{ "metadata": { "name": "", "signature": "sha256:8e1b5c14d4876dc6b60f9f51fe0f04e94941e7f01c84340bf3441e1daf170b7a" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 3 Amplitude modulation fundamentals" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.1 page no 99" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "Vmax = 5.9\n", "Vmin = 1.2\n", "\n", "#Calculation\n", "m = (Vmax-Vmin)/(Vmax+Vmin)\n", "Vc = (Vmax+Vmin)/2.0\n", "Vm = (Vmax-Vmin)/2.0\n", "m = Vm/Vc\n", "\n", "#Result\n", "print\"(a) The modulation index is \",round(m,2)\n", "print\"Vc= \",Vc,\"Vm= \",Vm,\"(for 2 volt/div on verticle scale)\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The modulation index is 0.66\n", "Vc= 3.55 Vm= 2.35 (for 2 volt/div on verticle scale)\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.2 page no 102" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "frq =980*10**3\n", "frq_range = 5*10**3\n", "\n", "#Calculation\n", "fusb = frq+frq_range\n", "flsb = frq-frq_range\n", "bw=fusb-flsb\n", "\n", "#Result\n", "print\"The upper sideband is at \",fusb/10**3,\"Khz\"\n", "print\"Lower sideband is at \",flsb/10**3,\"Khz\"\n", "print\"the babdwidth is \",bw/10**3,\"KHz\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The upper sideband is at 985 Khz\n", "Lower sideband is at 975 Khz\n", "the babdwidth is 10 KHz\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.3 page no 106" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "Pc = 30\n", "m=0.85\n", "\n", "#Calculation\n", "Pt = Pc*(1+ (m**2/2.0))\n", "Psb_both =Pt-Pc\n", "Psb_one = Psb_both/2.0\n", "\n", "#Result\n", "print\"The total power is \",round(Pt,1),\"watt\" \n", "print\"The power in one sideband is \",round(Psb_one,1),\"Watt\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The total power is 40.8 watt\n", "The power in one sideband is 5.4 Watt\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.4 page no 108" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "R = 40\n", "I = 4.8\n", "m=0.9\n", "\n", "#Calculation\n", "Pc = I**2*R\n", "Pt = (I*(1+(m**2/2.0))**0.5)**2*R\n", "Psb = Pt-Pc\n", "\n", "#Result\n", "print\"(a) The carrier power is \",Pc,\" watt\"\n", "print\"(b) Total power = \",round(Pt,0),\"watt\"\n", "print\"(c) Sideband Power = \",round(Psb,1),\"watt\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) The carrier power is 921.6 watt\n", "(b) Total power = 1295.0 watt\n", "(c) Sideband Power = 373.2 watt\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.5 page no 108" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "It = 5.1\n", "Ic =4.8\n", "\n", "#Calculation\n", "m=(2*((It/Ic)**2-1))**0.5\n", "\n", "#Result\n", "print\"The percentage of modulation is \",round(m*100,0)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The percentage of modulation is 51.0\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.6 page no 109" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "m = 0.9\n", "Pc = 921.6\n", "\n", "#calculation\n", "Psb = (m**2*Pc)/4.0\n", "\n", "#Result\n", "print\"The power in one sideband \",round(Psb,1),\"Watt\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The power in one sideband 186.6 Watt\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.7 page no 113" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "Vpp = 178\n", "R = 75.0\n", "\n", "#Calculation\n", "Vp =Vpp/2.0\n", "Vrms = 0.707*Vp\n", "PEP =(Vrms**2/R)\n", "\n", "#Result\n", "print\"The peak envelop power is \", round(PEP,1),\"Watt\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The peak envelop power is 52.8 Watt\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.8 page no 113" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "Vs =24\n", "Im =9.3\n", "\n", "#Calculation\n", "PEP = Vs*Im \n", "Pavg1 = PEP/3.0\n", "Pavg2 = PEP/4.0\n", "\n", "#Result\n", "print\"(a) The peak envelope power is \",PEP,\"watt\"\n", "print\"(b) Average power of transmitter is \",Pavg2,\"watt to\",Pavg1,\"watt\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) The peak envelope power is 223.2 watt\n", "(b) Average power of transmitter is 55.8 watt to 74.4 watt\n" ] } ], "prompt_number": 10 } ], "metadata": {} } ] }