{ "metadata": { "name": "", "signature": "sha256:5f74478ce49dffc1b551f32fb2744aa025f82f0e4c0a37162dfc5c9eb6e76508" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 1 : Basic Concepts" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.1 Page No : 5" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\t\t\n", "#Initialization of variables\n", "weight = 9800. \t\t\t#Kg\n", "g = 9.81 \t\t\t#m/s**2\n", "a = 2. \t\t \t#m/s**2\n", "\t\t\t\n", "#calculations\n", "m = weight/g\n", "Wm = m*a\n", "\t\t\t\n", "#results\n", "print \"Density on earth = %.2f Kg/m**3\"%(m)\n", "print \" Weight on moon = %.2f N\"%(Wm)\n", "print \" Density on moon remains unchanged and is equal to %.2f Kg/m**3\"%(m)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Density on earth = 998.98 Kg/m**3\n", " Weight on moon = 1997.96 N\n", " Density on moon remains unchanged and is equal to 998.98 Kg/m**3\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.2 Page No : 14" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\t\t\n", "#Initialization of variables\n", "w = 150. \t\t\t#N\n", "theta = 30. \t\t\t#degrees\n", "l = 0.8 \t\t\t#m\n", "b = 0.8 \t\t\t#m\n", "dy = 0.12 \t\t\t#cm\n", "v = 20. \t\t\t#cm/s\n", "\t\t\t\n", "#calculations\n", "Tau = round(w*math.sin(math.radians(theta)) /(l*b),2) #shear stress\n", "rd = v/dy #rate of deformation\n", "vis = Tau/rd #viscosity\n", "\n", "#results\n", "print \"Viscosity of the fluid = %.2f N s/m**2\"%(vis)\n", "\n", "# incorrect solution for 'rate of deformation' in textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Viscosity of the fluid = 0.70 N s/m**2\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.3 Page No : 14" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\t\t\n", "#Initialization of variables\n", "vis = 2.5/10 \t\t\t#N s/m**2\n", "D = 15. \t\t\t#cm\n", "N = 180.\n", "dy = 0.0001 \t\t\t#m\n", "l = 0.15 \t\t\t#length - m\n", "b = 0.25 \t\t\t#breadth - m\n", "r = 0.152 \t\t\t#radius - m\n", "\t\t\t\n", "#calculations\n", "dv = math.pi*D*N/60/100\n", "Tau = vis*dv/dy\n", "Tor = round(Tau*math.pi*l*b*r/2,1)\n", "P = Tor*2*math.pi*N/60\n", "print \t\t\t\n", "#results\n", "print \"Power required = %d W\"%(P)\n", "\n", "# Note : The answer is different due to rounding off error in textbook." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Power required = 595 W\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.4 Page No : 15" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\t\t\n", "#Initialization of variables\n", "w = 1 \t\t\t#rad/s\n", "T = 0.4 \t\t\t#N/m**2\n", "\t\t\t\n", "#calculations\n", "mu = T/math.tan(w)\n", "\t\t\t\n", "#results\n", "print \"Viscosity = %.2f N s/m**2\"%(mu)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Viscosity = 0.26 N s/m**2\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.6 Page No : 19" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\t\t\n", "#Initialization of variables\n", "d = 0.05*10**-3 \t#diameter - m\n", "T = 72.*10**-3 \t\t#surface tension of water - N/m\n", "P = 101. \t\t\t#pressure - kN/m**2\n", "\t\t\t\n", "#calculations\n", "Pi = P*1000 + 2*T/(d/2)\n", "\t\t\t\n", "#results\n", "print \"Pressure = %.2f kN/m**2\"%(Pi/1000)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Pressure = 106.76 kN/m**2\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.7 Page No : 19" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\t\t\n", "#Initialization of variables\n", "rho = 981. \t\t\t#dyn/cm**2\n", "sigma = 72. \t\t\t#dyn/cm\n", "theta = 0. \t \t\t#degrees\n", "d = 0.5 \t\t \t#cm\n", "depth = 90. \t\t\t#cm\n", "\t\t\t\n", "#calculations\n", "h = 4*sigma*math.cos(math.radians(theta)) /(rho*d)\n", "Td = depth-h\n", "\t\t\t\n", "#results\n", "print \"True depth = %.3f cm\"%(Td)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "True depth = 89.413 cm\n" ] } ], "prompt_number": 17 } ], "metadata": {} } ] }