{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 24:Interference and Diffraction" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex24.1:pg-1130" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The angle at which the reinforcement line occurs is theta2= 44.0 degrees\n" ] } ], "source": [ " #Example 24_1\n", "import math \n", " \n", " #To find the angle at which the reinforcement line occurs\n", "n=2 #units in constant\n", "lamda=0.7 #units in cm\n", "d=2 #units in cm\n", "theta2=math.asin((n*lamda)/d)*180/math.pi #Units in degrees\n", "print \"The angle at which the reinforcement line occurs is theta2=\",round(theta2),\" degrees\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex24.2:pg-1131" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The thickness of air gap increases by= 294.0 nm\n" ] } ], "source": [ " #Example 24_2\n", " \n", " \n", " #To find by how much does thickness of air gap increases\n", "lamda=589 #units in nm\n", "gap=round(lamda/2) #units in nm\n", "print \"The thickness of air gap increases by=\",round(gap),\" nm\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex24.3:pg-1132" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The thickness that should be coated for minimum reflection is L= 99.6 nm\n" ] } ], "source": [ " #Example 24_3\n", " \n", " \n", " #To find the thickness that should be coated for minimum reflection\n", "lamda=550 #units in nm\n", "n=1.38 #units in constant\n", "L=(lamda/2)/(2*n) #units in nm\n", "print \"The thickness that should be coated for minimum reflection is L=\",round(L,1),\" nm\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex24.4:pg-1133" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "For the first order theta1= 32.0 degrees\n", "For the second order theta2= 53.0 degrees\n", "\n", " As it is impossible for the sine of angle that is= 1.18 radians to be greater that unity this second order and higher order images doesnot exist\n" ] } ], "source": [ " #Example 24_4\n", "\n", "import math \n", " \n", "#To find out the angle at which the line appears\n", "line=5.89*10**-7 #Units in meters\n", "noline=1/10.0**6 #units in Lines per meter\n", "theta1=math.sin(line/noline)*180/math.pi #units in degrees\n", "#For second order\n", "theta2=math.sin(2*line/noline)*180/math.pi #units in degrees\n", "print \"For the first order theta1=\",round(theta1),\" degrees\\nFor the second order theta2=\",round(theta2),\" degrees\"\n", "sinevalue=2*line/noline #units in radians\n", "print \"\\n As it is impossible for the sine of angle that is=\",round(sinevalue,2),\" radians to be greater that unity this second order and higher order images doesnot exist\"\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }