{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 13:Vibrations and Waves" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex13.1:pg-508## " ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Maximum velocity is Vmax= 1.4 Meter/sec\n", "\n", "Maximum acceleration is Amax= 4.9 meter/sec**2\n", "\n", "Velocity at x=0.1 meters is= 1.36 meters/sec\n", "\n", "Acceleration at x=0.1 meters is= -1.23 meters/sec**2\n", "\n" ] } ], "source": [ " import math #Example 13_1\n", " \n", " #To find the maximum velocity and acceleration and the same when x=10cm\n", "xo=0.4 #Units in Meters\n", "k=24.5 #Units in N/M\n", "m=2 #Units in Kg\n", "vmax=xo*(math.sqrt(k/m)) #Units in meters/sec\n", "print \"Maximum velocity is Vmax=\",round(vmax,1),\" Meter/sec\\n\"\n", "amax=(k*xo)/m #Units in meter/sec**2\n", "print \"Maximum acceleration is Amax=\",round(amax,1),\" meter/sec**2\\n\"\n", "x=0.1 #Units in meters\n", "v=math.sqrt((k/m)*(xo**2-x**2)) #Units in meters/Sec\n", "print \"Velocity at x=0.1 meters is= \",round(v,2),\" meters/sec\\n\"\n", "a=-(k*x)/m #Units in meter/sec**2\n", "print \"Acceleration at x=0.1 meters is= \",round(a,2),\" meters/sec**2\\n\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex13.2:pg-512## " ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The frequency of vibrations is f= 0.56 Hz\n" ] } ], "source": [ " import math #Example 13_2\n", " \n", " \n", " #To find the frequency of the vibrations\n", "spring=24.5 #Units in N/m\n", "m=2 #Units in Kg\n", "f=(1/(2*math.pi))*math.sqrt(spring/m) #Units in Hz\n", "print \"The frequency of vibrations is f=\",round(f,2),\" Hz\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex13.3:pg-513" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tension required in the string is T= 300.0 N\n" ] } ], "source": [ " import math #Example 13_3\n", " \n", " \n", " #To find the tension required in string\n", "m=0.002 #Units in Kg\n", "l=0.6 #Units in meters\n", "v=300 #Units in meters/sec\n", "T=(m/l)*v**2 #Units in N\n", "print \"Tension required in the string is T=\",round(T),\" N\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex13.4:pg-514" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The first resonance frequency is F1= 2.0 Hz\n", "\n", "The second resonance frequency is F2= 4.0 Hz\n", "\n", "The third resonance frequency is F3= 6.0 Hz\n", "\n" ] } ], "source": [ " import math #Example 13_4\n", " \n", " \n", " #To draw a picture on the first three resonance frequencies\n", "l=6 #Units in meters\n", "n=1\n", "lamda1=(2*l)/n #Units in meters\n", "n=2\n", "lamda2=(2*l)/n #Units in meters\n", "n=3\n", "lamda3=(2*l)/n #Units in meters\n", "speed=24 #Units in meters/sec\n", "f1=speed/lamda1 #Units in Hz\n", "f2=speed/lamda2 #Units in Hz\n", "f3=speed/lamda3 #Units in Hz\n", "print \"The first resonance frequency is F1=\",round(f1),\" Hz\\n\"\n", "print \"The second resonance frequency is F2=\",round(f2),\" Hz\\n\"\n", "print \"The third resonance frequency is F3=\",round(f3),\" Hz\\n\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex13.5:pg-515 " ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The speed of the wave is v= 40.0 meters/sec\n" ] } ], "source": [ " import math #Example 13_5\n", " \n", " \n", " #To find the speed of the wave\n", "l=300*10**-2 #Units in Meters\n", "lamda3=(l*2)/3 #Units in meters\n", "f=20 #Units in sec**-1 or Hz\n", "v=f*lamda3 #Units in meters/sec\n", "print \"The speed of the wave is v=\",round(v),\" meters/sec\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex13.6:pg-516" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The youngs modulus is Y=\n", "1.961e+11 N/meters**2\n" ] } ], "source": [ " import math #Example 13_6\n", " \n", " \n", " #To find the youngs modulus\n", "lamda=1.85 #Units in meters\n", "f=2700 #units in sec**-1\n", "v=lamda*f #Units in meters/sec\n", "density=7.86*10**3 #Units in Kg/meter**3\n", "y=v**2*density #Units in N/meters**2\n", "print \"The youngs modulus is Y=\"\n", "print round(y,-8),\"N/meters**2\"\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }