{ "metadata": { "name": "", "signature": "sha256:dd7ff85f7d52d3589a1d7be4767ada04770d7408bb98377fd79ee304b32478a3" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter3-Weight- volume relationships" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg 60" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#evaluvate moist and dry density and void ratio and porosity and degree of saturation and volume of water in soil sample\n", "##initialisation of variables\n", "V= 1.2 ##m**3\n", "M= 2350. ##Kg\n", "w= 0.086\n", "G= 2.71\n", "W= 1000. ##kg/m**3\n", "##calculations\n", "R= M/V\n", "D= M/((1.+w)*V)\n", "e= (G*W/D)-1.\n", "n= e/(e+1.)\n", "S= (w*G/e)*100.\n", "v= (M-(M/(1.+w)))/W\n", "##results\n", "print'%s %.1f %s'% ('moist density = ',R,' kg/m**3 ')\n", "print'%s %.1f %s'% ('dry density = ',D,' kg/m**3 ')\n", "print'%s %.3f %s'% ('void ratio = ',e,' ')\n", "print'%s %.3f %s'% ('porosity = ',n,'')\n", "print'%s %.3f %s'% ('Degree of saturation = ',S,' ')\n", "print'%s %.3f %s'% ('volume of water in soil sample = ',v,' m**3 ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "moist density = 1958.3 kg/m**3 \n", "dry density = 1803.3 kg/m**3 \n", "void ratio = 0.503 \n", "porosity = 0.335 \n", "Degree of saturation = 46.349 \n", "volume of water in soil sample = 0.186 m**3 \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg 63" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calcualte mass of water to be added for full saturation\n", "##initialisation of variables\n", "n= 0.4\n", "G= 2.68\n", "w= 0.12\n", "R= 1000. ##kg/m**3\n", "V= 10. ##m**3\n", "##calculations\n", "d= G*R*(1.-n)*(1.+w)\n", "s= ((1.-n)*G+n)*R\n", "M= s-d\n", "m= M*V\n", "##results\n", "print'%s %.1f %s'%('mass of water to be added for full saturation = ',m,' kg ')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "mass of water to be added for full saturation = 2070.4 kg \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg63" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculatesatuarated unit weight and specific gravity and void ratio \n", "##initialisation of variables\n", "d= 16.19 ##kN/m**3\n", "w= 0.23\n", "W= 9.81 ##kN/m**3\n", "##calculations\n", "R= d*(1.+w)\n", "G= d/(W-d*w)\n", "e= w*G\n", "##results\n", "print'%s %.2f %s'%('satuarated unit weight = ',R,' kN/m**3 ')\n", "print '%s %.2f %s'%('specific gravity = ',G,' ')\n", "print'%s %.2f %s'% ('void ratio = ',e,' ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "satuarated unit weight = 19.91 kN/m**3 \n", "specific gravity = 2.66 \n", "void ratio = 0.61 \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg66" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate relative density of compaction in percentage\n", "##initialisation of variables\n", "G= 2.68\n", "w= 0.12\n", "d= 1794.4 ##kg/m**3\n", "W= 1000. ##kg/m**3\n", "emax= 0.75\n", "emin= 0.4\n", "##calculation\n", "e= (G*W*(1.+w)/d)-1.\n", "D= ((emax-e)/(emax-emin))*100.\n", "##results\n", "print'%s %.1f %s'% ('relative density of compaction in percentage = ',D,' ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "relative density of compaction in percentage = 22.1 \n" ] } ], "prompt_number": 3 } ], "metadata": {} } ] }