{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 08: Rotational work energy and momentum" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex8.1:pg-240" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The rotational kinetic energy is KE=\n", "2.57e+29\n", "Joules\n" ] } ], "source": [ " import math #Example 8_1\n", " \n", " \n", " #To find the rotational kinetic energy\n", "m=5.98*10**24 #units in Kg\n", "r=6.37*10**6 #units in meters\n", "I=(2.0/5)*m*r**2 #units in Kg meter**2\n", "t=86400 #units in sec\n", "w=(2*math.pi)/(t) #units in rad/sec\n", "KE=0.5*(I*w**2) #units in joules\n", "print \"The rotational kinetic energy is KE=\"\n", "print round(KE,-27)\n", "print \"Joules\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex8.2:pg-242" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Angular acceleration is alpha= 0.384 rad/sec**2\n" ] } ], "source": [ " import math #Example 8_2\n", " \n", " \n", "#To find the angular acceleration of the wheel\n", "m=30 #units in Kg\n", "k=0.25 #units in meters\n", "I=m*k**2 #units in Kg meter**2\n", "force=1.8 #units in Newtons\n", "levelarm=0.40 #nits in meters\n", "tou=force*levelarm #units in Newton meter\n", "alpha=tou/I #units in rad/sec**2\n", "print \"Angular acceleration is alpha=\",round(alpha,3),\" rad/sec**2\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex8.3:pg-242" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The time taken is t= 15.7 sec\n", "\n", "The wheel goes a distance of theta= 98.7 rad\n", "\n", "The rotational kinetic energy is KE= 197.0 Joules\n" ] } ], "source": [ " import math #Example 8_3\n", " \n", " \n", " #To find out how long does it take to accelerate and how far does wheel turn in this time and the rotational kinetic energy\n", "force=8 #units in Newtons\n", "arm=0.25 #units in meters\n", "tou=force*arm #units in Newton meter\n", "m=80 #units in Kg\n", "b=arm #units in meters\n", "I=0.5*m*b**2 #units in Kg meter**2\n", "alpha=tou/I #units in rad/sec**2\n", "wf=4*math.pi #units in rad/sec\n", "w0=0 #units in rad/sec\n", "t=(wf-w0)/alpha #units in sec\n", "print \"The time taken is t=\",round(t,1),\" sec\\n\"\n", "theta=0.5*(wf+w0)*t #units in radians\n", "print \"The wheel goes a distance of theta=\",round(theta,1),\" rad\\n\"\n", "KE=0.5*I*wf**2 #units in Joules\n", "print \"The rotational kinetic energy is KE=\",round(KE),\" Joules\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex8.4:pg-243" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The angular acceleration is alpha= 1.37 rad/sec**2\n", "\n", "The objects goes a distance of y= 51.4 meters\n" ] } ], "source": [ " import math #Example 8_4\n", " \n", " \n", " #To find out the angular acceleration and the distance the object falls\n", "f1=29.4 #units in Newtons\n", "r1=0.75 #units in meters\n", "m1=40 #units in Kgs\n", "r2=0.6 #units in meters\n", "m2=3 #units in Kgs\n", "alpha=(f1*r1)/((m1*r2**2)+(m2*r1**2)) #units in rad/sec**2\n", "print \"The angular acceleration is alpha=\",round(alpha,2),\" rad/sec**2\\n\"\n", "a=r1*alpha #units in meters/sec**2\n", "t=10 #units in sec\n", "y=0.5*a*t**2 #units in meters\n", "print \"The objects goes a distance of y=\",round(y,1),\" meters\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex8.5:pg-244" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The object is moving at v= 1.28 meters/sec\n" ] } ], "source": [ " import math #Example 8_5\n", " \n", " \n", " #To find the speed of the object\n", "m=3 #units in Kg\n", "g=9.8 #units in meters/sec**2\n", "h=0.80 #units in meters\n", "m1=3 #units in Kg\n", "m2=14.4 #units in Kg\n", "r=0.75 #units in meters\n", "v=math.sqrt((m*g*h)/((0.5*m1)+((0.5*m2)/r**2)))\n", "print \"The object is moving at v=\",round(v,2),\" meters/sec\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex8.8:pg-247" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The sun would take for one revolution in time=\n", "0.000216 sec\n" ] } ], "source": [ " import math #Example 8_8\n", " \n", " \n", " #To find out how long does the sun take to complete one revolution\n", "ra_rb=10.0**5\n", "noofrev=1.0/25 #units in rev/day\n", "wafter=(ra_rb)**2*(noofrev)\n", "t=86400 #units in sec\n", "time=t/wafter #units in sec\n", "print \"The sun would take for one revolution in time=\"\n", "print time,\"sec\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex8.9:pg-248" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The rotational speed is Wf= 1.63 rev/sec\n" ] } ], "source": [ " import math #Example 8_9\n", " \n", " \n", " #To find out the rotational speed \n", "m=0.3 #units in Kg\n", "r=0.035 #units in meters\n", "Iw=0.5*m*r**2 #units in Kg meter**2\n", "Ibt=8*10**-4 #units in Kg meter**2\n", "w0=2 #units in rev/sec\n", "wf=(Ibt*w0)/(Ibt+Iw) #units in rev/sec\n", "print \"The rotational speed is Wf=\",round(wf,2),\" rev/sec\"\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }