{ "metadata": { "name": "", "signature": "sha256:e3a75199f67af72d14bee528a629ae06b2506206625e1ef3a86291ef88f556ed" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 03:Shallow Foundations: Ultimate bearing capacity" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3.1:Pg-130" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 3.1\n", "# From Table 3.1\n", "Nc=17.69;\n", "Nq=7.44;\n", "Ny=3.64;\n", "q=3*115;\n", "Gamma=115.0; #lb/ft**3\n", "c=320;\n", "B=5.0;#ft\n", "FS=4;#factor of safety\n", "qu=1.3*c*Nc+q*Nq+0.4*Gamma*B*Ny\n", "qall=qu/FS; #q allowed\n", "Q=qall*B**2;\n", "print Q,\"is allowable gross load in lb\" \n", "\n", "# the answer is slightly different in textbook due to approximation but here answer are precise" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "67269.0 is allowable gross load in lb\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3.2:Pg-134" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 3.2\n", "\n", "from scipy.optimize import fsolve\n", "import math\n", "Gamma=105.0;#lb/ft**3\n", "Gammasat=118.0;#lb/ft**3\n", "FS=3.0;\n", "pa=2014.125;#lb/ft**2\n", "Depth=[5,10,15,20,25]; # in ft\n", "N60=[4,6,6,10,5]; # in blow/ft\n", "sigmao=[0,0,0,0,0]; # in lb/ft^2\n", "phi=[0,0,0,0,0] # in degree\n", "Gammaw=62.4;\n", "s=0;\n", "print \"depth (ft)\\tN60\\t \\tstress(lb/ft**2)\\t phi(degrees)\\n\"\n", "for i in range(0,5):\n", " sigmao[i]=2*Gamma+(Depth[i]-2)*(Gammasat-Gammaw);\n", " phi[i]=math.sqrt(20*N60[i]*math.sqrt(pa/sigmao[i]))+20;\n", " print \" \",Depth[i],\"\\t \",N60[i],\"\\t\\t \",sigmao[i],\" \\t \\t \\t\",round(phi[i],1),\" \\n\"\n", " s=phi[i]+s\n", "\n", "avgphi=s/(i+1)\n", "\n", "print round(avgphi),\"average friction angle in degrees\"\n", "#using graph get the values of other terms in terms of B and solve for B\n", "def f(x):\n", " return-150000/x**2+5263.9+5527.1/x+228.3*x\n", "x=fsolve(f,4);\n", "print round(x[0],1),\" is the width in ft\"\n", "\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "depth (ft)\tN60\t \tstress(lb/ft**2)\t phi(degrees)\n", "\n", " 5 \t 4 \t\t 376.8 \t \t \t33.6 \n", "\n", " 10 \t 6 \t\t 654.8 \t \t \t34.5 \n", "\n", " 15 \t 6 \t\t 932.8 \t \t \t33.3 \n", "\n", " 20 \t 10 \t\t 1210.8 \t \t \t36.1 \n", "\n", " 25 \t 5 \t\t 1488.8 \t \t \t30.8 \n", "\n", "34.0 average friction angle in degrees\n", "4.5 is the width in ft\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3.3:Pg-144" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 3.3\n", "\n", "import math\n", "phi=25.0; #degrees\n", "Es=620.0; #kN/m**2\n", "Gamma=18.0;#kN/m**2\n", "Df=0.6;# in m\n", "B=0.6; # in m\n", "L=1.2; # in m\n", "Fqc=0.347;\n", "Nq=10.66;\n", "Nc=20.72;\n", "Ngamma=10.88;\n", "mu=0.3; # Poisson's ratio\n", "Fyd=1.0;\n", "c=48.0;#kN/m**2\n", "q=Gamma*(Df+B/2);\n", "Ir=Es/(2*(1+mu)*(c+q*math.tan(phi*math.pi/180.0)));\n", "print round(Ir,2),\" is value of Ir\"\n", "Fcc=Fqc-(1-Fqc)/(Nq*math.tan(phi*math.pi/180.0));\n", "Fcs=1+Nq/Nc*B/L;\n", "Fqs=1+B/L*math.tan(phi*math.pi/180.0);\n", "Fys=1-0.4*B/L;\n", "Fcd=1+0.4*Df/B;\n", "Fqd=1+2.0*math.tan(phi*math.pi/180.0)*(1-math.sin(phi*math.pi/180.0))**2*Df/B;\n", "q1=0.6*18;\n", "Fyc=Fqc;\n", "qu=c*Nc*Fcs*Fcd*Fcc+q1*Nq*Fqs*Fqd*Fqc+1.0/2*Gamma*Ngamma*Fys*Fyd*Fyc;\n", "print round(qu,2),\"is ultimate bearing capacity in kN/m**2\"\n", "\n", "# the answer is slightly different in textbook due to approximation but here answer are precise" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "4.29 is value of Ir\n", "469.24 is ultimate bearing capacity in kN/m**2\n" ] } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3.4:Pg-156" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 3.4\n", "import math\n", "q=110*4.0; #lb/ft**2\n", "Nq=33.3;\n", "phi=35.0; # in degree\n", "Df=4.0; # in ft\n", "B=6.0; # in ft\n", "Gamma=110.0;#lb/ft**3\n", "Ngamma=48.03; #lb/ft**3\n", "B1=6-2*0.5; # in ft\n", "Fqi=1;\n", "Fyi=1;\n", "Fyd=1;\n", "Fqs=1;\n", "Fys=1;\n", "Fqd=1+2*math.tan(phi*math.pi/180)*(1-math.sin(phi*math.pi/180.0))**2*Df/B;\n", "qu=q*Nq*Fqs*Fqd*Fqi+1/2.0*B1*Gamma*Ngamma*Fys*Fyd*Fyi;\n", "Qult=B1*1*qu;\n", "print round(Qult,2),\" is ultimate bearing capacity in lb/ft\" \n", "print round(Qult/2000.0,2),\" is ultimate bearing capacity in ton/ft\"\n", "\n", "# the answer is slightly different in textbook due to approximation but here answer are precise" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "151738.23 is ultimate bearing capacity in lb/ft\n", "75.87 is ultimate bearing capacity in ton/ft\n" ] } ], "prompt_number": 34 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3.5:Pg-158" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 3.5\n", "\n", "e=0.5; # in ft\n", "B=6; # in ft\n", "k=e/B;\n", "Gamma=110; # in lb/ft^3 \n", "q=440;\n", "print \"get the values of Nqe and Nye from the figure from the value of e/B\"\n", "Nye=26.8;\n", "Nqe=33.4;\n", "Qult=B*1*(q*Nqe+1/2.0*Gamma*B*Nye);\n", "print round(Qult,2),\" is ultimate bearing capacity in lb/ft\"\n", "print round(Qult/2000.0,2),\" is ultimate bearing capacity in ton/ft\"\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "get the values of Nqe and Nye from the figure from the value of e/B\n", "141240.0 is ultimate bearing capacity in lb/ft\n", "70.62 is ultimate bearing capacity in ton/ft\n" ] } ], "prompt_number": 38 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3.6:Pg-159" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 3.6\n", "\n", "Df=0.7; # in m\n", "#from table\n", "Nq=18.4;\n", "Ny=22.4;\n", "q=12.6;\n", "phi=30; #angle in degree\n", "L=1.5;# in m\n", "Fyd=1;\n", "Gamma=18; # in KN/m^3\n", "L1=0.85*1.5; # in m\n", "L2=0.21*1.5; # in m\n", "B=1.5; # in m\n", "A=1/2.0*(L1+L2)*B;\n", "B1=A/L1; #B'\n", "Fqs=1+B1/L1*math.tan(phi*math.pi/180);\n", "Fys=1-0.4*B1/L1;\n", "Fqd=1+2*math.tan(phi*math.pi/180)*(1-math.sin(phi*math.pi/180))**2*Df/B;\n", "Qult=A*(q*Nq*Fqs*Fqd+1/2.0*Gamma*B1*Ny*Fys*Fyd);\n", "print round(Qult,2),\" is ultimate load in kN\"\n", "\n", "# the answer is slightly different in textbook due to approximation but here answer are precise" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "605.45 is ultimate load in kN\n" ] } ], "prompt_number": 41 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3.7:Pg-161" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 3.7\n", "\n", "e=0.15; # in m\n", "B=1.5; # in m\n", "Fqs=1.0;\n", "L=1.5;# in m\n", "Gamma=18.0; # in KN/m^3\n", "q=0.7*18;\n", "#from table\n", "Nqe=18.4;\n", "Nye=11.58;\n", "Fys=1+(2*e/B-0.68)*(B/L)+(0.43-3/2.0*e/B)*(B/L)**2;\n", "Qult=B*L*(q*Nqe*Fqs+1/2.0*L*Gamma*Nye*Fys);\n", "print round(Qult,2),\"is ultimate load in kN\"\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "803.03 is ultimate load in kN\n" ] } ], "prompt_number": 45 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3.8:Pg-163" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 3.8\n", "\n", "q=16.0;# in kN/m^2\n", "Nqei=14.2;\n", "Gamma=16.0 # in kN/m^3\n", "B=1.5;# in m\n", "Nyet=20.0;\n", "Qult=B*(Nqei*q+1/2.0*Gamma*B*Nyet);\n", "print round(Qult,2),\" is ultimate load in kN/m\"\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "700.8 is ultimate load in kN/m\n" ] } ], "prompt_number": 48 } ], "metadata": {} } ] }