{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 20: Alternating Currents and Electronics" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex20.1:pg-982" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "We have to wait for a time of t= 10.0 sec\n" ] } ], "source": [ " #Example 20_1\n", " \n", " \n", "#To findout the time that it has to wait after turning off the set before it is safe to touch capacitor\n", "r=10.0**6 #Units in Ohms\n", "c=10.0**-5 #Units in F\n", "ti=r*c #Units in Sec\n", "print \"We have to wait for a time of t=\",round(ti),\" sec\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex20.2:pg-983" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The RMS current when f=20 Hz is= 0.00402 Ohms\n", "The RMS current when f=2*10**6 Hz is= 402.12 Ohms\n" ] } ], "source": [ " #Example 20_2\n", "\n", "import math\n", " \n", "#To find the rms current in the circuit \n", "f=20 #Units in Hz\n", "c=4*10.0**-7 #Units in F\n", "xc=1/(2.0*math.pi*f*c) #Units in Ohms/sec\n", "f=2*10**6 #Units in Hz\n", "xc1=1/(2*math.pi*f*c) #Units in Ohms/sec\n", "v=80.0 #Units in V\n", "i=v/xc #Units in A\n", "i1=v/xc1 #Units in A\n", "print \"The RMS current when f=20 Hz is=\",round(i,5),\" Ohms\\nThe RMS current when f=2*10**6 Hz is=\",round(i1,2),\" Ohms\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex20.3:pg-984" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The current in the inductor when frequency=60 Hz is I= 7.07 A\n", "\n", "The current in the inductor when frequency=6*10**2 Hz is I= 0.000707 A\n" ] } ], "source": [ " #Example 20_3\n", " \n", " \n", "#To find the current through the inductor\n", "f=60 #Units in Hz\n", "l=15.0*10**-3 #Units in H\n", "xl=2*math.pi*f*l #Units in Ohms\n", "v=40 #Units in V\n", "i=v/xl #Units in A\n", "print \"The current in the inductor when frequency=60 Hz is I=\",round(i,2),\" A\"\n", "f=6.0*10**5 #Units in Hz\n", "l=15.0*10**-3 #Units in H\n", "xl=2*math.pi*f*l #Units in Ohms\n", "v=40 #Units in V\n", "i=v/xl #Units in A\n", "print \"\\nThe current in the inductor when frequency=6*10**2 Hz is I=\",round(i,6),\" A\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex20.4:pg-984" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "ename": "SyntaxError", "evalue": "invalid syntax (, line 15)", "output_type": "error", "traceback": [ "\u001b[1;36m File \u001b[1;32m\"\"\u001b[1;36m, line \u001b[1;32m15\u001b[0m\n\u001b[1;33m print \"The current in circuit is I=\",round( ,4),\" A\\nVolt meter readings across resistor Vr=\",round( ,1),\" V\\nReadings across capacitor is Vc=\",round( ,1),\" V\\nPower loss in circuit is=\",round( ,1),\" W\",i,vr,vc,p)\u001b[0m\n\u001b[1;37m ^\u001b[0m\n\u001b[1;31mSyntaxError\u001b[0m\u001b[1;31m:\u001b[0m invalid syntax\n" ] } ], "source": [ " #Example 20_4\n", " \n", " \n", "#To find current in circuit, Voltmeter reading, reading across capacitor and power loss\n", "f=2000 #Units in Hz\n", "c=0.6*10**-6 #Units in F\n", "xc=1/(2*math.pi*f*c) #Units in Ohms\n", "r=300 #Units in Ohms\n", "z=sqrt(r**2+xc**2) #Units in Ohms\n", "v=80 #Units in V\n", "i=v/z #Units in A\n", "vr=i*r #Units in V\n", "vc=i*xc #Units in V\n", "p=i**2*r #Units in W\n", "print \"The current in circuit is I=\",round( ,4),\" A\\nVolt meter readings across resistor Vr=\",round( ,1),\" V\\nReadings across capacitor is Vc=\",round( ,1),\" V\\nPower loss in circuit is=\",round( ,1),\" W\",i,vr,vc,p)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex20.5:pg-984" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The current in circuit is I= 2.17 A\n", "Volt meter reading across R Vr= 43.4 V\n", "Volt meter reading across L Vl= 32.7 V\n", "Volt meter reading across c Vc= 57.6 V\n", "\n" ] } ], "source": [ " #Example 20_5\n", "\n", "import math \n", "#To find the current in circuit and voltmeters reading across R C and L\n", "f=600 #Units in Hz\n", "l=4.0*10**-3 #Units in H\n", "xl=2*math.pi*f*l #Units in Ohms\n", "c=10.0*10**-6 #Units in F\n", "xc=1/(2*math.pi*f*c) #Units in Ohms\n", "r=20.0 #Units in Ohms\n", "z=math.sqrt(r**2+(xl-xc)**2) #Units in Ohms\n", "v=50.0 #Units in V\n", "i=v/z #Units in A\n", "vr=i*r #Units in V\n", "vl=i*xl #Units in V\n", "vc=i*xc #Units in V\n", "print \"The current in circuit is I=\",round(i,2),\" A\\nVolt meter reading across R Vr=\",round(vr,1),\" V\\nVolt meter reading across L Vl=\",round(vl,1),\" V\\nVolt meter reading across c Vc=\",round(vc,1),\" V\\n\"\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }