{ "metadata": { "name": "", "signature": "sha256:994ba4703f91ead0a5ff4da6459451af8490fc9d0d26864c4973279092fd8132" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 8 : Uniform Open Channel Flow" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.1 Page No : 306" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\t\t\n", "#Initialization of variables\n", "b = 4. \t\t\t #m\n", "y = 1.2 \t\t\t#m\n", "sf = 0.001\n", "n = 0.012\n", "gam = 9.81*1000\n", "\t\t\t\n", "#calculations\n", "A = b*y\n", "R = A/(b+ 2*y)\n", "Q = 1/n *A*R**(2./3) *sf**(1./2)\n", "T = gam*R*sf\n", "\t\t\t\n", "#results\n", "print \"Discharge = %.3f m**3/s\"%(Q)\n", "print \" bed shear = %.2f N/m**2\"%(T)\n", "#The answer in textbook is wrong for discharge. Please use a calculator." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Discharge = 10.442 m**3/s\n", " bed shear = 7.36 N/m**2\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.2 Page No : 306" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\t\t\n", "#Initialization of variables\n", "b = 6. \t\t \t#m\n", "y = 2. \t\t\t #m\n", "sf = 0.005\n", "slope = 2.\n", "gam = 9.81*1000\n", "Q = 65. \t\t\t#m**3/s\n", "\t\t\t\n", "#calculations\n", "A = (b+ 2*y)*slope\n", "P = b+ 2*y*math.sqrt(slope**2 +1)\n", "R = A/P\n", "V = Q/A\n", "n = R**(2./3) *sf**(1./2) /V\n", "\t\t\t\n", "#results\n", "print \"Value of mannings coefficient = %.3f\"%(n)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Value of mannings coefficient = 0.026\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.3 Page No : 307" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\t\t\n", "#Initialization of variables\n", "b = 3. \t\t\t#m\n", "y = 1. \t\t\t#m\n", "sf = 0.005 #slope\n", "n = 0.028 \n", "gam = 9.81*1000\n", "Q = 0.25 \t\t\t#discharge - m**3/s\n", "slope = 1.5\n", "\t\t\t\n", "#calculations\n", "A = 0.5 *b*y\n", "P = 2*math.sqrt(1 + (slope)**2)\n", "R = A/P\n", "yx = Q*n/(slope * R**(2./3) *sf**(1./2))\n", "y = yx**(3./8)\n", "\t\t\t\n", "#results\n", "print \"depth = %.2f m\"%(y)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "depth = 0.45 m\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.4 Page No : 307" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\t\t\n", "#Initialization of variables\n", "sf = 0.0064 #slope\n", "n = 0.015\n", "Q = 6. \t\t\t#discharge - m**3/s\n", "gam = 9.81*1000\n", "\t\t\t\n", "#calculations\n", "AR = n*Q/math.sqrt(sf)\n", "print (\"On trial and error, \")\n", "y = 0.385 \t\t\t#m\n", "print \"normal depth = %.3f m\"%(y)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "On trial and error, \n", "normal depth = 0.385 m\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.5 Page No : 308" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "from numpy import *\n", "\t\t\t\n", "#Initialization of variables\\\n", "sf = 0.00007\n", "n = 0.013\n", "gam = 9.81*1000\n", "V = 0.45 \t\t\t#velocity - m/s\n", "Q = 1.4 \t\t\t#m**3/s\n", "\t\t\t\n", "#calculations\n", "by = Q/V\n", "#x = poly(0,\"x\")\n", "#y = roots(x**2 -2.66*x +1.55)\n", "y = roots([1,-2.66,1.55])\n", "b = by/y\n", "\t\t\t\n", "#results\n", "print \"y = \", y \n", "print \"corresponding b = \" ,b" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "y = [ 1.7978675 0.8621325]" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "corresponding b = [ 1.73044516 3.60862294]\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.6 Page No : 310" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\t\t\n", "#Initialization of variables\n", "sf = 0.0016 #slope\n", "n = 0.02\n", "Q = 0.84 \t\t\t#m**3/s\n", "gam = 9.81*1000\n", "\t\t\t\n", "#calculations\n", "y53 = Q*n/math.sqrt(sf)\n", "y = y53**(3./5)\n", "\t\t\t\n", "#results\n", "print \"depth of flow = %.2f m\"%(y)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "depth of flow = 0.59 m\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.7 Page No : 313" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\t\t\n", "#Initialization of variables\n", "n = 0.015\n", "Q = 1.3 \t\t\t#m**3/s\n", "V = 0.6 \t\t\t#m/s\n", "gam = 9.81*1000\n", "\t\t\t\n", "#calculations\n", "alpha = 60. \t\t\t#degrees\n", "A = 0.5 *(1./2)**2 *(180-alpha)/180 *math.pi -(1./4)**2 *math.radians(math.tan(alpha))\n", "A = 0.206\n", "P = 0.5*(180-alpha)/180 *math.pi\n", "R = A/P\n", "d2 = V*n/(R**(2./3))\n", "d8 = Q*n*4*4**(2./3) /math.pi\n", "d = math.sqrt(d8/d2)\n", "sf = (d2**2/d**(4./3))\n", "\t\n", "#results\n", "print \"Diameter = %.2f m\"%(d)\n", "print \" slope = %.5f \"%(sf)\n", "#The answer given in textbook is wrong. please check" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Diameter = 1.53 m\n", " slope = 0.00040 \n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.8 Page No : 315" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\t\t\n", "#Initialization of variables\n", "b = 0.5 \t\t\t#m\n", "y = 0.35 \t\t\t#m\n", "sf = 0.001 #slope\n", "nc = 0.016\n", "gam = 9.81*1000\n", "Q = 0.15 \t\t\t#m**3/s\n", "\t\t\t\n", "#calculations\n", "A = b*y\n", "P = b+ 2*y\n", "R = A/P\n", "ng = 1/Q *A*R**(2./3) *sf**(1./2)\n", "n = (b*nc**(3./2) + 2*y*ng**(3./2))**(2./3) /(P**(2./3))\n", "Q2 = 1/n *A*R**(2./3) *sf**(1./2)\n", "\t\t\t\n", "#results\n", "print \"flow in case 2 = %.3f m**3/s\"%(Q2)\n", "\n", "# note : rounding off error" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "flow in case 2 = 0.120 m**3/s\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.9 Page No : 316" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\t\t\n", "#Initialization of variables\n", "b1 = 8. \t\t\t#m\n", "b2 = 5. \t\t\t#m\n", "y = 5. \t\t\t#m\n", "b5 = 15. \t\t\t#m\n", "b3 = 3. \t\t\t#m\n", "b4 = 3. \t\t\t#m\n", "y2 = 2. \t\t\t#m\n", "y3 = 3. \t\t\t#m\n", "n1 = 0.025\n", "n2 = 0.035\n", "sf = 0.0008\n", "\t\t\t#calcuations\n", "A = (b1+b2)*y\n", "P = b1+ math.sqrt(b2**2 +y**2) + math.sqrt(b3**2 +b4**2)\n", "R = A/P\n", "Q1 = 1/n1 *A*R**(2./3) *sf**(1./2)\n", "A2 = b5*y2 - 0.5*y2*y2 + 0.5*y3*y2\n", "P2 = b5 + math.sqrt(b4**2 + y3**2)\n", "R2 = A2/P2\n", "Q2 = 1/n2 *A2*R2**(2./3) *sf**(1./2)\n", "Q = Q1+Q2\n", "\t\t\t\n", "#results\n", "print \"Total discharge = %.f m**3/s\"%(Q)\n", "\n", "# rounding off error" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Total discharge = 200 m**3/s\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.10 Page No : 320" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\t\t\n", "#Initialization of variables\n", "Q = 12. \t\t\t#m**3/s\n", "n = 0.023\n", "A = 2.472\n", "b = 0.472\n", "sf = 1./8000\n", "\t\t\t\n", "#calculations\n", "y8 = Q*n/A *2**(2./3) /sf**(1./2)\n", "y = y8**(3./8)\n", "b2 = b*y\n", "\t\t\t\n", "#results\n", "print \"depth = %.3f m\"%(y)\n", "print \" width = %.2f m\"%(b2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "depth = 2.819 m\n", " width = 1.33 m\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.11 Page No : 320" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\t\t\n", "#Initialization of variables\n", "Q = 30. \n", "V = 1.\n", "\t\t\t\n", "#calculations\n", "A = Q/V\n", "y = math.sqrt(A/(math.sqrt(2) + 0.5))\n", "b = (A- 0.5*y**2)/y\n", "\t\t\t\n", "#results\n", "print \"width = %.2f m\"%(b)\n", "print \" depth = %.2f m\"%(y)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "width = 5.60 m\n", " depth = 3.96 m\n" ] } ], "prompt_number": 11 } ], "metadata": {} } ] }