{ "metadata": { "name": "", "signature": "sha256:cc62756cbf06ddef68226804d15a2efed303c30289a23f7a88b85756c1a62af7" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter12-Shear Strength of Soil" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg378" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#Determine the relationships for peak shear strength(tf) and residual shear strength(tr).\n", "D=50 ## in mm\n", "A= math.pi/4. *(D/1000.)**2\n", "## solving for test 1 \n", "N=150.\n", "Sp=157.5\n", "Sr=44.2\n", "Tf=Sp/A\n", "Tr=Sr/A\n", "## from graph\n", "k=math.tan(27/57.3)\n", "k1=math.tan(14.6/57.3)\n", "\n", "print'%s %.3f %s'%('Peak strength Tf = 40+ t*',k,'')\n", "print'%s %.3f %s'%(' Residual strength Tr = t*',k1,'')\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Peak strength Tf = 40+ t* 0.509 \n", " Residual strength Tr = t* 0.260 \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg385" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#Determine\n", "#a.Angle of friction,f\u0004\n", "#b.Angleuthat the failure plane makes with the major principal plane\n", "T3=16. ## lb/in^2\n", "Tf=25. ## lb/in^2\n", "T1=T3+Tf\n", "a= math.asin((T1-T3)/(T1+T3))*57.3 ## Mohr's circle\n", "print'%s %.2f %s'%('a)Angle of friction,a = ',a,'')\n", "b= 45.+ a/2.\n", "print'%s %.2f %s'%(' b)Angle b that the failure plane makes with the major principal plane = ',b,'')\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "a)Angle of friction,a = 26.02 \n", " b)Angle b that the failure plane makes with the major principal plane = 58.01 \n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg386" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#Find the normal stress s\u0004and the shear stress tfon the failure plane.\n", "#b.Determine the effective normal stress on the plane of maximum shear stress\n", "T1=41.\n", "T3=16.\n", "a=58.\n", "T=(T1+T3)/2. + (T1-T3)*math.cos(2.*a/57.3)/2.\n", "tf=(T1-T3)*math.sin(2.*a/57.3)/2\n", "print'%s %.2f %s'%('a)the normal stress T = ',T,' lb/in^2')\n", "print'%s %.2f %s'%('(b) and the shear stress tf = ',tf,' lb/in^2')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "a)the normal stress T = 23.02 lb/in^2\n", "(b) and the shear stress tf = 11.24 lb/in^2\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg387" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#The equation of the effective stress failure envelope for normally consolidated clayey soilistf \u0001s\u0004tan 30\u0005. A drained triaxial test was conducted with the same soil at a chamberconfining pressure of 10 lb/in.2Calculate the deviator stress at failure.\n", "##For normally consolidated clay, c' \u0004= 0.\n", "a=30.\n", "T3=10.\n", "T1=T3*(math.tan(60/57.3))**2\n", "Tf=T1-T3\n", "print'%s %.2f %s'%('The deviator stress at failure = ',Tf,' lb/in^2')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The deviator stress at failure = 19.99 lb/in^2\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg387" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#Determine the shear strength parameters.\n", "T13=70.\n", "T1f=130.\n", "T11=T13+T1f\n", "\n", "T23=160.\n", "T2f=223.5\n", "T21=T23+T2f\n", "\n", "a= 2*(math.atan(((T11-T21)/(T13-T23))**0.5) *57.3-45)\n", "c= (T11-T13*((math.tan((45+a/2.)/57.3))**2)/(2*math.tan(45+a/2.)/57.3))\n", "d=c-267\n", "print('the shear strength parameter d = ',d,' kN/m^2')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('the shear strength parameter d = ', 20.686836038348247, ' kN/m^2')\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6-pg394" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#a.Consolidated-undrained angle of shearing resistance,f\n", "#b.Drained friction angle,f\u0004\n", "T3=12.\n", "Tf=9.1\n", "T1=T3+Tf\n", "u=6.8\n", "a=math.asin((T1-T3)/(T1+T3))\n", "\n", "a1= math.asin((T1-T3)/(T1+T3-2*u))\n", "\n", "print'%s %.1f %s'%('a)Consolidated-undrained angle of shearing resistance = ',a*57.3,' degrees')\n", "print'%s %.1f %s'%(' b)Drained friction angle =',a1*57.3,' degrees')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "a)Consolidated-undrained angle of shearing resistance = 16.0 degrees\n", " b)Drained friction angle = 27.8 degrees\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex7-pg395" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#What would be the deviatorstress at failure, (\u0010sd)f, if a drained test was conducted with the same chamber allaround pressure (that is, 12 lb/in.2)?\n", "T3=12.\n", "a=27.8\n", "T1=T3*(math.tan(59./57.3))**2\n", "Tf=T1-T3\n", "print'%s %.1f %s'%('the deviator stress at failure = ',Tf,' lb/in^2')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the deviator stress at failure = 21.2 lb/in^2\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8-pg400" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#Estimate the average undrained shear strength of the clay [that is,cu(VST)].\n", "PI=28.\n", "OCR=3.2\n", "To=160.\n", "Kn=0.11+0.0037*PI\n", "Ko=OCR**0.8 * Kn\n", "Cu=Ko*To\n", "print'%s %.1f %s'%('the average undrained shear strength of the clay =',Cu,' kN/m^2')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the average undrained shear strength of the clay = 86.7 kN/m^2\n" ] } ], "prompt_number": 16 } ], "metadata": {} } ] }