{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 27:The Atomic Nucleus" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex27.1:pg-1242" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The fraction of atomic mass of Uranium is due to its electrons is= 0.000215\n" ] } ], "source": [ " import math # Example 27_1\n", " \n", " \n", "#What fraction of atomic mass of Uranium is due to its electrons\n", "n=92 #Units in constant\n", "mass=0.000549 #Units in u\n", "tmass=235 #units in u\n", "per=(n*mass)/tmass #Units in fractions\n", "print \"The fraction of atomic mass of Uranium is due to its electrons is=\",round(per,6)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex27.2:pg-1243" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The density of gold nucleus is p=\n", "2.30561808801e+17 Kg/meter**3\n" ] } ], "source": [ " import math # Example 27_2\n", " \n", " \n", "#To find the density of gold nucleus\n", "r=6.97*10**-15 #Units in meters\n", "a=197 #Units in u\n", "v=(4/3.0)*math.pi*r**3 #Units in meter**3\n", "m1=1.66*10**-27 #Units in Kg/u\n", "mass=a*m1 #Units in Kg\n", "p=mass/v #Units in Kg/meter**3\n", "print \"The density of gold nucleus is p=\"\n", "print p,\"Kg/meter**3\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex27.3:pg-1243" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The energy required to change the mass of a system is= 933.7 MeV\n" ] } ], "source": [ " import math # Example 27_3\n", " \n", " \n", "#To calculate the energy required to change the mass of a system\n", "c=3*10**8 #units in meters/sec\n", "m=1.66*10**-27 #Units in g\n", "e=m*c**2 #Units in J\n", "e=e/(1.6*10**-19)*10**-6 #Units in MeV\n", "print \"The energy required to change the mass of a system is=\",round(e,1),\" MeV\"\n", "#In text book answer is printed wrong as e=931.5Mev the correct answer is933.7 MeV\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex27.4:pg-1243" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The binding energy of deuterium is E= 2.22 MeV \n" ] } ], "source": [ " import math # Example 27_4\n", " \n", " \n", "#To compute the binding energy of deuterium\n", "m1=2.014102 #Units in u\n", "m2=0.000549 #Units in u\n", "total=m1-m2 #Unts in u\n", "m3=1.007276 #Units in u\n", "m4=1.008665 #Units in u\n", "suma=m3+m4 #Units in u\n", "massdefect=suma-total #units in u\n", "e1=931.5 #Units in MeV\n", "m5=1 #Units iin eV\n", "e=massdefect*e1/m5 #Units in MeV\n", "print \"The binding energy of deuterium is E=\",round(e,2),\" MeV \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex27.5:pg-1245" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "After 48 days only 0.313 mg will remain\n" ] } ], "source": [ " import math # Example 27_5\n", " \n", " \n", "#To find how much of the orignal I will still present\n", "d1=20.0 #Units in mg\n", "d2=d1/2 #Units in mg\n", "d3=d2/2 #Units in mg\n", "d4=d3/2 #Units in mg\n", "d5=d4/2 #Units in mg\n", "d6=d5/2 #Units in mg\n", "d7=d6/2 #Units in mg\n", "print \"After 48 days only \",round(d7,3),\" mg will remain\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex27.6:pg-1246" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The number of dis integrations per sec=\n", "-36195210827.7\n" ] } ], "source": [ " import math # Example 27_6\n", " \n", " \n", "#To find how many radium atoms in the vial undergo decay\n", "t1=5.1*10**10 #Units in sec\n", "lamda=0.693/t1 #Units in sec**-1\n", "n1=6.02*10**26 #Units in atoms/Kmol\n", "n2=226 #Units in Kg/Kmol\n", "m1=0.001 #Units in Kg\n", "N=n1*m1/n2 #Units in number of atoms\n", "deltat=1 #Units in sec\n", "deltan=-lamda*N*deltat #Units in Number\n", "print \"The number of dis integrations per sec=\"\n", "print deltan\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex27.7:pg-1247" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The fraction of uranium remains undecayed today is= 0.54\n" ] } ], "source": [ " import math # Example 27_7\n", " \n", " \n", "#To find what fraction of uranium remains undecayed today\n", "t1=4.5*10**9 #Units in Years\n", "lamda=0.693/t1 #Units in years**-1\n", "t=4*10.0**9 #Units in Years\n", "n_no=math.e**(-lamda*t) #Units in Fractions\n", "print \"The fraction of uranium remains undecayed today is=\",round(n_no,2)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex27.8:pg-1248" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The decay constant is lamda= 0.00878 h**-1\n", " The Half life is t0.5= 79.0 h\n" ] } ], "source": [ " import math # Example 27_8\n", " \n", " \n", "#To calculate the decay constant and half life of substance\n", "n_no=0.9 #Units in constant\n", "t=12 #Units in h\n", "lamda=math.log(1/n_no)/t #Units in h**-1\n", "t1=round(0.693/lamda) #Units in h\n", "print \"The decay constant is lamda=\",round(lamda,7),\" h**-1\\n The Half life is t0.5=\",round(t1),\" h\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex27.9:pg-1249" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The approximate energy of the emitted alpha particle is E= 1.56 MeV\n" ] } ], "source": [ " import math # Example 27_9\n", " \n", " \n", "#To fnd the approximate energy of the emitted alpha particle\n", "m1=222.01753 #Units in u\n", "m3=4.00263 #Units in u\n", "m2=218.00893 #Units in u\n", "massloss=m1-(m2+m3) #Units in u\n", "e1=931.5 #Units in MeV\n", "e=e1/massloss*10**-5 #Units in MeV\n", "print \"The approximate energy of the emitted alpha particle is E=\",round(e,2),\" MeV\"\n", " #In textbook answer s printed wrong as E=5.56eV the correct answer is E=1.56 eV\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex27.10:pg-1250" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The percentage of original amount still remainng is N/No= 78.212 Percent\n" ] } ], "source": [ " import math # Example 27_10\n", " \n", "#To find the fraction of original amount still existence in earth\n", "t1=1.41*10**10 #Units in Years\n", "lamda=0.693/t1 #Units in year**-1\n", "t=5*10**9 #Units in years\n", "n_no=math.e**-(lamda*t) #Units in constant\n", "n_no=n_no*100 #Units in percentage\n", "print \"The percentage of original amount still remainng is N/No=\",round(n_no,3),\" Percent\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex27.11:pg-1251" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The activity of sr=\n", "5.25130010147e+12\n", "Bq\n" ] } ], "source": [ " import math # Example 27_11\n", " \n", " \n", "#To find the activity of sr\n", "t1=28 #units in Years\n", "t1=t1*86400*365 #Units in sec\n", "acti=6.022*10**26 #Units of Bq\n", "m1=90 #Units in Kg\n", "m2=0.001 #Units in Kg\n", "N=(m2/m1)*acti #Units in constant\n", "activity=0.693*N/t1 #Units in Bq\n", "print \"The activity of sr=\"\n", "print activity\n", "print \"Bq\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex27.12:pg-1252" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The age of the axe handle is t= 27959.0 years\n" ] } ], "source": [ " import math # Example 27_12\n", " \n", " \n", "#To estimate the age of the axe handle\n", "n_no=0.034\n", "t1=5730 #Units in Years\n", "t=-(math.log(n_no)*t1)/0.693 #Units in Years\n", "print \"The age of the axe handle is t=\",round(t),\" years\"\n", " #In textbook answer is printed wrong as t=28000 years correct answer is t=27958 years \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex27.13:pg-1253" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The energy released in the reaction E= 163.0 MeV\n" ] } ], "source": [ " import math # Example 27_13\n", " \n", " \n", "#To find the energy released in the reaction\n", "m1=141.91635 #Units in u\n", "m2=89.91972 #Units in u\n", "m3=4.03466 #Units in u\n", "n2=36 #Units in Constant\n", "n1=56 #Units in Constant\n", "n4=92 #units in constant\n", "m5=236.04564 #Units in u\n", "loss=m5-(m1+m2+m3)+n4-(n1+n2) #Units in u\n", "e1=931.5 #units n MeV\n", "energy=round(e1*loss) #units in MeV\n", "print \"The energy released in the reaction E=\",round(energy),\" MeV\"\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }