{ "metadata": { "name": "", "signature": "sha256:412bf04e25192c77f9fa9664d995cc0ae6446a81f631fb5e0e755ebfa36436bf" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "CHAPTER 21 : POWER ELECTRONICS" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 21.3: Page number 585\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "V_GT=2; #Gate triggering voltage, V\n", "V_F=0.7; #Forward voltage for diode D1\n", "\n", "#Calculation\n", "#(i)Triggering only by a positive gate voltage,\n", "#A diode is connected at the gatewith the n-side connected to thegate of the device,\n", "V_A=V_F+V_GT; #Required voltage to trigger the device, V\n", "\n", "print(\"The required voltage to trigger the device only by positive voltage=%.1fV.\"%V_A);\n", "\n", "#(ii)\n", "print(\"In order to trigger the triac only by negative voltage, the direction of diode D1 is reversed.\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The required voltage to trigger the device only by positive voltage=2.7V.\n", "In order to trigger the triac only by negative voltage, the direction of diode D1 is reversed.\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 21.4 : Page number 585-586\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "R=50.0; #Resitor, \u03a9\n", "V=50.0; #Supply voltage, V\n", "V_drop=1.0; #Drop across the triac in conduction, V\n", "\n", "#Calculation\n", "#(i) Ideal triac\n", "#Since the triac is ideal, voltage drop across it is zero,\n", "I=V/R; #Current through the 50 \u03a9 resistor, A\n", "\n", "print(\"(i) The cuurent through the 50 \u03a9 resistor when the triac is ideal=%dA.\"%I);\n", "\n", "#(ii) Triac has a drop of 1V\n", "I=(V-V_drop)/R; #Current through the 50 \u03a9 resistor, A\n", "\n", "print(\"(ii) The current through the 50 \u03a9 resistor when the triac has a drop of 1V=%.2fA.\"%I);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) The cuurent through the 50 \u03a9 resistor when the triac is ideal=1A.\n", "(ii) The current through the 50 \u03a9 resistor when the triac has a drop of 1V=0.98A.\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 21.5 : Page number 588-589\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "V_GT=2; #Gate triggering voltage, V\n", "V_BO=20; #Breakover voltage,V\n", "\n", "#Calculation\n", "print(\"The triggering level is raised by using a diac.\");\n", "V_A=V_BO+V_GT; #Gate trigger signal, V\n", "\n", "#Result\n", "print(\"In order to turn on the triac, the gate trigger signal=%dV.\"%V_A);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The triggering level is raised by using a diac.\n", "In order to turn on the triac, the gate trigger signal=22V.\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 21.6 : Page number 589\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "V_BO=30; #Breakover voltage of diac, V\n", "V_GT=1; #Trigger voltage of the triac, V\n", "I_T=10; #Trigger current, mA\n", "\n", "\n", "#Calculation\n", "V_A=V_BO+V_GT; #Voltage required for triggering the triac, V\n", "\n", "#Result\n", "print(\"The minimum capacitor voltage that will trigger the triac=%d V.\"%V_A);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The minimum capacitor voltage that will trigger the triac=31 V.\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 21.7 : Page number 593\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration\n", "eta=0.6; #Intrinsic stand-off ratio for UJT\n", "R_BB=10; #Inter-base resistance, k\u03a9\n", "\n", "#Calculation\n", "#Since, RBB=RB1+RB2 and eta=RB1/(RB1+RB2),\n", "#eta=RB1/RBB.\n", "R_B1=eta*R_BB; #Resistance of the bar between B1 and emitter junction, k\u03a9\n", "R_B2=R_BB-R_B1; #Resistance of the bar between B2 and emitter junction, k\u03a9 \n", "\n", "#Result\n", "print(\"Resistance of the bar between B1 and emitter junction=%d k\u03a9.\"%R_B1);\n", "print(\"Resistance of the bar between B2 and emitter junction=%d k\u03a9.\"%R_B2);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Resistance of the bar between B1 and emitter junction=6 k\u03a9.\n", "Resistance of the bar between B2 and emitter junction=4 k\u03a9.\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 21.8 : Page number 593\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "V_BB=10; #Interbase voltage, V\n", "eta=0.65; #Intrinsic stand-off ratio for UJT\n", "V_D=0.7; #Voltage drop in the pn junction, V\n", "\n", "#Calculation\n", "V_stand_off=eta*V_BB; #Stand off voltage, V\n", "V_P=V_stand_off+V_D; #Peak-point voltage, V\n", "\n", "#Result\n", "print(\"Stand off voltage=%.1f V.\"%V_stand_off);\n", "print(\"Peak-point voltage=%.1f V.