{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 15:Electric Forces and Fields" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex15.1:pg-719" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of q is= 3.61e-06 C\n", "\n", "Number of electrons to be removed is=\n", "2.25625e+13\n", "Fraction of atoms lost is=\n", "7.52083333333e-10\n" ] } ], "source": [ " import math #Example15_1\n", " \n", " #To find the value of q and how many electrons must be removed and fraction of atoms lost\n", "dist=2 #Units in meters\n", "f=0.0294 #Units in N\n", "s=9*10**9 #Units in N meter**2/C**2\n", "q=math.sqrt((dist**2*f)/s) #Units in C\n", "print \"The value of q is=\",round(q,8),\" C\\n\"\n", "charge=3.61*10**-6 #Units in C\n", "c_elec=1.6*10**-19 #Units in C\n", "n=charge/c_elec #Units in number\n", "print \"Number of electrons to be removed is=\"\n", "print n\n", "f1=3*10.0**22 #Units in number\n", "fraction=n/f1 #Units of number\n", "print \"Fraction of atoms lost is=\"\n", "print fraction\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex15.2:pg-721" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The force on the center charge is= 0.02813 N\n" ] } ], "source": [ " import math #Example15_2\n", " \n", " \n", " #To find the force on the center charge\n", "k=9*10**9 #Units in N meter**2/C**2\n", "q1=4*10.0**-6 #Units in C\n", "q2=5*10.0**-6 #Units in C\n", "r1=2 #Units in meters\n", "r2=4 #Units in meters\n", "q3=6*10.0**-6 #Units in C\n", "f1=(k*q1*q2)/r1**2 #Units in N\n", "f2=(k*q2*q3)/r2**2 #Units in N\n", "f=f1-f2 #Units in C\n", "print \"The force on the center charge is=\",round(f,5),\" N\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex15.3:pg-722" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The resultant force is f= 19.0 N \n", "The resultant angle is theta= 71.6 degrees\n" ] } ], "source": [ " import math #Example15_3\n", " \n", " \n", " #To find the resultant force\n", "f1=6 #Units in N\n", "f2=18 #Units in N\n", "f=math.sqrt(f1**2+f2**2) #Units in N\n", "theta=math.atan(f2/f1)*180/math.pi #Units in degrees\n", "print \"The resultant force is f=\",round(f),\" N \\nThe resultant angle is theta=\",round(theta,1),\" degrees\"\n", " #In text book answer printed wrong as f=19 N correct answer is f=18N \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex15.4:pg-724" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The resultant force is f= 3.4 N \n", " The resultant angle is theta= 65.0 degrees\n" ] } ], "source": [ " import math #Example15_4\n", " \n", "\n", " #To find the resultant force on 20 micro C\n", "f1=2 #Units in N\n", "f2=1.8 #Units in N\n", "theta=37.0 #Units in degrees\n", "f2x=f2*math.cos(theta*math.pi/180) #Units in N\n", "f2y=f2*math.sin(theta*math.pi/180) #Units in N\n", "fy=f1+f2y #Units in N\n", "f=math.sqrt(fy**2+f2x**2) #Units in N\n", "theta=math.atan(fy/f2x)*180/math.pi #Units in degrees\n", "print \"The resultant force is f=\",round(f,1),\" N \\n The resultant angle is theta=\",round(theta,1),\" degrees\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex15.6:pg-726 " ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The magnitude of E is=\n", "7198876.9\n", "N/C\n" ] } ], "source": [ " import math #Example15_6\n", " \n", " \n", " #To find the magnitude of E\n", "k=9*10**9 #Units in N meter**2/C**2\n", "q=3.6*10**-6 #Units in C\n", "theta=37 #Units in degrees\n", "r=10*math.sin(theta*math.pi/180)*10**-2 #Units in meters \n", "e1=(k*q)/r**2 #Units in N/C\n", "q2=5*10**-6 #Units in C\n", "theta=37 #Units in degrees\n", "r1=10*10**-2 #Units in meters \n", "e2=(k*q2)/r1**2 #Units in N/C\n", "e1y=e1 #Units in N/C\n", "e2x=e2*math.cos(theta*math.pi/180) #Units in N/C\n", "e2y=-e2*math.sin(theta*math.pi/180) #Units in N/C\n", "ex=e2x #Units in N/C\n", "ey=e1y+e2y #Units in N/C\n", "e=math.sqrt(ex**2+ey**2) #Units in N/C\n", "print \"The magnitude of E is=\"\n", "print round(e,2)\n", "print \"N/C\"\n", " #In text book the answer isprinted wrong as E=7.26*10**6 N/C but the correct answer is E=7198876.9 N/C\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex15.7:pg-726" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The charge occured is q= 8.33e-07 C\n" ] } ], "source": [ " import math #Example15_7\n", " \n", " \n", " #To find out how much charge occurs\n", "e=3*10.0**6 #Units in N/C\n", "r=0.050 #Units in meters\n", "k=9*10.0**9 #Units in N meter**2/C**2\n", "q=(e*r**2)/k #Units in C\n", "print \"The charge occured is q=\",round(q,9),\" C\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex15.8:pg-727" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Lines of force come out of positive charge q suspended in cavity.\n", "Cavity \n", "surface must possess a negative charge since lines of force go and terminate on q.\n", "Therefore a charge +q must exist on outer portions.\n" ] } ], "source": [ " import math #Example15_8\n", " \n", " \n", " #To show using lines of force that a charge suspended with in cavity induces an equal and opposite charge on surface\n", "print \"Lines of force come out of positive charge q suspended in cavity.\\nCavity \\nsurface must possess a negative charge since lines of force go and terminate on q.\\nTherefore a charge +q must exist on outer portions.\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex15.9:pg-728" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The field goes by a speed of 47952.0 meters/sec\n" ] } ], "source": [ " import math #Example15_9\n", " \n", " #To find the speed just before the field strikes\n", "e=6000 #Units in N/C\n", "q=1.6*10**-19 #Units in C\n", "f=e*q #Units in N\n", "m=1.67*10**-27 #Units in Kg\n", "a=f/m #Units in meters/sec**2\n", "vo=0 #Units in meters/sec\n", "x=2*10**-3 #Units in meters\n", "v=math.sqrt(vo**2+(2*a*x)) #Units in meters/sec\n", "print \"The field goes by a speed of \",round(v),\" meters/sec\"\n", " #In text book answer printed wrong as v=48000 meters/sec the correct answer is v=47952 meters/sec \n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }