{ "metadata": { "name": "", "signature": "sha256:0405d0d7063a41d23ac6999d3522bb5dd0c6d2025222a87c1afa5e51af3425e8" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter13-Lateral Earth Pressure: \n", "At-Rest, Rankine, and Coulomb" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-430" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#Calculate the lateral force Poper unit length of the wall. Also, determine the location ofthe resultant force. Assume that for sand OCR\u00012\n", "OCR=2.\n", "a=30.\n", "Ko=(1.-math.sin(a/57.3))*(OCR)**math.sin(a/57.3)\n", "##at z=0\n", "To1=0.\n", "Th1=0.\n", "u1=0.\n", "##at z=10\n", "To2=10.*100.\n", "Th2=Ko*To2\n", "u2=0.\n", "##at z=15\n", "To3= 10.*100.+5.*(122.4-62.4)\n", "Th3=Ko*To3\n", "u3=5.*62.4\n", "##Lateral force Po =Area 1 +\u0007 Area 2+\u0007 Area3+\u0007 Area 4\n", "Po =(1./2.)*10.*707.+5.*707.+(1./2.)*5.*212.1+(1/2.)*5.*312.\n", "z=((3535.)*(5.+10./3.)+3535.*(5./2.)+530.3*(5./3.)+780.*(5./3.))/Po\n", "print'%s %.1f %s'%('z = ',z,' ft')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "z = 4.8 ft\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg449" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#a.Rankine active force per unit length of the wall and the location of theresultant\n", "#b.Rankine passive force per unit length of the wall and the location of the resultant\n", "##c=0\n", "a=36.\n", "G=16.\n", "Ka=(1.-math.sin(a/57.3))/(1.+math.sin(a/57.3))\n", "##at z=0 Tp=0\n", "z=6.\n", "To=G*z\n", "Ta=Ka*To\n", "Pa=z*Ta/2.\n", "\n", "print'%s %.1f %s'%('a)Rankine active force per unit length of the wall = ',Pa,' kN/m')\n", "print(' and the location of the resultant is z = 2m')\n", "\n", "\n", "p=36.\n", "G=16.\n", "Kp=(1+math.sin(a/57.3))/(1-math.sin(a/57.3))\n", "##at z=0 Tp=0\n", "z=6.\n", "To=G*z\n", "Tp=Kp*To\n", "Pp=z*Tp/2.\n", "\n", "print'%s %.1f %s'%(' b)Rankine passive force per unit length of the wall = ',Pp,' kN/m')\n", "print (' and the location of the resultant is z = 2m')\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "a)Rankine active force per unit length of the wall = 74.8 kN/m\n", " and the location of the resultant is z = 2m\n", " b)Rankine passive force per unit length of the wall = 1109.2 kN/m\n", " and the location of the resultant is z = 2m\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg450" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#Determine the active force Paperunit length of the wall as well as the location and direction of the resultant.\n", "H=12.\n", "a=20.\n", "b=20.\n", "G=115.\n", "c=30.\n", "Oa= math.asin(math.sin(a/57.3)/math.sin(c/57.3))*57.3-a+2.*b\n", "Ka= (math.cos((a-b)/57.3)*math.sqrt(1.+(math.sin(c/57.3))**2.-2.*math.sin(c/57.3)*math.cos(Oa/57.3)))/((math.cos(b/57.3))**2.*(math.cos(a/57.3)+math.sqrt((math.sin(c/57.3))**2.-(math.sin(a/57.3))**2)))\n", "Pa=G*H**2.*Ka/2.\n", "B= math.atan((math.sin(c/57.3)*math.sin(Oa/57.3))/(1.-(math.sin(c/57.3)*math.cos(Oa/57.3))))*57.3\n", "print'%s %.1f %s'%('The active force Pa per unit length of the wall = ',Pa,' lb/ft')\n", "print'%s %.1f %s'%( ' The resultant will act a distance of 12/3 = 4 ft above the bottom of the wall with B = ',B,' degree')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The active force Pa per unit length of the wall = 6423.5 lb/ft\n", " The resultant will act a distance of 12/3 = 4 ft above the bottom of the wall with B = 30.0 degree\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg451" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#determine the force per unit length of the wall for Rankine\u2019s active state. Also find the location of the resultant.\n", "a=30.\n", "Ka1=(1.-math.sin(a/57.3))/(1.+math.sin(a/57.3))\n", "a=35.\n", "Ka2=(1-math.sin(a/57.3))/(1+math.sin(a/57.3))\n", "##at z=0 so T0=0\n", "##atz=3\n", "To=3.*16.\n", "Ta1=Ka1*To\n", "Ta2=Ka2*To\n", "\n", "## At z=6\n", "To=3.*16.+3.*(18.-9.81)\n", "Ta2=Ka2*To\n", "\n", "Pa =(1/2.)*3.*16.+3.*13.0+ (1/2.)*3.*36.1\n", "z= (24 *(3.+3./3.)+39.0*(3/2.)+54.15*(3/3.))/Pa\n", "print'%s %.1f %s'%('The force per unit length of the wall = ',Pa,' kN/m')\n", "print'%s %.1f %s'% (' The location of the resultant = ',z,'m ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The force per unit length of the wall = 117.2 kN/m\n", " The location of the resultant = 1.8 m \n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg453" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#a.Maximum depth of the tensile crack\n", "#b.Pabefore the tensile crack occurs\n", "#c. Pa after the tensile crack occurs\n", "Ka= (math.tan(1./57.3))**2.\n", "G=16.5\n", "cu=10.\n", "H=6.\n", "##at z=0\n", "z=0.\n", "Ta=G*z-2.*cu\n", "##zt z=6\n", "z=6.\n", "Ta=G*z-2.*cu\n", "\n", "zo=2.*cu/G\n", "## Before the tensile crack occurs\n", "Pa= G*H**2./2. - 2.*cu*H\n", "print'%s %.1f %s'%('Pa before the tensile crack occurs = ',Pa,' kN/m')\n", "##After the tensile crack occurs\n", "Pa=(H-zo)*Ta/2.\n", "print'%s %.1f %s'%(' Pa after the tensile crack occurs = ',Pa,' kN/m')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Pa before the tensile crack occurs = 177.0 kN/m\n", " Pa after the tensile crack occurs = 189.1 kN/m\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6-pg457" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#Determine the Rankine active force Paon the retaining wall after the tensile crack occurs.\n", "H=15.\n", "a=10.\n", "G=118.\n", "b=20.\n", "C=250\n", "Zo=2.*C*math.sqrt((1+math.sin(b/57.3))/(1.-math.sin(b/57.3)))/G\n", "##at z=0 Ta=0\n", "##at z=15 \n", "z=15.\n", "K=0.3\n", "Ta=G*z*K*math.cos(a/57.3)\n", "Pa=(H -Zo)*Ta/2.\n", "print'%s %.1f %s'%('The Rankine active force Pa on the retaining wall after the tensile crack occurs = ',Pa,' lb/ft')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Rankine active force Pa on the retaining wall after the tensile crack occurs = 2339.8 lb/ft\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex7-pg459" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Estimate the active force,Pa , per unit length of the wall. Also, state the direction and location of the resultant force,Pa.\n", "import math\n", "c=30.\n", "b=15.\n", "a=10.\n", "Ka=0.3872 ## from table 13.8\n", "H=4.\n", "G=15.\n", "Pa=G*H**2.*Ka/2.\n", "print'%s %.1f %s'%('The active force per unit length Pa = ',Pa,' kN/m')\n", "print(' The resultant will act at a vertical distance equal to H/3 = 4/3 = 1.33 m above ' ' the bottom of the wall and will be inclined at an angle of 15\u0005to the back face of the wall.')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The active force per unit length Pa = 46.5 kN/m\n", " The resultant will act at a vertical distance equal to H/3 = 4/3 = 1.33 m above the bottom of the wall and will be inclined at an angle of 15\u0005to the back face of the wall.\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex9-pg478" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#Determine Pae.Also determine the location of the resultant line of action of Pae\u2014that is, .\n", "kh=0.2\n", "kv=0.\n", "H=4.\n", "a=0.\n", "b=0.\n", "c=15.\n", "d=30.\n", "G=15.5\n", "B= math.atan(kh/(1-kv)/57.3)\n", "b1=b+B\n", "a1=a+B\n", "Ka=0.452\n", "Pa=G*H**2.*Ka/2.\n", "Pae=Pa*(1.-kv)*((math.cos(b1/57.3))**2./((math.cos(b/57.3))**2.*(math.cos(B/57.3))**2.))\n", "Ka=0.3014\n", "Pa=G*H**2*Ka/2.\n", "P1=Pae-Pa\n", "z= ((Pa*H/3)+P1*0.6*H)/Pae\n", "print'%s %.1f %s'%('Pae = ',Pae,' kN/m')\n", "print'%s %.1f %s'%(' Z = ',z,' m')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Pae = 56.0 kN/m\n", " Z = 1.7 m\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex10-pg479" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#Determine the magnitude of the active force,Pae.\n", "H=28.\n", "C=210.\n", "b=10.\n", "G=118.\n", "c=20.\n", "kh=0.1\n", "Ka=math.tan(35./57.3)\n", "zo=2.*C/(G*(Ka))\n", "n=zo/(H-zo)\n", "Nac=1.60\n", "Nav=0.375\n", "L=1.17\n", "Pae= G*(H-zo)**2*(L*Nav)-C*(H-zo)*Nac\n", "print'%s %.1f %s'%('The magnitude of the active force, Pae = ',Pae,' lb/ft')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The magnitude of the active force, Pae = 19488.8 lb/ft\n" ] } ], "prompt_number": 16 } ], "metadata": {} } ] }