{ "metadata": { "name": "", "signature": "sha256:9e373112e48f07ee80b6b4af3f674669c699f5259766125b19738d8e5f5cd0b1" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter6-Soil Compaction" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg127" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate maximum dry density and optimum moisture content\n", "##initialisation of variables\n", "G= 2.6\n", "LL= 20.\n", "P= 20.\n", "##calclations\n", "R= (4804574.*G-195.55*(LL)**2+156971*(P)**0.5-9527830)**0.5\n", "n= (1.195e-4)*((LL)**2)-1.964*G-(6.617e-5)*(P)+7.651\n", "w= math.e**n\n", "##results\n", "print'%s %.1f %s'% ('maximum dry density = ',R,' kg/m^3 ')\n", "print'%s %.2f %s'%('optimum moisture content = ',w,' ')\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "maximum dry density = 1894.2 kg/m^3 \n", "optimum moisture content = 13.34 \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg143" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate dry unit weight of compaction in the field and dry unit weight of compaction in the field\n", "##initialisation of variables\n", "do= 1570. ##kg/m^3\n", "mo= 0.545 ##kg\n", "M1= 7.59 ##kg\n", "M2= 4.78 ##kg\n", "M3= 3.007 ##kg\n", "w= 0.102 ##\n", "dmax= 19. ##KN/m^3\n", "##calculations\n", "Ms= M1-M2\n", "Mc= Ms-mo\n", "Vh= Mc/do\n", "Dc= M3/Vh\n", "Du= Dc*9.81/1000.\n", "f= Du/(1.+w)\n", "Rc= f*100./dmax\n", "##results\n", "print'%s %.2f %s'% ('dry unit weight of compaction in the field = ',f,' kN/m^3 ')\n", "print'%s %.1f %s'% ('relative compaction in the field = ',Rc,'')\n", "#calculate the value of gamma and plot the graph\n", "%matplotlib inline\n", "import warnings\n", "warnings.filterwarnings('ignore')\n", "import math\n", "from math import log\n", "import numpy\n", "from math import tan\n", "import matplotlib\n", "from matplotlib import pyplot\n", "#given\n", "p=numpy.array([6,8,9,11,12,14])\n", "e=numpy.array([14.80,17.45,18.52,18.9,18.5,16.9])\n", "\n", "#calculations\n", "\n", "\n", "#results\n", "\n", "pyplot.plot(p,e)\n", "pyplot.xlabel('gamma')\n", "pyplot.ylabel('weight ,w')\n", "pyplot.title('Graph of gamma vs w')\n", "pyplot.show()\n", "print('look at the axis reverse in text book')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "dry unit weight of compaction in the field = 18.55 kN/m^3 \n", "relative compaction in the field = 97.7 \n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEZCAYAAACJjGL9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xmc3eP5//HXu4k9QdXW6JIuRG2xRERUDVVNG6WoWn6+\naoudVimNfiuxlKJKLaHfEK2W2LfQklATaRMkhEQIVVtCUAQJIdv1++P+jJxMzqw553zOmXk/H495\n5Cyf5ZpkMte5t+tWRGBmZtaUz+QdgJmZVTcnCjMza5YThZmZNcuJwszMmuVEYWZmzXKiMDOzZjlR\nWIcgaaikv5ToWutJeljSB5IuLMU1zWqZE4WVhaT9JT0qaa6kNyU9IumYMt6ylAuCjgTeiojVI+IX\nJbyuWU1yorCSk3QycAlwPrBeRKwHHA3sIGnFJs5Z3p9FLef5hb4MPFvC65nVNCcKKylJawBnAsdE\nxO0R8SFARDwZEQdFxPzsuD9JulLS3yTNBeokDZQ0WdL7kl6VNKTguj0lLZY0SNJrkl7PElKDAFaU\n9Oesy+hpSds0E2d/SRMlvSfpMUnbN8QFHAycKmmOpF2KnPs5SaOyOB+TdI6kcQXv/yGL/31JkyR9\ns+C9oZJukfSXLM4pkjaUNDhreb0i6TsFx9dLOlvSv7J47pa0tqTrC+7/5dbcu9H3sJ2kWZJU8Npe\nkp7KHvfNzn9f0huSLmriOmMl7Z093iH7N/p+9vzbkiY39W9gtcOJwkpte2Al4K5WHHsAcHZEdAP+\nBcwFDoqINYCBwDGS9mx0Th3wdWA34DRJ385eF7AHMBJYA7gbuLzYTSWtBdxLavWsBfweuFfSZyPi\nEOB64PyI6B4R/yhyiSuAOcB6wE9IiaWw6+sxoDfwWeAG4JZGLandgeuy9ycDY7LXewBnA39sdL/9\ngIOADYCvAROAa7LYnwWGFBzb0r0BiIhHgQ+Bbxe8fGD2vQP8Abg4+7f4KnBzkb8HgHrSvwnATsCL\nwLcKntc3cZ7VECcKK7W1gbcjYnHDC5LGS5ot6aNGn3DvjIgJABHxSUSMjYhp2fOpwI2kXzaFzoyI\neRHxNHAtKdk0GBcR90UqYPZX0i/MYgYCz0XE9RGxOCJuBKaTEs2nYRc7UVIXYG9gSER8HBHPAn8u\nPD677uzs2r8nJc5eBZd5OCLGRMQi4Fbgc8Bvs+c3AT0lrd5wOeDaiHgpIj4A/g48HxH/yI6/Bdiq\nDfcuNLLh709Sd+B72WsA84ENJa0dER9liaWYsSz5N9oROK/g+U7Z+1bjnCis1N4B1i4cc4iI/hHx\n2ey9htcDmFF4YtYd8pCktyS9BxxF+iVaqPCcV0mfwhu8WfD4I2DlJsY+emTnFnql0bWasg7QtVEc\nMwsPkHSKpGeybq3ZpBbO2gWHvFXweB4psUbBc4BuBccUfl8fNzr/48JjW3HvQjcAe2ctjr2BxyOi\n4fs6HNgIeDbr3hrYxDUeATaStC6wJaml9EVJnwO2BR5u4jyrIU4UVmoTgE+AH7bj3BuAO4EvRMSa\nwFUs+zP6pUaPX2vHfV4jDVgX+nIrr/VfYCHwxYLXPn0saUfgF8C+EbFmliDfp3SD7U3O7mrrvbPW\n0CuklsSBpL//hvdeiIgDI2Id0qSEWyWtUuQaHwGPAz8DpkbEAmA8cDLwQkS8275v06qJE4WVVES8\nRxrMHiZpH0ndJX1G0pbAagWHFvvl1Q2YHRHzJfUl/fJq/IvxfyWtImlT4BBSV01b/Y30KfgASV0l\n7QdsDNzTTGwN398i4HZgaBbHxsD/FMTZnZRI3pa0oqQzgNWLX63V1MTjxtpz7xtIv+R3JHVjpZtI\nB0laJ3v6Pun7W7zs6UDqXjqOJd1M9cDxuNupw3CisJKLiAuBnwOnAm9kX1dlzyc0HMaySeBY4CxJ\nHwC/pngSGAu8ADwAXBgRDzRzvaKfvrNPubuTPvW+DZwC7F7w6bfYtQodT+rSeYM0PjGS1KcPcF/2\n9TzwMqkrqbCbqzVxNve8ufNbuncxI0mDzw82+vT/XeBpSXOAi4H9I+KTJq4xlpTkG7qZHiZ9KHC3\nUwehcm1cJGkEadDwrYjYPHutN+kXxmqkH+T/FxFzipw7gDQjpQtwdUScX5YgrWZI6kmaUdO1cKC8\nGkg6H1g3Ig7NOxazcihni+JaYECj164GTo2ILYA7SP2pS8lmlVyenbsJcICkb5QxTrM2kdRL0hZK\n+gKHkX6ezTqksiWKiBgHzG708obZ65C6DvYpcmpf0iDYy9nA2I1A47n01jlVy7693YHbSOs+bgR+\nFxF35xuSWfl0rfD9pknaMyLuAvZl6ZkjDTZg2amH21UiOKteEfEyqSsydxExCdgw7zjMKqXSg9mH\nAcdKmkQa/Jpf5Jhq+dRoZmZUuEUREc+RZlMgaSPSYHdjr7HsHPWZRY5DkpOKmVk7RESr1/ZUtEXR\nMC87Wy37v8CVRQ6bRCod0DNbMbofqW5PURFR9V9DhgzJPYaOEKPjdJzV/lULcQ4ZMqSpX6dNKlui\nkDSStEKzl6QZkg4jzWB6jlTIbGZE/Ck7toekewEiYiFpnvr9wDPATZFWkJqZWQ7K1vUUEQc08dal\nRY59nYJuqIj4O6n4mZmZ5cwrsyugrq4u7xBaVAsxguNcHosWwZQpcNVV8JOfwEYbwahRdfzjHxBV\nPtpXjX+fxdRCnO2JsWwrsytBUtRy/Gbl9N578MgjMGECjB8Pjz0G668P/fvD9ttDv37wxBPw29/C\nGmvA4MGwxx7wGX987PAkEW0YzHaiMOsAIuD551NCGD8+JYdXXoFttkmJoX//lBjWLlJwfNEiuPNO\nOO88mDcPfvlL2H9/WGGFyn8fVhlOFGadwIcfphZCQ2thwgTo3n1JUth+e9hii7b9so+AMWNSwnjp\nJfjFL+Cww2CVZYqLW61zojDrYCJS66CwtTB9OvTunRJCQ2Lo0Zptl1ppwoSUMCZOhJ/+FI45JnVP\nWcfgRGFW4z7+OI0dNLQWxo9Prxe2FrbeGlZeufyxTJ0K558P990HRx2Vksa665b/vlZeThRmNeb1\n15fuQnrqKdh44yVJoX9/+PKXQaXaI68dXnwRLrwQbroJDjoITjkFvvSlls+z6uREYVbFFixIU1Qb\nksL48TBnztJdSNtuC926tXytPMyaBZdcAldfDT/4AZx2GnzDmwDUHCcKsyry9ttpimpDF9Ljj6fW\nQWFrYaON8m0ttMfs2XDFFXDZZfDNb6aptX365B2VtZYThVlOFi+GZ55ZurXwxhvQt++S8YXttoM1\n18w70tL58MPUuvjd71LLYvBgqKurvcTX2ThRmFXIBx/Ao48uaS08+iiss87Sg86bbgpdqmIXjfKa\nPx+uvz4t3ltrrZQwdt/di/eqlROFWRlEwAsvLN1aePHFtKCtoQupXz/PCFq0CO64A849NyWPwYNh\nv/2ga6W3SLNmOVGYlcBHH8GkSUuvXVhllaVbC717w4or5h1pdYqA0aPTWoxXX02L9w49tDJTeq1l\nThRmbRQBM2Ys3Vp45hnYfPMlSWH77eELX8g70to0fnxKGI8/Dj/7GRx9NKy+et5RdW5OFGYtmD8f\nJk9eurWwcOGSLqT+/dOCNpeuKK0pU9IYxujRaaX3iSemMR2rPCcKs0beeCMlg4bWwpNPwoYbLj1F\n9Stf8UydSvnPf9LivZtvhoMPhpNPhi9+seXzrHSqJlFIGkHajOitiNg8e60vcDmwArAQODYiJhY5\n92XgA2ARsCAi+jZxDycKW8rChfD000u3FmbPXtJ91L9/WtDWvXvekdrrr8PFF8M118APf5gW7/Xq\nlXdUnUM1JYodgbnAdQWJoh44LyLul/Q94NSI2LnIuS8B20TEuy3cw4mik3v33aX3XJg4MY0lFA46\n9+rlaZrV7N134fLL09dOO6WZUltvnXdUHVtbE0U5t0IdJ6lno5dnAQ01KNcEXmvmEu4IsGVMnw7/\n+teS1sLMmUsWtJ1ySpqi+tnP5h2ltcVaa8EZZ8DPfw7Dh6fNkzbbLCWMb33LXYLVoKxjFFmiGFXQ\novgy8E8gSNuwbh8RM4qc9yLwPqnr6Y8RMbyJ67tF0YlccEGqM/Ttby9pMWy2WedY0NaZfPIJ/PWv\nqWrt2mvD6afDwIFOGKVUNS2KJlwDnBgRd0jaFxgBfKfIcTtExCxJ6wBjJE2PiHHFLjh06NBPH9fV\n1dXEnrXWdg88kJLEY495mmpHt9JKcPjhcMghcNttace9225LpUL8oaB96uvrqa+vb/f5lW5RfBAR\nq2ePBbwXEc1uhyJpCDA3Ii4q8p5bFJ3AK6+kGkk33pjqCFnn8uGHsNdeqUbWX//qRY6l0NYWRaWH\n+F6QtFP2eBfg+cYHSFpVUvfs8WrAbsDUyoVo1WTePNh7bzj1VCeJzmq11WDUqFSifa+90s+EVVY5\nZz2NBHYC1gbeBM4g/cK/AlgJmEeaHjtZUg9geEQMlPRV4PbsMl2B6yPivCbu4RZFBxaR9myeNw9G\njnQfdWe3YEEqA/Laa3D33Z7ivDyqZnpsJThRdGxXXZX2PHjkkfSp0mzxYjj22LSy/u9/TzOmrO2c\nKKxDmDAB9twzTYXdcMO8o7FqEpGKDI4Zk8qBrLde3hHVnmofozBr0RtvwI9/DCNGOEnYsqRUAmSf\nfdI6ixnLTLC3UnOVeKsqCxakJHH44WnjG7NipLRIr3v3lCzGjIGvfz3vqDouJwqrKqeemv7zn3FG\n3pFYLTjpJOjWLc2Iu+++tADTSs+JwqrGDTekaZATJ7o2k7XeoEEpWey6K9xzD/Tpk3dEHY8Hs60q\nTJmSSnM8+CBssUXe0VgtuvtuOOKItIp7xx3zjqa6eTDbas7s2WlR3R/+4CRh7bfHHqlVus8+aTaU\nlY5bFJarxYvToHWvXmlvArPlNX58WsF91VXpT1tWtRcFNFvKmWemWj4XXJB3JNZR9O+fFuMNHJh+\ntg46KO+Iap8TheVm1Ki0VmLSJFhhhbyjsY5k663TeNd3vwtz58LRR+cdUW1zorBc/Pvfaa3E3Xd7\nZa2VxyabwNixaTbUnDlpNbe1jxOFVdzcuWnw+qyz0o50ZuXy1a/CuHFLksWZZ7q4ZHt4MNsqKgIO\nOABWXRWuucb/aa0y3nordUPV1cHvf++fO0+Ptap28cXwwgupKmxn/89qlbPuuvDQQ/Doo3DkkbBo\nUd4R1Ra3KKxiHnootSYefRS+/OW8o7HOaO7cVJV43XXhuus67yQKtyisKs2YAQcemLaydJKwvHTr\nBvfem6bN7rMPfPxx3hHVhrIlCkkjJL0paWrBa30lPSZpsqSJkrZt4twBkqZL+rek08oVo1XGJ5/A\nj34EP/tZGlQ0y9PKK6cyH6uumhZ7zp2bd0TVr5xboe4IzAWui4jNs9fqgfMi4n5J3wNOjYidG53X\nBXgO2BV4DZgIHBARzxa5h7ueasBRR8E778Att3hcwqrHokXpZ/OZZ+Bvf4M118w7osqpmq6niBgH\nzG708ixgjezxmqRE0Fhf4IWIeDkiFgA3AnuWK04rr6uvhocfhmuvdZKw6tKlCwwfDtttBzvvDP/9\nb94RVa9Kj1H8ErhI0qvAhcDgIsdsABTuWTUze81qzGOPwemnwx13pD0mzKqNlKbL/uAHaQOk14p9\ndLWKL7i7BjgxIu6QtC8wAvhOo2Pa1Jc0dOjQTx/X1dVRV1e3nCFaKbz1Fuy7L/zxj7DxxnlHY9Y0\nKS3+7N49lSd/4IG0UK8jqa+vp76+vt3nl3V6rKSewKiCMYoPImL17LGA9yJijUbn9AOGRsSA7Plg\nYHFEnF/k+h6jqEILF8Juu8H228NvfpN3NGatd9VV6Wd29Gj4xjfyjqZ8qmaMogkvSNope7wL8HyR\nYyYBG0rqKWlFYD/g7koFaMtv8OA0P/2ss/KOxKxtjj4azjsPdtkFJk/OO5rqUbauJ0kjgZ2AtSXN\nAM4AjgSukLQSMC97jqQewPCIGBgRCyUdD9wPdAGuKTbjyarTLbfArbemirBduuQdjVnbHXQQrLYa\nDBiQxtf69887ovx5ZbaVzLRpqZbO/fenMs9mtez+++F//iftmtfR1v9Ue9eTdVDvv592E/vd75wk\nrGP47nfTwrwDD0zl8DsztyhsuS1enJLEF78Il1+edzRmpTVpUlrBffHFqVZZR+CtUK3izj0X3n47\njU+YdTR9+qQpswMGpBpRRxyRd0SV50Rhy+Xvf4crr4SJE2HFFfOOxqw8NtsM6uvhO99JGyCddFLe\nEVWWE4W124svwiGHpH7cHj3yjsasvL7+9VSOpmG3vF//uvOUpfEYhbXLRx+laYOHHw4nnJB3NGaV\n8+abqWXx3e/CBRfUZrJo6xiFE4W1WUSaNiilzV9q8T+K2fJ491343vdgq61g2DD4TI3NH/X0WCu7\nyy+Hp59OdZycJKwzWmutNMD93HNw8MGpbE1H5haFtcm4cWkTogkTOl7hNLO2mjcv7ZS30kpw443p\nz1rgFoWVzeuvw/77w5//7CRhBrDKKnDnndC1aypV/uGHeUdUHk4U1irz56eWxLHHpvnkZpasuCKM\nHJlm/g0YkKoUdDTuerJWOf54mDkTbr+99gbuzCph8WI48UR45BG47z5Ye+28I2qau56s5P78Zxgz\nJv3pJGFW3Gc+A5ddlqbO7rQTzJqVd0Sl4wV31qwnnoBTTkmrUtdYo8XDzTo1Ke1nsfrqS3bL69kz\n76iWnxOFNemdd9KMjmHDYNNN847GrHYMHgzduqV9uMeMgV698o5o+ThRWFGLFqVKmfvum77MrG1O\nOCEli513TjXRevfOO6L2K+cOdyOAgcBbBXtm3wg05NY1SXtmb1Xk3JeBD4BFwIKI6FuuOK24X/86\nJYtzz807ErPadeihKVnsthvcdRf065d3RO1TzhbFtcBlwHUNL0TE/g2PJf0OeK+JcwOoi4h3yxif\nNeGOO+D661Md/q5uc5otl333TVur7rEH3HRTamHUmrLNYYmIccDsYu9JEvBjYGQzl3BxiBxMnw5H\nHZUqwq6zTt7RmHUM3/8+3Hwz7Lcf3Htv3tG0XV6THXcE3oyI/zTxfgAPSJokaVAF4+rU5sxJO9Wd\nd17arMXMSqeuDkaNgsMOq71NvvLqWDgAuKGZ93eIiFmS1gHGSJqetVCWMXTo0E8f19XVUVdXV8o4\nO42ItLfEt76VSoebWeltt12aBTVgAMydm8YwKqG+vp76+vp2n1/WldmSegKjGgazs9e6AjOBrSPi\n9VZcYwgwNyIuKvKeV2aXyPnnp1XXDz9cO4XNzGrVc8+lhXm/+EU++7nUwp7ZuwLPNpUkJK0KdImI\nOZJWA3YDzqxkgJ3NI4+kjeMnTXKSMKuEXr2W3i3v9NPzjqh5ZRujkDQSGA9sJGmGpIZG1n40GsSW\n1ENSwxDP+sA4SU8CjwL3RMTocsXZ2c2fnzaLv+QS+MIX8o7GrPPo2TOV7b/hhrRAr5o7R1wUsJM7\n55y0t8Q993gTIrM8vP12GrPo1w8uvbQy9dS8Faq12nPPwQ47pHpOX/pS3tGYdV7vvw+77w5f+xpc\nfXX51y+5eqy1yuLFcOSRaQW2k4RZvtZYI5UmnzUrbQ42f37eES3NiaKTuuYa+PjjtM+EmeVvtdXg\n7rvTh7g994SPPso7oiXc9dQJzZoFW2wBDz6Y/jSz6rFwYVpf8eqraYHe6quX/h7uerIWnXgiDBrk\nJGFWjbp2TZuEbbJJmj77bhVUvHOi6GTuvhuefDKNTZhZdfrMZ9I+MDvtlL7eeCPfeFwbtBP54AM4\n7ji47jpYZZW8ozGz5khwwQWp6+lb30q75eU18cRjFJ3I8cfDvHlpINvMascll6SvMWNgww2X/3q1\nUMLDcjBhQqrl9PTTeUdiZm31s5+lDZDq6tI02s03b/GUknKi6ATmz0+D1xdfDGutlXc0ZtYeRxyR\nksV3vpNmQ227beXu3eJgtqS/ShokaeNKBGSld/75qa7Mj3+cdyRmtjz23x+GD4eBA1NRwUppcYxC\n0i6kjYa+CXwdeAIYFxGXlD+85nmMomXTp8M3v+kyHWYdyYMPpqTxl7+kOlFtVZZaT9keEn2AXYCj\ngXkR0avt4ZWWE0XzFi9OfZo/+lFaO2FmHcf48WlHymHDYJ992nZuyQezJT0IrAZMAP4J9ImIt9oW\nluXh6qvT+MRxx+UdiZmVWv/+aWD7+9+HDz+Egw8u371aM5g9hdSa2Az4AJgtaUJEzCtfWLa8Zs2C\nX/0K/vEP6NIl72jMrBy22ir9H99tt7S16rHHluc+rV5HIak7cAhwCrB+RDS7F5qkEcBA4K2GrVAl\n3Qg0dFmtCbwXEVsVOXcAcAnQBbg6Is5v4h7uemrCj36UdtH6zW/yjsTMyu3FF1O5j6OPhlNPbfn4\ncnQ9nUAazN4GeAkYAYxrxbWvBS4Drmt4ISL2L7ju74D3ityvC3A5acvU14CJku6OiGdbcU8D7roL\npkyBv/4170jMrBK++tW0W96uu6YKDGefXdqNyFrT9bQycBHwREQsaO2FI2KcpJ7F3pMk4MfAzkXe\n7gu8EBEvZ8feCOwJOFG0wgcfpBXYf/kLrLxy3tGYWaVssEGaMrvbbmkf7osvLt1ueS1eJiIujIhH\n25IkWmFH4M2I+E+R9zYAZhQ8n5m9Zq0weDB897tptpOZdS7rrAMPPQQTJ6ZFtosWlea6bc43kqZn\nX8uz5c0BwA1NvOdBh3YaPx7uuAMuvDDvSMwsL2uuCaNHwyuvwIEHlma3vDaX8IiIjSWtDWzXnhtm\nazL2ArZu4pDXgC8WPP8iqVVR1NChQz99XFdXR10n/Sj9ySfpE8Qf/gCf/Wze0ZhZnrp1g3vuSdUY\n9t4bTjihngkT6tt9vbJWj83GKEY1zHrKXhsAnBYRxcYnGhLJc8C3gdeBx4ADig1me9bTEmedBZMm\npYHsUg5imVntWrAgra948820F023bun1qtnhTtJIYDywkaQZkg7N3toPGNno2B6S7gWIiIXA8cD9\nwDPATZ7x1Lxnn4XLLoMrrnCSMLMlVlghzX782tdSMcHZs9t3He9HUeMWL047YO23X5rtZGbWWASc\nfHJanDd6NKy3XolbFJJ+2prXLB/Dh6fN2I85Ju9IzKxaSXDRRbDnnmm3vDaf34rqsZMbr56W9GRE\nbNn225VWZ29RvP469O6dpsNttlne0ZhZLZgwAfr3L1H1WEkHAAeS1jwUrsTuDiyKiG8vT7Cl0NkT\nxT77wCabpFWYZmatVcoSHuOBWcA6wO+AhovOAZ5qd4RWEnfcAdOmwfXX5x2JmXV0HsyuQe+/D5tu\nCjfc0L7+RjPr3Eq+cZGkfYDfAuuxpFUREbF6u6Mskc6aKI45Ji3N/7//yzsSM6tF5UgU/wF2r8a1\nDJ0xUfzzn2kq7LRpaam+mVlblWPB3RvVmCQ6o8IyHU4SZlYpzc16atiF9VvA+sCdQEN5qYiI28sf\nXvM6W4ti6FCYPBnuvNMrsM2s/UrW9STpTyyp5CoaVXWNiEMbn1NpnSlRPPNMGrh+8kn4whfyjsbM\nalnJxyiqWWdJFIsXw447ppLBxx2XdzRmVuvKsRXqZaTWxKcznoD3gUkRcVe7orQ2+eMfU60Wl+kw\nszy0ZtbTcKAXcAspWexD2jt7LeDFiPhZuYNsJrYO36J47TXYckuor09rJ8zMllc5psc+CuyQlf9u\n2C/in8A3gakR8Y3liHe5dIZEsddesPnmab8JM7NSKHnXE7Am0A14L3veDVgrIhZK+rgdMVor3X57\n2mti5MiWjzUzK5fWJIoLgMmSxmbPdwLOlbQa8EDZIuvk3nsPTjwxJYmVV847GjPrzFo160lSD6Av\naSB7YkS83opzRgADgbcabYV6AnAssAi4NyJOK3Luy8AH2TELIqJvE/fosF1PRx+dBrD/+Me8IzGz\njqZkXU+SvhERz0rahpQgZmRvrS9p/Yh4ooVrXwtcBlxXcM2dgT2ALSJigaR1mjg3gLqIeLe130hH\nMm4cjBqVynSYmeWtua6nnwODgItotNgus3NzF46IcZJ6Nnr5GOC8iFiQHfPfZi7RKdcef/IJHHkk\nXHqpy3SYWXUo64K7LFGMauh6kjQZuAsYAHwMnBIRk4qc9yJprcYi4I8RMbyJ63e4rqchQ+Cpp9J+\nEy7TYWblUI4Fd6uRWhdfiohBkjYEekXEPe2Iryvw2YjoJ2lb4Gbgq0WO2yEiZmVdU2MkTY+IcUWO\n61CmTYNhw1KZDicJM6sWrZn1dC3wONA/e/46cCvQnkQxE7gdICImSlos6XMR8U7hQRExK/vzv5Lu\nIA2kF00UQ4cO/fRxXV0ddXV17Qgrf4sXpy6nM8+EDTbIOxoz60jq6+upr69v9/mtWXD3eERsI2ly\nRGyVvfZURPRu8eLLdj0dBfSIiCGSNgIeiIgvNTpnVaBLRMzJWjOjgTMjYnSR63eYrqdhw9K2puPG\nwWdaU/zdzKydyrHg7hNJqxTc4GvAJ60IZCRpzcXnJM0AzgBGACMkTSWVLD84O7YHMDwiBpJKmt+u\n1PfSFbi+WJLoSGbOTGMTY8c6SZhZ9WlNi2I34FfAJsAYYAfgkIh4qPzhNa8jtCgiUpmO3r1Tt5OZ\nWbmVpcy4pLWBftnTR1uY1loxHSFR3HYb/O//pgHslVbKOxoz6wzKURTwr8BYYFxETF/O+Eqq1hPF\ne++lirA33QTf/Gbe0ZhZZ1GORLELsCOpWuzXgSdISeOS5Qm0FGo9URx1VJoGe9VVeUdiZp1Jubqe\nugJ9gF2Ao4F5EdGr3VGWSC0niocfTjvWTZsGa6yRdzRm1pmUY8Hdg8BqwATSPhR9IuKt9odoH3+8\npEyHk4SZVbvWTMacAiwANgO2ADYrnC5rbXfuufCNb8Dee+cdiZlZy1pd60lSd+AQ4BRg/YjIfY5O\nLXY9TZsGdXVplpNXYJtZHsrR9XQCaTB7G9Je2SNoopyGNW/xYhg0KG1r6iRhZrWiNSuzVyaVGn+i\noTy4tc+VV6aV10cdlXckZmatV9Yy4+VWS11PM2fCllum2U6bbJJ3NGbWmbW168mVhSogAo47Do4/\n3knCzGpxGeA1AAAO4ElEQVRPa7qebDnddhv8+99w8815R2Jm1nbueiqz2bNhs81cpsPMqkdZVmZX\nq1pIFEceCV26pIFsM7NqUI79KKydxo6Fv/0trZ0wM6tVHswuk4YyHZdd5jIdZlbbypYoJI2Q9Ga2\nm13h6ydIelbS05LOb+LcAZKmS/q3pNPKFWM5/eY3qYT4XnvlHYmZ2fIp2xiFpB2BucB1BXtm7wyc\nDnw/IhZIWqfxJkiSugDPAbsCrwETgQMi4tki96jKMYqnn4add4annoIePfKOxsxsaVWzjiIixgGz\nG718DHBewwrvJnbK6wu8EBEvZ8fdCOxZrjhLbdGiVKbj7LOdJMysY6j0GMWGwLckPSKpXlKfIsds\nAMwoeD4ze60mXHkldO2axifMzDqCSs966gp8NiL6SdoWuBn4aqNj2tSXNHTo0E8f19XVUVdXt5wh\ntt+MGXDmmTBuXKrpZGZWDerr66mvr2/3+WVdRyGpJzCqYIzi78BvI2Js9vwFYLuIeKfgnH7A0IgY\nkD0fDCyOiGUGvqtpjCIC9twT+vSBM87IOxozs6ZVzRhFE+4kbaeKpI2AFQuTRGYSsKGknpJWBPYD\n7q5smG13663wn//AL3+ZdyRmZqVVzumxI4HxwEaSZkg6lLSXxVezKbMjgYOzY3tIuhcgIhYCxwP3\nA88ANxWb8VRNZs+Gn/4Uhg+HFVfMOxozs9JyCY8SGDQoJYgrrsg7EjOzlrmER4WNHQv33ecyHWbW\ncXluznJoKNNx+eWw+up5R2NmVh5OFMvhnHNg883TbCczs47KYxTtNHUqfPvbqUzH5z+fSwhmZu1S\n7dNjO4SGMh3nnOMkYWYdnxNFOwwblmY5HXFE3pGYmZWfu57aaMYM2Gor+Oc/YeONK3prM7OScNdT\nGUXAscemxXVOEmbWWXgdRRvccgu89BLcdlvekZiZVY67nlpp9uy0Y91tt8H221fklmZmZdHWricn\nilY64ghYeeW0uM7MrJa5hEcZ1NfD6NFpi1Mzs87Gg9ktmDfPZTrMrHNzomjBOedA796wxx55R2Jm\nlg93PTVjypS0x8RTT+UdiZlZftyiaEJDmY7f/MZlOsyscyvnDncjJL2Z7WbX8NpQSTMlTc6+BjRx\n7suSpmTHPFauGJtzxRVpltPhh+dxdzOz6lG26bGSdgTmAtdFxObZa0OAORHx+xbOfQnYJiLebeG4\nskyPffVV2GabVKajV6+SX97MLFdVU8IjIsYBs4u81drgWv1NlFJhmQ4nCTOzfMYoTpD0lKRrJK3Z\nxDEBPCBpkqRBlQzu5pvhlVfg1FMreVczs+pV6VlPVwJnZY/PBi4Cio0C7BARsyStA4yRND1roSxj\n6NChnz6uq6ujrq6u3cG9+y6cdBLcfnsqI25m1hHU19dTX1/f7vPLWsJDUk9gVMMYRWvfa3TcEGBu\nRFxU5L2SjlEcfjisuipcdlnJLmlmVnWquoSHpM9HxKzs6V7A1CLHrAp0iYg5klYDdgPOLHdsDz0E\nY8bAtGnlvpOZWW0pW6KQNBLYCVhb0gxgCFAnaUvSGMRLwFHZsT2A4RExEFgfuF1SQ3zXR8TocsUJ\nS8p0XHEFdO9ezjuZmdUeV48FTj8dXnghDWSbmXV0Vd31VI2mTIGrr05/mpnZsjp1CY9Fi9I+E+ee\nC+uvn3c0ZmbVqVMnissvT7OcXKbDzKxpnXaM4pVXUpmO8eNho41KHJiZWRWrmhIe1ayhTMdJJzlJ\nmJm1pFMOZt94Yyr8d8cdeUdiZlb9Ol3X0zvvwGabwZ13wnbblSkwM7Mq1taup06XKA49NC2qu/TS\nMgVlZlblvI6iGQ8+mL5cpsPMrPU6zWD2vHlw1FEwbJjLdJiZtUWn6Xr65S/hpZfgppvKHJSZWZVz\n11MRTz4JI0a4TIeZWXt0+K6nRYtg0CA47zyX6TAza48OnyguvRS6dYPDDss7EjOz2tShxyhefhn6\n9IEJE2DDDSsXl5lZNXMJj0wEHHMM/PznThJmZsujbIlC0ghJb0qaWvDaUEkzJU3OvgY0ce4ASdMl\n/VvSae25/8iR8Npr8ItftPc7MDMzKGPXk6QdgbnAdRGxefbaEGBORPy+mfO6AM8BuwKvAROBAyLi\n2SLHFu16eucd2HRTuOsul+kwM2usarqeImIcMLvIWy0F1xd4ISJejogFwI3Anm2598knw/77O0mY\nmZVCHusoTpB0MDAJODki3mv0/gbAjILnM4FW/8p/4AGor4enn17uOM3MjMoniiuBs7LHZwMXAY33\nl2tTX9jQoUM/fdyvXx3HHVfHsGFpSqyZmUF9fT319fXtPr+s02Ml9QRGNYxRtOY9Sf2AoRExIHs+\nGFgcEecXucZSYxSnnZb2mRg5soTfhJlZB1PVJTwkfT4iZmVP9wKmFjlsErBhlkheB/YDDmjp2pMn\nw5/+5DIdZmalVrZEIWkksBOwtqQZwBCgTtKWpO6ll4CjsmN7AMMjYmBELJR0PHA/0AW4ptiMp0IL\nF6YyHb/9Lay3Xrm+IzOzzqlDrMz+/e/h3nvTQLZa3ZgyM+ucOt0Ody++GGy7LTzyCHz963lHZGZW\n/apmHUWlHHMMnHKKk4SZWbnUfIuid+9g4kRYYYW8ozEzqw2drkUxfLiThJlZOdV8i6KW4zczy0On\na1GYmVl5OVGYmVmznCjMzKxZThRmZtYsJwozM2uWE4WZmTXLicLMzJrlRGFmZs1yojAzs2Y5UZiZ\nWbPKligkjZD0pqRldrGTdLKkxZLWauLclyVNkTRZ0mPlitHMzFpWzhbFtcCAxi9K+iLwHeCVZs4N\noC4itoqIvmWKr2KWZ1PzSqmFGMFxlprjLK1aiLM9MZYtUUTEOGB2kbd+D5zaikt0mL3qOuoPTx4c\nZ2k5ztKqhTirKlEUI2lPYGZETGnh0AAekDRJ0qAKhGZmZk3oWqkbSVoVOJ3U7fTpy00cvkNEzJK0\nDjBG0vSshWJmZhVW1v0oJPUERkXE5pI2Bx4APsre/gLwGtA3It5q5hpDgLkRcVGR97wZhZlZO7Rl\nP4qKtSgiYiqwXsNzSS8B20TEu4XHZS2PLhExR9JqwG7AmU1cs8OMY5iZVatyTo8dCYwHNpI0Q9Kh\njQ6JgmN7SLo3e7o+ME7Sk8CjwD0RMbpccZqZWfNqeitUMzMrv5pcmS1pTUm3SnpW0jOS+uUdU2OS\nemULBhu+3pd0Yt5xFSNpsKRpkqZKukHSSnnHVIykn2YxPi3pp3nH06DY4lJJa0kaI+l5SaMlrZln\njFlMxeLcN/u3XyRp6zzjy+IpFuOF2f/1pyTdLmmNPGPMYioW59lZjE9KejBbM5ar5Vn4XKgmEwXw\nB+BvEfENYAvg2ZzjWUZEPJctGNwK2IY0iH9HzmEtI5twMAjYOiI2B7oA++cZUzGSNgOOALYFegO7\nS/pavlF9qtji0l8CYyJiI+DB7HneisU5FdgLeLjy4RRVLMbRwKYR0Rt4Hhhc8aiWVSzOCyKid0Rs\nCdwJDKl8WMtYnoXPn6q5RJF9mtgxIkYARMTCiHg/57Basivwn4iYkXcgRXwALABWldQVWJU0G63a\nbAw8GhEfR8QiYCywd84xAU0uLt0D+HP2+M/ADysaVBHF4oyI6RHxfE4hLaOJGMdExOLs6aOkGZO5\naiLOOQVPuwFvVzSoIkqw8BmowUQBfAX4r6RrJT0haXg2U6qa7Q/ckHcQxWSzzi4CXgVeB96LiAfy\njaqop4Edsy6dVYGBVMEvjGasFxFvZo/fpGDGny2Xw4C/5R1EUyT9RtKrwE+A3+YdTzFtWPj8qVpM\nFF2BrYFhEbE18CHV0awvStKKwA+AW/KOpZis++ZnQE+gB9BN0v/LNagiImI6cD6pG+LvwGRgcbMn\nVYlIM0Y8a2Q5SfoVMD8iqvJDF0BE/CoivgT8Cbg453CWUbDwubBbrMVlBrWYKGaSsuHE7PmtpMRR\nrb4HPB4R/807kCb0AcZHxDsRsRC4Heifc0xFRcSIiOgTETsB7wHP5R1TM96UtD6ApM8DTS4qtZZJ\nOgT4PlB1H2KacANpPK3afI30ofCpbC3bF4DHJa3b3Ek1lygi4g1ghqSNspd2BablGFJLDgBG5h1E\nM6YD/SStIkmkv89nco6pqIYfZklfIg3AVu0nS+BuUvcD2Z935hhLa1XlAlZJA4BfAHtGxMd5x9MU\nSRsWPN2T1OqtKhExNSLWi4ivRMRXSB+8t26uOkbDiTX3RZr1MhF4ivQJeI28Y2oiztVIA1rd846l\nhThPJSXbqaSB1xXyjqmJOB/O4nwS2DnveAriGkka35kPzAAOBdYilax5ntRdtmYVxnkYaZB9BjAP\neAP4exXG+G/S7JzJ2dewKv27vDX7P/QkcBuwbhXF+UnDz2aj918E1mrpOl5wZ2Zmzaq5riczM6ss\nJwozM2uWE4WZmTXLicLMzJrlRGFmZs1yojAzs2Y5UZiZWbOcKMzMrFlOFGaNSPq1pOmSxmUbOZ0s\n6QhJj2Wb0twqaZXs2D9JGiZpgqT/SKqT9OdsQ61rC645V9IF2aZLYyT1kzQ2O+cH2TE9JT0s6fHs\na/u8/g7MCjlRmBWQtC1pn4stSAUd+5Aqv94eEX0jbUrzLHB4dkqQynNsD5xEqvF0AbApsLmkLbLj\nVgUejIjNgDnAWcAupJpVZ2XHvAl8JyK2IZWmv7Sc36tZa3XNOwCzKrMDcGdEzAfmSxpFKpa3uaRz\ngDVIm9LcV3DOqOzPp4E3ImIagKRppEqdU0jlse/PjpsKfBwRiyQ9nR0DsCJwuaTewCKgofClWa7c\nojBbWlC8iuq1wLERsQVwJrBKwXvzsz8Xk4qvUfC84cPYgkavzweItHNbwzEnAbOye/QhJQ6z3DlR\nmC3tX8APJK0kqRuwe/Z6d+ANSSsAB1GejYhWJ1VwBTiYtH+5We6cKMwKRMQk0jjDFNKWm1OB94Ff\nk/Zr/idpjGKp05p43NQxTZ0zDPiJpCeBXsDctsZvVg4uM27WiKTVIuLDbNvIscCgiHgy77jM8uLB\nbLNl/Z+kTYCVgT85SVhn5xaFmZk1y2MUZmbWLCcKMzNrlhOFmZk1y4nCzMya5URhZmbNcqIwM7Nm\n/X/kMsqaulAsNgAAAABJRU5ErkJggg==\n", "text": [ "" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "look at the axis reverse in text book\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg155" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate sustainabilty number\n", "##initialisation of variables\n", "D1= 0.36 ##mm\n", "D2= 0.52 ##mm\n", "D5= 1.42 ##mm\n", "##calculations\n", "Sn= 1.7*(math.sqrt((3./(D5)**2)+(1./(D2)**2)+(1./(D1)**2)))\n", "##results\n", "print'%s %.1f %s'% ('sustainabilty number = ',Sn,' ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "sustainabilty number = 6.1 \n" ] } ], "prompt_number": 1 } ], "metadata": {} } ] }