{ "metadata": { "name": "", "signature": "sha256:db9787af9c3d4874a56e96ce130e20ad75db81e8408117171d5753e7537a242c" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter7-Permeability" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg168" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate the hydraulic conductivity in cm/sec.\n", "import math\n", "##initialisation of variables\n", "L= 30. ##cm\n", "A= 177. ##cm^2\n", "h= 50. ##cm\n", "Q= 350. ##cm^3\n", "t= 300. ##sec\n", "##claculations\n", "k=Q*L/(A*h*t)\n", "##results\n", "print'%s %.4f %s'% ('hydraulic conductivity = ',k,' cm/sec ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "hydraulic conductivity = 0.0040 cm/sec \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg169\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine the hydraulic conductivity of the soil in in./sec.\n", "import math\n", "##initialisation of variables\n", "L= 203. ##mm\n", "A= 10.3 ##cm^2\n", "a= 0.39 ##cm^2\n", "h0= 508. ##mm\n", "h180= 305. ##mm\n", "t= 180. ##sec\n", "##calculations\n", "k= 2.303*a*L*math.log10(h0/h180)/(A*t)\n", "##results\n", "print'%s %.2f %s'% ('hydraulic conductivity of sand = ',k,' in/sec ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "hydraulic conductivity of sand = 0.02 in/sec \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg169" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#The hydraulic conductivity of a clayey soil is 3 107 cm/sec. The viscosity of water at 25\u00b0C is 0.0911 104 g # sec/cm2 \n", "#Calculate the absolute permeability of the soil.\n", "import math\n", "##initialisation of varilables\n", "k= 3e-7 ##cm/sec\n", "n= 0.0911e-4 ##g*sec/cm^2\n", "dw= 1 ##g/cc\n", "##calculations\n", "K= k*n/dw\n", "##results\n", "print'%s %.4f %s'% ('absolute premeability = ',K,' cm^2 ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "absolute premeability = 0.0000 cm^2 \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg170" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#With k 5.3 105 m/sec for the permeable layer, calculate the rate of seepage through it in m3 /hr/m width if H 3 m and a 8\u00b0.\n", "\n", "import math\n", "##initialisation of variables\n", "k= 5.3e-5 ##m/sec\n", "H= 3 ##m\n", "a= 0.139 ##radians\n", "##calculations\n", "A= H*math.cos(a)\n", "i= math.sin(a)\n", "q= k*i*A*3600\n", "##results\n", "print'%s %.4f %s'% ('rate of seepage = ',q,' m^3/hr/m ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "rate of seepage = 0.0785 m^3/hr/m \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg171" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate flow rate\n", "##initialisation of variables\n", "L= 50. ##m\n", "k= 0.08e-2##m/sec\n", "h= 4. ##m\n", "H1= 3. ##m\n", "H= 8. ##m\n", "a= 0.139 ##radians\n", "##calculations\n", "i= h*math.cos(a)/L\n", "A= H1*math.cos(a)\n", "q= k*i*A\n", "##results\n", "print'%s %.5f %s'% ('flow rate = ',q,' m^3/sec/m ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "flow rate = 0.00019 m^3/sec/m \n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6-pg174" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate hydraulic conductivity at void ratio of 0.65\n", "##initialisation of variables\n", "k1= 0.02 ##cm/sec\n", "e1= 0.5 \n", "e2= 0.65\n", "##calculations\n", "k2= k1*(e2**3/(1.+e2))/(e1**3/(1.+e1))\n", "##results\n", "print'%s %.2f %s'% ('hydraulic conductivity at void ratio of 0.65 =',k2,'cm/sec ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "hydraulic conductivity at void ratio of 0.65 = 0.04 cm/sec \n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8-pg177" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate hydraulic conductivity\n", "##initialisation of variables\n", "e= 0.6\n", "D10= 0.09 ##mm\n", "##calculations\n", "k= 2.4622*(D10**2*(e**3/(1+e)))**0.7825\n", "##results\n", "print'%s %.4f %s'% ('hydraulic conductivity = ',k,' cm/sec ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "hydraulic conductivity = 0.0119 cm/sec \n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex9-pg177" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate hydraulic conductivity\n", "##initialisation of variables\n", "e= 0.6\n", "D10= 0.09 ##mm\n", "D60= 0.16 ##mm\n", "##calculations\n", "Cu=D60/D10\n", "k= 35*(e**3/(1+e))*(Cu**0.6)*(D10**2.32)\n", "##results\n", "print'%s %.3f %s'% ('hydraulic conductivity =',k,'cm/sec ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "hydraulic conductivity = 0.025 cm/sec \n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex10-pg179" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate hydraulic conductivity\n", "##initialisation of variables\n", "k1= 0.302e-7 ##cm/sec\n", "k2= 0.12e-7 ##cm/sec\n", "e1= 1.1\n", "e2= 0.9\n", "e= 0.75\n", "##calcualtions\n", "n= (math.log10((k1/k2)*((1+e1)/(1+e2))))/math.log10(e1/e2)\n", "C= k1/(e1**n/(1+e1))\n", "k= C*(e**n/(1+e))\n", "##results\n", "print'%s %.e %s'% ('hydraulic conductivity =',k,'cm/sec')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "hydraulic conductivity = 5e-09 cm/sec\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex11-185" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate ration of equivalent hydraulic conductivity\n", "##initialisation of variables\n", "H1= 2. ##m\n", "H2= 3. ##m\n", "H3= 4. ##m\n", "k1= 1e-4 ##cm/sec\n", "k2= 3.2e-2 ##cm/sec\n", "k3= 4.1e-5 ##cm/sec\n", "##calculations\n", "H= H1+H2+H3\n", "Kh= (1./H)*((k1*H1)+(k2*H2)+(k3*H3))\n", "Kv= H/((H1/k1)+(H2/k2)+(H3/k3))\n", "P= Kh/Kv\n", "##results\n", "print'%s %.2f %s'% ('ration of equivalent hydraulic conductivity =',P,' ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "ration of equivalent hydraulic conductivity = 139.97 \n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex12-pg186" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate rate of water supply\n", "##initialisation of variables\n", "H= 450. ##mm\n", "h= 150. ##mm\n", "k1= 1e-2 ##cm/sec\n", "k2= 3e-3 ##cm/sec\n", "k3= 4.9e-4 ##cm/sec\n", "h1= 300. ##mm\n", "##calculations\n", "Kv= H/(h*(1./k1+1./k2+1./k3))\n", "i= h1/H\n", "q= Kv*i*100.*3600.\n", "##results\n", "print'%s %.2f %s'% ('rate of water supply =',q,' cm/hr ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "rate of water supply = 291.01 cm/hr \n" ] } ], "prompt_number": 15 } ], "metadata": {} } ] }