\"%V_P);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Stand off voltage=6.5 V.\n", "Peak-point voltage=7.2 V.\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 21.9 : Page number 593\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "V_BB=25; #Interbase voltage, V\n", "eta_max=0.86; #Maximum intrinsic stand-off ratio for UJT\n", "eta_min=0.74; #Minimum intrinsic stand-off ratio for UJT\n", "V_D=0.7; #Voltage drop in the pn junction, V\n", "\n", "#Calculation\n", "V_P_max=eta_max*V_BB+V_D; #Maximum peak-point, V\n", "V_P_min=eta_min*V_BB+V_D; #Minimum peak-point, V\n", "\n", "#Result\n", "print(\"Maximum peak-point voltage=%.1fV\"%V_P_max);\n", "print(\"Minimum peak-point voltage=%.1fV\"%V_P_min);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum peak-point voltage=22.2V\n", "Minimum peak-point voltage=19.2V\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 21.10 : Page number 593-594\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "eta=0.65; #Intrinsic stand-off ratio for UJT\n", "R_BB=7.0; #Inter-base resistance, k\u03a9\n", "R1=100.0; #Resistor R1, \u03a9\n", "R2=400.0; #Resistor R2, \u03a9\n", "V_S=12.0; #Source voltage, V\n", "V_D=0.7; #Voltage drop in the pn junction, V\n", "\n", "#Calculation\n", "#(i)\n", "#Since, eta=RB1/RBB,\n", "R_B1=eta*R_BB; #Resistance of the bar between B1 and emitter junction, k\u03a9\n", "R_B2=R_BB-R_B1; #Resistance of the bar between B2 and emitter junction, k\u03a9 \n", "\n", "print(\"(i) Resistance of the bar between B1 and emitter junction=%.2f k\u03a9.\"%R_B1);\n", "print(\" Resistance of the bar between B2 and emitter junction=%.2f k\u03a9.\"%R_B2);\n", "\n", "#(ii)\n", "V_B2_B1=V_S*R_BB/(R_BB + (R1/1000) + (R2/1000)); #Voltage across B2-B1, V (voltage divider rule)\n", "V_P=eta*V_B2_B1+V_D; #Peak-point voltage, V\n", "\n", "print(\"(ii) The voltage across the base B2-B1=%.1fV.\"%V_B2_B1);\n", "print(\" Peak-point voltage=%.2fV\"%V_P);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) Resistance of the bar between B1 and emitter junction=4.55 k\u03a9.\n", " Resistance of the bar between B2 and emitter junction=2.45 k\u03a9.\n", "(ii) The voltage across the base B2-B1=11.2V.\n", " Peak-point voltage=7.98V\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 21.11 : Page number 596\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import log\n", "\n", "#Variable declaration\n", "RE_initial=5; #Initial value of emitter resistor, k\u03a9\n", "RE_adjusted=10; #Adjusted value of emitter resistor, k\u03a9\n", "C=0.2; #Capacitance, \u03bcF\n", "eta=0.54; #intrinsic stand-off ratio\n", "\n", "#Calculation\n", "#(i)\n", "t=round((RE_initial*1000*C*10**-6*log(1/(1-eta)))*1000,2); #Time period, ms\n", "f=(1/t)*1000; #frequency, Hz\n", "\n", "print(\"Frequency for 5k\u03a9 setting=%dHz.\"%f);\n", "\n", "#(i)\n", "t=round((RE_adjusted*1000*C*10**-6*log(1/(1-eta)))*1000,2); #Time period, ms\n", "f=(1/t)*1000; #frequency, Hz\n", "\n", "print(\"Frequency for 10k\u03a9 setting=%dHz.\"%f);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency for 5k\u03a9 setting=1282Hz.\n", "Frequency for 10k\u03a9 setting=645Hz.\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 21.12 : Page number 596-597\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import log\n", "\n", "#Variable declaration\n", "V_S=12; #Supply voltage, V\n", "R_BB=5; #Interbase resistance, k\u03a9\n", "R_1=50; #Resistor R1, k\u03a9\n", "R_2=0.1; #Resistor R2, k\u03a9\n", "C=0.1; #Capacitance, \u03bcF\n", "eta=0.6; #intrinsic stand-off ratio\n", "V_D=0.7; #Voltage drop across pn junction, V\n", "\n", "#Calculation\n", "#(i)\n", "#Since, \u03b7=R_B1/R_BB,\n", "R_B1=eta*R_BB; #Resitance between base B1 and emitter junction, k\u03a9\n", "\n", "#Since, R_BB=R_B1+R_B2\n", "R_B2=R_BB-R_B1; #Resitance between base B2 and emitter junction, k\u03a9\n", "\n", "#(ii)\n", "V_RB1_R2=V_S*(R_B1+R_2)/(R_BB+R_2); #Voltage drop across R_B1 and R_2 resistors, V\n", "V_P=V_D+V_RB1_R2; #Peak-point voltage, V\n", "\n", "#(iii)\n", "t=round((R_1*1000*C*10**-6*log(1/(1-eta)))*1000,2); #Time period, ms\n", "f=(1/t)*1000; #frequency, Hz\n", "\n", "\n", "#Result\n", "print(\"(i) R_B1=%dk\u03a9 and R_B2=%dk\u03a9\"%(R_B1,R_B2));\n", "print(\"(ii) The peak-point voltage to turn on the UJT=%.0fV.\"%V_P);\n", "print(\"(iii) Frequency of oscillations=%dHz.\"%f);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) R_B1=3k\u03a9 and R_B2=2k\u03a9\n", "(ii) The peak-point voltage to turn on the UJT=8V.\n", "(iii) Frequency of oscillations=218Hz.\n" ] } ], "prompt_number": 13 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }