{ "metadata": { "name": "", "signature": "sha256:22297f0d75def8e7d02cf6683fa1bc18bc061c4f42d017f0fb81a9ce765834b6" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter15-Slope Stability" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg518" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#a.The factor of safety against sliding along the soil-rock interface.\n", "#b.The height,H, that will give a factor of safety (Fs) of 2 against sliding alongthe soil-rock interface.\n", "Gs=17.8\n", "Gw=9.81\n", "C=10.\n", "c=20.\n", "b=15.\n", "H=6.\n", "G=Gs-Gw\n", "Fs= C/(Gs*H*math.cos(b/57.3)*math.cos(b/57.3)*math.tan(b/57.3))+G*math.tan(c/57.3)/(Gs*math.tan(b/57.3))\n", "print'%s %.2f %s'%('a)The factor of safety = ',Fs,' ')\n", "Fs=2.\n", "H=2.247/(Fs-0.61)\n", "print'%s %.2f %s'%(' b)H= ',H,' m')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "a)The factor of safety = 0.98 \n", " b)H= 1.62 m\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg529" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#a.Determine the maximum depth up to which the excavation can be carried out.\n", "#b.Find the radius,r, of the critical circle when the factor of safety is equal to 1(Part a).\n", "#c. Find the distance . BC\n", "Cu=40.\n", "G=17.5\n", "b=60.\n", "a=35.\n", "c=72.5\n", "m=0.195\n", "Hc=Cu/(G*m)\n", "r=Hc/(2.*math.sin(a/57.3)*math.sin((c/2)/57.3))\n", "BC=Hc*((1./math.tan(a/57.3))-(1./math.tan(b/57.3)))\n", "print'%s %.1f %s'%('a)The maximum depth Hc = ',Hc,' m')\n", "print'%s %.2f %s'%(' b)The radius, r = ',r,' m')\n", "print'%s %.3f %s'%(' c)The distance BC.= ',BC,' m')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "a)The maximum depth Hc = 11.7 m\n", " b)The radius, r = 17.28 m\n", " c)The distance BC.= 9.973 m\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg531" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#a.Determine the undrained cohesion of the clay (Figure 15.13).\n", "#b.What was the nature of the critical circle?\n", "#c. With reference to the toe of the slope, at what distance did the surface of sliding intersect the bottom of the excavation?\n", "Gs=17.29\n", "d=9.15\n", "d1=6.1\n", "D=d/d1\n", "a=40.\n", "m=0.175\n", "b=40.\n", "H=6.1\n", "Cu=H*Gs*m\n", "print'%s %.1f %s'%('a)The undrained cohesion of the clay Cu = ',Cu,' kN/m**2')\n", "print(' b)The nature of the critical circle is midpointcircle')\n", "d=1.5\n", "b=40.\n", "n=0.9\n", "D1=n*H\n", "print'%s %.1f %s'%(' c)Distance = ',D1,' m')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "a)The undrained cohesion of the clay Cu = 18.5 kN/m**2\n", " b)The nature of the critical circle is midpointcircle\n", " c)Distance = 5.5 m\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg534" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#a.Determine the maximum depth up to which the cut could be made.\n", "#b.How deep should the cut be made if a factor of safety of 2 against sliding is required\n", "Fs=1.\n", "b=56.\n", "Kh=0.25\n", "M=3.66\n", "Cu=500.\n", "G=100.\n", "Hc=Cu*M/G\n", "print'%s %.1f %s'%('a)The maximum depth =',Hc,' ft')\n", "Fs=2.\n", "H=Cu*M/(G*Fs)\n", "print'%s %.1f %s'%(' b)H= ',H,' ft')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "a)The maximum depth = 18.3 ft\n", " b)H= 9.2 ft\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6-pg541" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#a.Find the critical height of the slope.\n", "#b.If the height of the slope is 10 m, determine the factor of safety with respect to strength.\n", "b=45.\n", "c=20.\n", "C=24.\n", "G=18.9\n", "m=0.06\n", "Hc=C/(G*m)\n", "Cd=G*Hc*m\n", "Fc=C/Cd\n", "print'%s %.1f %s'%('a)Critical height of slope = ',Hc,'')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "a)Critical height of slope = 21.2 \n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex7-pg544" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# using Michalowski\u2019s solution.\n", "import math\n", "FSs=1.\n", "c=20.\n", "G=18.9\n", "C=24.\n", "Hcr=C/(G*math.tan(c/57.3)*0.17)\n", "print'%s %.1f %s'%('a)Critical height Hc = ',Hcr,' m')\n", "H=10.\n", "k=C/(G*H*math.tan(c/57.3))\n", "Fs=4.*math.tan(c/57.3)\n", "print'%s %.1f %s'%(' b)Fs = ',Fs,'')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "a)Critical height Hc = 20.5 m\n", " b)Fs = 1.5 \n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8-pg560" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "# Determine the factor ofsafety,Fs . Use Table 15.3.\n", "W=22.4\n", "C=20.\n", "a=70.\n", "s=math.sin(a/57.3)\n", "c=math.cos(a/57.3)\n", "l=2.924\n", "Wn=W*s\n", "Wn1=W*c\n", "##doing this to all values\n", "F1=30.501\n", "F2=776.75\n", "F3=1638.\n", "Fs=(F1*C+F3*math.tan(C/57.3))/F2\n", "print'%s %.2f %s'%('Fs = ',Fs,'')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Fs = 1.55 \n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex9-pg560" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#using Michalowski\u2019s solution\n", "C=20.\n", "G=18.5\n", "r=0.25\n", "H=21.62\n", "C=25.\n", "b= math.atan(0.5)\n", "##from table 15.3 \n", "m=1.624\n", "n=1.338\n", "Fs=m-n*r\n", "print'%s %.1f %s'%(' The value of Fs for D= 1 is',Fs,'')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The value of Fs for D= 1 is 1.3 \n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex11-pg561" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#using Michalowski\u2019s solution\n", "C=20.\n", "G=18.5\n", "H=21.62\n", "c=25.\n", "r=0.25\n", "Fs=3.1*math.tan(c/57.3)\n", "print'%s %.1f %s'%('Fs = ',Fs,'')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Fs = 1.4 \n" ] } ], "prompt_number": 10 } ], "metadata": {} } ] }