n",
    "  \n",
    "  #To find out what horsepower is required\n",
    "p=1.29    #Units in Kg/Meter**3\n",
    "Cd=0.45\n",
    "af=2     #Units in Meter**2\n",
    "v=20     #Units in meters/sec\n",
    "M=1000     #units in Kg\n",
    "F=(0.5*p*Cd*af*v**2)+((M/1000)*((110+(1.1*v))))     #Units in Newtons\n",
    "Power=F*v     #Units in Watts\n",
    "Power=Power/747.3061       #units in Horse Power\n",
    "reqHPower=Power**2     #unis in Horse power\n",
    "print \"The required power is=\",round(reqHPower),\" hp\"\n",
    "  #In text book the answer is printed wrong as 80 Hp the correct answer is 95Hp\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex9.12:pg-278"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Sedimentation is vt= 0.0041 cm/sec\n"
     ]
    }
   ],
   "source": [
    "  import math   #Example9_12\n",
    " \n",
    "  \n",
    "  #To find out the sedimentation rate of sphrical particles\n",
    "b=2*10**-3     #units in cm\n",
    "g=9.8      #Units in meters/sec**2\n",
    "n=1     #units in m PI\n",
    "Pp_Pt=1050     #units in Kg/Meter**3\n",
    "vt=(((2*b**2*g)/(9*n))/(2*Pp_Pt))*10**6        #units in cm/sec\n",
    "print \"Sedimentation is vt=\",round(vt,4),\"cm/sec\"\n",
    "  #in text book answer  is printed wrong as vt=4.36*10**-3 cm/sec but the correct answer is vt=4.14*10**-3 cm/sec\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}