{

 "metadata": {

  "name": "",

  "signature": "sha256:5482cd080863a0bf132cc69662813c918cd153651feccebbb960c53549f6ef87"

 },

 "nbformat": 3,

 "nbformat_minor": 0,

 "worksheets": [

  {

   "cells": [

    {

     "cell_type": "heading",

     "level": 1,

     "metadata": {},

     "source": [

      "Chapter04: Newtons Law"

     ]

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex4.1:pg-147"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "  #Example 4_1\n",

      " \n",

      "  \n",

      "  #To calculate the force required\n",

      "vf=12    #units in meters/sec\n",

      "v0=0     #units in meters/sec\n",

      "t=8    #units in sec\n",

      "a=(vf-v0)/t     #units in meters/sec**2\n",

      "m=900    #units in Kg\n",

      "F=m*a    #units in Newtons\n",

      "print \"The force required is F=\",round(F),\" N\"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "The force required is F= 900.0  N\n"

       ]

      }

     ],

     "prompt_number": 1

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex4.2:pg-147"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "  #Example 4_2\n",

      " \n",

      "  \n",

      "  #To find the friction force that opposes the motion\n",

      "F1=500    #units in Newtons\n",

      "F2=800    #units in Newtons\n",

      "theta=30    #units in degrees\n",

      "Fn=F1+(F2*math.sin(theta*math.pi/180))    #units in Newtons\n",

      "u=0.6\n",

      "f=u*Fn     #units in Newtons\n",

      "print \"The Frictional force that is required is f=\",round(f),\" N\"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "The Frictional force that is required is f= 540.0  N\n"

       ]

      }

     ],

     "prompt_number": 2

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex4.3:pg-153"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "  #Example 4_3\n",

      " \n",

      "  \n",

      "  #To find out at what rate the wagon accelerate and how large a force the ground pushing up on wagon\n",

      "F1=90     #units in Newtons\n",

      "F2=60     #units in Newtons\n",

      "P=F1-F2    #units in Newtons\n",

      "F3=100     #units in Newtons\n",

      "F4=sqrt(F3**2-F2**2)    #units in Newtons\n",

      "a=9.8    #units in meters/sec**2\n",

      "ax=(F4*a)/F1     #units in Meters/sec**2\n",

      "print \"The wagon accelerates at ax=\",round(ax,1),\" meters/sec**2\\n\"\n",

      "print \"Force by which the ground pushing is P=\",round(P),\" N\"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "The wagon accelerates at ax= 8.7  meters/sec**2\n",

        "\n",

        "Force by which the ground pushing is P= 30.0  N\n"

       ]

      }

     ],

     "prompt_number": 3

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex4.4:pg-153"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "  #Example 4_4\n",

      " \n",

      "  \n",

      "  # To calculate How far does the car goes\n",

      "w1=3300      #units in lb\n",

      "F1=4.45     #units in Newtons\n",

      "w2=1       #units in lb\n",

      "weight=w1*(F1/w2)    #units in Newtons\n",

      "g=9.8     #units in meters/sec**2\n",

      "Mass=weight/g     #units in Kg\n",

      "speed=38     #units in mi/h\n",

      "speed=speed*(1.61)*(1/3600)     #units in Km/sec\n",

      "stoppingforce=0.7*(weight)     #units in Newtons\n",

      "a=stoppingforce/-(Mass)     #units in meters/sec**2\n",

      "vf=0\n",

      "v0=17     #units in meters/sec\n",

      "x=(vf**2-v0**2)/(2*a)\n",

      "print \"The car goes by x=\",round(x,1),\" meters\"\n",

      "  #In text book the answer is printed wrong as x=20.9 meters the correct answer is x=21.1 meters\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "The car goes by x= 21.1  meters\n"

       ]

      }

     ],

     "prompt_number": 4

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex4.5:pg-155"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "  #Example 4_5\n",

      " \n",

      "  \n",

      "  #To find the acceleration of the masses\n",

      "w1=10     #units in Kg\n",

      "w2=5     #units in Kg\n",

      "f1=98     #units in Newtons\n",

      "f2=49     #units in Newtons\n",

      "w=w1/w2\n",

      "T=round((f1+(w*f2))/(w+1))     #units in Newtons\n",

      "a=(f1-T)/w1     #units in meters/sec**2\n",

      "print \"Acceleration is a=\",round(a,1),\" meters/sec**2\"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Acceleration is a= 3.3  meters/sec**2\n"

       ]

      }

     ],

     "prompt_number": 5

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex4.6:pg-156"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "  #Example 4_6\n",

      " \n",

      "\n",

      "  #To find the acceleration of the objects\n",

      "w1=0.4     #units in Kg\n",

      "w2=0.2      #units in Kg\n",

      "w=w1/w2\n",

      "a=9.8     #units in meters/sec**2\n",

      "f=0.098     #units in Newtons\n",

      "c=w2*a     #units in Newtons\n",

      "T=((w*c)+f)/(1+w)       #units in Newtons\n",

      "a=(T-f)/w1     #units in meters/sec**2\n",

      "print \"Acceleration a=\",round(a,1),\" meters/sec**2\"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Acceleration a= 3.1  meters/sec**2\n"

       ]

      }

     ],

     "prompt_number": 6

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex4.7:pg-157"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "  #Example 4_7\n",

      " \n",

      "  \n",

      "  #To estimate the lower limit for the speed\n",

      "  #In a practical situation u should be atleast 0.5\n",

      "u=0.5\n",

      "g=9.8     #units in meter/sec**2\n",

      "x=7     #units in meters\n",

      "v0=math.sqrt(2*u*g*x)     #units in meters/sec\n",

      "print \"The lower limit of the speed v0=\",round(v0,1),\" meter/sec\"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "The lower limit of the speed v0= 8.3  meter/sec\n"

       ]

      }

     ],

     "prompt_number": 7

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex4.9:pg-158"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "  #Example 4_9\n",

      " \n",

      "  \n",

      "  #To calculate how large a force must push on car to accelerate\n",

      "m=1200    #units in Kg\n",

      "g=9.8     #units in meters/sec**2\n",

      "d1=4     #units in meters\n",

      "d2=40     #units in meters\n",

      "a=0.5     #units in meters/sec**2\n",

      "P=((m*g)*(d1/d2))+(m*a)     #units in Newtons\n",

      "print \"The force required is P=\",round(P),\" N\"\n",

      "  #In text book the answer is printed wrong as P=1780 N but the correct answer is P=1776 N\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": []

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex4.10:pg-159"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "  #Example 4_10\n",

      " \n",

      "  \n",

      "  #To calculate the tension in the rope\n",

      "u=0.7\n",

      "sintheta=(6.0/10)\n",

      "w1=50     #units in Kg\n",

      "g=9.8     #units in meter/sec**2\n",

      "costheta=(8.0/10)\n",

      "Fn=w1*g*costheta      #units in Newtons\n",

      "f=u*Fn     #units in Newtons\n",

      "T=f+(w1*g*sintheta)\n",

      "print \"The tension in the rope is T=\",round(T),\" N\"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": []

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex4.11:pg-159"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "  #Example 4_11\n",

      " \n",

      "  \n",

      "  #To find the acceleration of the system\n",

      "w1=7.0     #units in Kg\n",

      "a=9.8     #units in meters/sec**2\n",

      "w2=5     #units in Kg\n",

      "w=w1/w2\n",

      "F1=29.4     #units in Newtons\n",

      "F2=20     #units in Newtons\n",

      "f=(F1+F2)      #units in Newtons\n",

      "T1=w1*a      #units in Newtons\n",

      "T=(T1+(w*f))/(1+w)      #units in Newtons\n",

      "a=((w1*a)-T)/w1     #units in meters/sec**2\n",

      "print \"Acceleration a=\",round(a,2),\" meters/sec**2\"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Acceleration a= 1.6  meters/sec**2\n"

       ]

      }

     ],

     "prompt_number": 8

    }

   ],

   "metadata": {}

  }

 ]

}