{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 06:Linear Momentum" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex6.1:pg-189" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The average retarding force is F= -2500.0 Newtons\n" ] } ], "source": [ " #Example 6_1\n", " \n", " \n", " #To calculate how large is the average force retarding its motion\n", "m=1500 #units in Kg\n", "vf=15.0 #units in meters/sec\n", "v0=20 #units in meters/sec\n", "t=3 #units in sec\n", "f=((m*vf)-(m*v0))/t #Units in Newtons\n", "print \"The average retarding force is F=\",round(f),\" Newtons\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex6.2:pg-190" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The average stopping force the tree exerts on the car is F=\n", "-160000.0 Newtons\n" ] } ], "source": [ " #Example 6_2\n", " \n", " \n", " #To estimate the average stopping force the tree exerts on the car\n", "m=1200 #units in Kg\n", "vf=0 #units in meters/sec\n", "v0=20 #units in meters/sec\n", "v=0.5*(vf+v0) #units in meters/sec\n", "s=1.5 #units in meters\n", "t=s/v #units in sec \n", "f=((m*vf)-(m*v0))/t #Units in Newtons\n", "print \"The average stopping force the tree exerts on the car is F=\"\n", "print f,\"Newtons\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex6.3:pg-191" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The car is moving at vf= 8.0 Meters/sec\n", "\n", "The positive sign of vf Indicate the car is moving in the direction the truck was moving\n" ] } ], "source": [ " #Example 6_3\n", " \n", " \n", " #To find out how fast and the direction car moving\n", "m1=30000 #units in Kg\n", "m2=1200 #units in Kg\n", "v10=10 #units in meters/sec\n", "v20=-25 #units in meters/sec\n", "vf=((m1*v10)+(m2*v20))/(m1+m2) #unis in meters/sec\n", "print \"The car is moving at vf=\",round(vf,2),\" Meters/sec\\n\"\n", "print \"The positive sign of vf Indicate the car is moving in the direction the truck was moving\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex6.5:pg-193" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The velocity V2f= 0.2 meters/sec or 20.0 cm/sec\n", "\n", "The velocity V1f= -0.1 meters/sec or 10.0 cm/sec\n", "\n" ] } ], "source": [ " #Example 6_5\n", " \n", " \n", " #To find the velocity of each ball after collision\n", "m1=0.04 #units in kg\n", "m2=0.08 #units in kg\n", "v1=0.3 #units in meters/sec\n", "v2f=(2*m1*v1)/(m1+m2) #units in meters/sec\n", "v2f1=v2f*100 #units in cm/sec\n", "print \"The velocity V2f=\",round(v2f,1),\" meters/sec or \",round(v2f1),\" cm/sec\\n\"\n", "v1f=((m1*v1)-(m2*v2f))/m1 #units in meters/sec\n", "v1f1=-v1f*100 #units in cm/sec\n", "print \"The velocity V1f=\",round(v1f,1),\" meters/sec or \",round(v1f1),\" cm/sec\\n\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex6.6:pg-196" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The speed of the pelet before collision is V10= 487.0 meters/sec\n" ] } ], "source": [ " #Example 6_6\n", " \n", "import math \n", " #To calculate the speed of the pellet before collision\n", "h=0.30 #units in meters\n", "g=9.8 #units in meters/sec**2\n", "v=math.sqrt(2*g*h) #units in meters/sec\n", "m1=2 #units in Kgs\n", "m2=0.010 #units in kgs\n", "v10=((m1+m2)*v)/m2 #units in meters/sec\n", "print \"The speed of the pelet before collision is V10=\",round(v10),\" meters/sec\"\n", " #In textbook the answer is printed wrong as V10=486 meters/sec the correct answer is V10=487 meters/sec\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex6.7:pg-196" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Thrust is F= 65000000.0 Newtons\n" ] } ], "source": [ " #Example 6_7\n", " \n", " \n", " #To calculate how large a forward push given to the rocket\n", "m=1300 #units in Kgs\n", "vf=50000 #units in meters/sec\n", "v0=0 #units in meters/sec\n", "F=((m*vf)-(m*v0)) #units in Newtons\n", "print \"The Thrust is F=\",round(F),\" Newtons\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex6.8:pg-197" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Z component of velocity is Vz= 0.0 meters/sec\n", "\n", "The Y component of velocity is Vy= -0.6 *V0\n", "\n", "The X component of velocity is Vx= -1.8 *V0\n" ] } ], "source": [ " #Example 6_8\n", " \n", " \n", " #To determine the velocity of the third peice\n", "momentumbefore=0 #units in kg meter/s\n", "m=0.33 #units in Kgs\n", "vz=momentumbefore/m\n", "print \"The Z component of velocity is Vz=\",round(vz),\" meters/sec\\n\"\n", "m=0.33 #units in Kgs\n", "v0=0.6 #units in meters/sec\n", "vy=-(m*v0)/m #interms of v0 and meters/sec\n", "print \"The Y component of velocity is Vy=\",round(vy,1),\"*V0\\n\"\n", "v01=1 #units in meters/sec\n", "v02=0.8 #units in meters/sec\n", "vx=-((v01+v02)*m)/m #interms of v0 and units in meters/sec\n", "print \"The X component of velocity is Vx=\",round(vx,1),\"*V0\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex6.9:pg-198" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "After the collision the second ball moves at a speed of v= 4.1 Meters/sec\n" ] } ], "source": [ " #Example 6_9\n", " \n", "import math \n", " #To find out the velocity of second ball after collision\n", "v1=5 #units in meters/sec\n", "theta=50.0 #units in degrees\n", "v2=2 #units in meters/sec\n", "vx=v1/(v2*math.cos(theta*math.pi/180)) #units in meters/sec\n", "vy=-(v2*math.cos(theta*math.pi/180)) #units in meters/sec\n", "v=math.sqrt(vx**2+vy**2) #units in meters/sec\n", "print \"After the collision the second ball moves at a speed of v=\",round(v,2),\" Meters/sec\"\n", " #in textbook the answer is printed wrong as 4.01 meters/sec the correct answer is 4.1 meters/sec\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex6.10:pg-199" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The average speed of the nitrogen molecule in air is V= 492.0 meters/sec\n" ] } ], "source": [ " #Example 6_10\n", " \n", " \n", " #To find the average speed of the nitrogen molecule in air\n", "ap=1.01*10**5 #units in Newton/meter**2\n", "nofmol=2.69*10**25 #Number of molecules\n", "nitmass=4.65*10**-26 #units in Kg\n", "v=sqrt((ap*3)/(nofmol*nitmass)) #units in meters/sec\n", "print \"The average speed of the nitrogen molecule in air is V=\",round(v),\" meters/sec\"\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }