{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 9:Membranes,Solid Sorption Agents" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.1,Page number:508" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t# A-solute B-solvent\n", "ci_f = 50 \t\t\t\t\t# [feed side concentration, mole/cubic m]\n", "ci_p = 15 \t\t\t\t\t# [permeate side concentration, mole/cubic m]\n", "t = 2*10**-4 \t\t\t\t\t# [membrane thickness, cm]\n", "q_A = 176 \t\t\t\t\t# [permeability, barrer]\n", "D = 4*10**-1 \t\t\t\t\t# [tube inside diameter, cm]\n", "D_A = 5*10**-5 \t\t\t\t# [diffusuvity, square cm/s]\n", "Re = 20000 \t\t\t\t\t# [reynolds number]\n", "Sc = 450 \t\t\t\t\t# [Schmidt number]\n", "mtc_p = 0.12 \t\t\t\t\t# [square cm/s]\n", "\n", "#Calculation\n", "\n", "\t# From equation 9.6, 1 barrer = 8.3*10**-9 square cm/s \n", "\t# Therefore \n", "q_A = q_A*8.3*10**-9 \t\t\t\t# [square cm/s]\n", "Q_A = q_A/t \t\t\t\t\t# [permeance, cm/s]\n", "\t# The mass-transfer coefficient on the feed side is from equation (2-75) for turbulent \tflow of a liquid inside a circular pipe:\n", "Sh = 0.023*Re**0.83*Sc**(1.0/3.0) \n", "\t# Now mass transfer coefficient\n", "k_af = Sh*D_A/D \t\t\t\t# [cm/s]\n", "\t# Total resistance to mass transfer \n", "res_total = (1/k_af)+(1/Q_A)+(1/mtc_p) \t# [s/cm]\n", "\t# Transmembrane flux of solute A\n", "N_A = (ci_f-ci_p)/(res_total*100) \t\t# [mole/square m.s]\n", "\n", "#Result\n", "\n", "print\"The transmembrane flux of solute A is\",round(N_A,5),\"mole/square m.s\"\n", "\n", "percent_mem_res = ((1/Q_A)/res_total)*100 \t# [%]\n", "print\"Membrane resistance is\",round(percent_mem_res),\"percent of the total\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The transmembrane flux of solute A is 0.00222 mole/square m.s\n", "Membrane resistance is 87.0 percent of the total\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.2,Page number:511" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from scipy.optimize import fsolve\n", "from numpy import *\n", "\n", "\n", "# solution\n", "\n", "# A-oxygen B-nitrogen\n", "t = 0.2*10**-6 # [m]\n", "qA = 3.97*10**-13 # [mole/m.s.kPa]\n", "qB = 0.76*10**-13 # [mole/m.s.kPa]\n", "v = 1 # [Air flow rate at STP, cubic m/s]\n", "Pp = 0.1*10**6 # [Pa]\n", "R = 8.314 # [cubic m.Pa/mole.K]\n", "T = 298 # [K]\n", "Pf = 1*10**6 # [Pa]\n", "\n", "# Using equation 9.14\n", "alphaA = qA/qB \n", "QA = qA/t # [mole/square m.s.kPa]\n", "# molar flow rate\n", "nf = v*1000/(22.4) # [mole/s]\n", "r = Pp/Pf # [pressure ratio]\n", "QB = qB/t # [mole/square m.s.kPa]\n", "alphaid = QA/QB \n", "xFa = 0.21 \n", "xFb = 0.79 \n", "\n", "# For Q = 0.1\n", "Q1 = 0.1\n", " # Solution of simultaneous equation\n", "def F(e):\n", " f1 = e[0] - (e[2]*(1-e[1]))/((e[1]*(1-e[2]))) \n", " f2 = e[1] - (xFa - (e[2]*Q1))/(1-Q1) \n", " f3 = e[0] - (alphaid*(e[1]*(e[0]-1)+1- (r*e[0])))/(e[1]*(e[0]-1)+1 - r) \n", " return(f1,f2,f3)\n", "\n", "# Initial guess\n", "e = [4,0.13,0.4] \n", "y = fsolve(F,e) \n", "alpha1 = y[0] \n", "Xa1 = y[1] \n", "Ya1 = y[2] \n", "Am1 = Ya1*Q1*nf/(QA*(Xa1*Pf-Ya1*Pp))*1000 # [square m]\n", "\n", "# For Q = 0.2\n", "Q2 = 0.2\n", " # Solution of simultaneous equation\n", "def F(e):\n", " f1 = e[0] - (e[2]*(1-e[1]))/((e[1]*(1-e[2]))) \n", " f2 = e[1] - (xFa - (e[2]*Q2))/(1-Q2) \n", " f3 = e[0] - (alphaid*(e[1]*(e[0]-1)+1- (r*e[0])))/(e[1]*(e[0]-1)+1 - r) \n", " return(f1,f2,f3)\n", "\n", "# Initial guess\n", "e = [4,0.13,0.4] \n", "y = fsolve(F,e) \n", "alpha2 = y[0] \n", "Xa2 = y[1] \n", "Ya2 = y[2] \n", "Am2 = Ya2*Q2*nf/(QA*(Xa2*Pf-Ya2*Pp))*1000 # [square m]\n", "\n", "# For Q = 0.9\n", "Q9 = 0.9\n", " # Solution of simultaneous equation\n", "def F(e):\n", " f1 = e[0] - (e[2]*(1-e[1]))/((e[1]*(1-e[2]))) \n", " f2 = e[1] - (xFa - (e[2]*Q9))/(1-Q9) \n", " f3 = e[0] - (alphaid*(e[1]*(e[0]-1)+1- (r*e[0])))/(e[1]*(e[0]-1)+1 - r) \n", " return(f1,f2,f3)\n", "\n", "# Initial guess\n", "e = [4,0.13,0.4] \n", "y = fsolve(F,e) \n", "alpha9 = y[0] \n", "Xa9 = y[1] \n", "Ya9 = y[2] \n", "Am9 = Ya2*Q9*nf/(QA*(Xa9*Pf-Ya9*Pp))*1000 # [square m]\n", "\n", "# Similarly for Q =0.3......0.9, Xa, Ya, alpha and Am are calculated\n", "# Therefore we obtained\n", "# Solution = [Q,alpha,Xa,Ya]\n", "Solution = zeros((9,4)) \n", "Solution =matrix([[0.1,4.112,0.181,0.475],[0.2,4.062,0.156,0.428],[0.3,4.018,0.135,0.385],[0.4,3.98,0.118,0.348],[0.5,3.949,0.105,0.315],[0.6,3.922,0.093,0.288],[0.7,3.9,0.084,0.264],[0.8,3.881,0.077,0.243],[0.9,3.864,0.07,0.226]]) \n", "Am =matrix([[8037],[17074],[26963],[37531],[48618],[60099],[71876],[83879],[96056]]) \n", "\n", "\n", "print\"The maximum oxygen content of the permeate (%f percent) occurs with the smallest cut (Q = 0.1).\",round(Ya1*100)\n", "print\"The maximum nitrogen content of the retentate (%f percent) occurs at the largest cut (Q = 0.9).\\n\\n\",round((1-Xa9)*100)\n", "\n", "print\"The membrane area requirements are very large (e.g, Am = 60,100 square m for Q = 0.6) even though the volumetric flow rate of air is relatively small)\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum oxygen content of the permeate (%f percent) occurs with the smallest cut (Q = 0.1). 48.0\n", "The maximum nitrogen content of the retentate (%f percent) occurs at the largest cut (Q = 0.9).\n", "\n", "93.0\n", "The membrane area requirements are very large (e.g, Am = 60,100 square m for Q = 0.6) even though the volumetric flow rate of air is relatively small)\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.4,Page number:520" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "from numpy import *\n", "Pexp = array([0.276,1.138,2.413,3.758,5.240,6.274,6.688 ]) # [MPa]\n", "V = array([45.5,91.5,113,121,125,126,126 ]) # [cubic cm of CH4/gram carbon]\n", "Ma = 16 # [gram/mole]\n", "Vstp = 22.4 # [L/mole]\n", "q = V*Ma/Vstp # [mg/g]\n", "\n", "# Linearize data for Langmuir isotherm\n", "y = Pexp/q \n", "\n", "\n", "#y = array([0.0030667,0.01264,0.02681,0.0417556,0.0582,0.06971,0.07431 ])\n", "\n", "\n", "\n", "a2=plot(Pexp,q, marker='o')\n", "\n", "xlabel(\"Pexp, MPa\") \n", "ylabel(\"y, MPa.mg/g\") \n", "\n", "# Now qm = 1/(slope of Pexp v/s y curve)\n", "# From graph of Pexp v/s y, the slope is \n", "s = 0.01022 \n", "# And intercept \n", "i = 5.4865*10**-3 \n", "qm = 1/s # [mg/g]\n", "K = 1/(qm*i) # [1/MPa]\n", "\n", "# Therefore\n", "# qlp = K*qm*p/(1+Kp)\n", "print\"Data for Langmuir isotherm are K =\",round(K,3),\"MPa**-1 and qm =\",round(qm,2) \n", "\n", "# Linearize data for Freundlich isotherm\n", "# y1 = log(q/(mg/g)) , x1 = log(Pexp/MPa)\n", "y1 = numpy.log(q) \n", "x1 = numpy.log(Pexp) \n", "\n", "twiny()\n", "twinx()\n", "plot(x1,y1, linestyle='--', color='r')\n", "plt.xticks(np.arange(min(x1), max(x1)+1, 2))\n", "\n", "xlabel(\"$log(Pexp/(Mpa))$\") \n", "ylabel(\"$log(q/(mg/g))$\") \n", "title(' Langmuir and Freundlich isotherms fitted to data')\n", "\n", "#plt.xlim(0,8)\n", "#plt.ylim(20,100)\n", "\n", "\n", "# From graph of log(q) v/s log(Pexp)\n", "# slope = 0.31\n", "s = 0.31 \n", "# and intercept is\n", "i = 4 \n", "# Therefore n = 1/slope\n", "n = 1/s \n", "k =math.exp(i) # [(mg CH4/g of carbon.MPa**(-1/n)]\n", "print\"Data for Freundlich isotherm are n = \",round(n,2),\"and k =\",round(k,2)\n", "\n", "# Therefore\n", "# qFp = k*(p/1 Mpa)**(1/n)\n", "print\"Figure shows a q-p plot of the experimental data and the corresponding predictions of the Langmuir and Freundlich isotherms.\\n It is evident from the plot that in this case, the Langmuir isotherm fits the data significantly better than the Freundlich isotherm.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Data for Langmuir isotherm are K = 1.863 MPa**-1 and qm = 97.85\n", "Data for Freundlich isotherm are n = " ] }, { "output_type": "stream", "stream": "stdout", "text": [ " 3.23 and k = 54.6\n", "Figure shows a q-p plot of the experimental data and the corresponding predictions of the Langmuir and Freundlich isotherms.\n", " It is evident from the plot that in this case, the Langmuir isotherm fits the data significantly better than the Freundlich isotherm.\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAaMAAAEZCAYAAAA6xErnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4TGf7wPHvJFQSIhsSEaS1x5a0IWgR1RCUUmlQJbRU\nF1XavtWdly5p0Z+lb/uiXmtbQlskYm3FWkVtrSIoIUQskSCRbfL8/jg1FbLLzMkk9+e6cknmnDnn\nPmPmued5zrMYlFIKIYQQQkc2egcghBBCSDISQgihO0lGQgghdCfJSAghhO4kGQkhhNCdJCMhhBC6\nk2RkhbZt20bTpk11O/+wYcN4//33dTt/SXh7e/Pzzz8DMHHiRIYMGQLAmTNncHR0pLARDjExMdSt\nW7fI5+vZsyeLFy8uecD5sLGx4a+//ir145a2r776Cnd3d6pXr05SUhKOjo6cPn3abOe7/f/U3E6f\nPo2NjQ05OTkWOV9FUSGTkbV8oPPTsWNHjh49qtv5DQYDBoMhz20LFizA1tYWR0dH08+YMWMsHOHd\nbo/39t/r1avH9evX872ekoqOjr7nwjEwMJB58+aVUkSWk5WVxeuvv85PP/3EtWvXcHV15fr163h7\newN5f5m5/ctCSRT0/1fcLxKlSc9zW5tKegcgSld2djaVKpn/v7WgmsTDDz/M1q1bC3y+0WjE1ta2\ntMMqEmsZ513aCfJ25nyfXLhwgfT0dJo1a1bk5xgMBqv5fxHmUSFrRvk5efIkjz76KDVq1KBmzZo8\n88wzpKSkmLZ7e3szbdo0WrdujbOzMwMHDiQjI8O0/bPPPsPT0xMvLy++/vrrXDWwYcOG8dJLL9Gz\nZ08cHR3p2LEjFy5c4NVXX8XFxYVmzZpx4MAB07HurL3d/m3yzm9b3t7efPbZZ7Rq1QpHR8c8mw9e\nffVV6tWrh5OTE/7+/mzfvt20beLEiYSGhhIWFkb16tVp0aIFv/32m2n7/v37efDBB6levToDBw4k\nPT29wNcxr0Jl4sSJhISEMGTIEJycnFi4cCEpKSk899xzptfs/fffN8V+Z7PLnU0jgYGBfPDBBzzy\nyCNUr16d7t27c+XKFdP+ixcvpn79+tSoUYOPP/4431jvPG5SUhLDhw+nTp06uLq60q9fv1z7f/75\n57i7u+Pp6cmCBQvyPe7ttZoTJ07QuXNnnJ2dqVmzJgMHDjTtt3PnTtq0aYOzszNt27bll19+AeDd\nd99l27ZtjB49+q7a5caNG2ncuDEuLi6MHj0613n/97//4ePjg6urK8HBwZw5c8a0zcbGhi+//JJG\njRrRpEkTtmzZgpeXF1OmTKFWrVp4enqycuVKoqOjady4MW5uboSHh5uev3v3bvz9/XFycsLDw4PX\nX3/9ruuOjY01JSFnZ2cee+wx07lPnjzJnDlz+Pbbb/nss89wdHSkT58+DB06lDNnztC7d28cHR2Z\nOnUqALt27aJDhw64uLjg6+vLli1bTOc5deoUnTt3pnr16nTr1o3Lly/n+f+QmppKjx49OH/+PI6O\njlSvXp0LFy6QkZHB2LFjqVOnDnXq1GHcuHFkZmbmeYycnBzeeOMNatasSYMGDVizZk2u7fPnz8fH\nx4fq1avToEED5syZU+C5d+/eTfv27XFxccHT05NXXnmFrKysPM9doagKyGAwqJMnT971+IkTJ9Sm\nTZtUZmamunTpkurUqZMaO3asabu3t7cKCAhQCQkJKikpSTVr1kz997//VUoptXbtWuXh4aH+/PNP\nlZaWpgYPHpzrPGFhYapGjRpq3759Kj09XT366KOqfv36avHixSonJ0e99957qkuXLvnGOGzYMPX+\n++8rpZTavHmz8vLyMm2rX7++8vPzU/Hx8So9PT3Pa16yZIlKSkpSRqNRTZs2TXl4eKiMjAyllFIT\nJkxQdnZ2au3atSonJ0e9/fbbql27dkoppTIyMlS9evXU9OnTVXZ2tlqxYoWqXLmyKZY7zZ8/Xz3y\nyCN3PT5hwgRVuXJltWrVKqWUUjdv3lR9+/ZVL7zwgkpLS1MXL15Ubdu2VbNnz1ZKKTVx4kT1zDPP\nmJ5/6tQpZTAYlNFoVEop1blzZ9WwYUN1/PhxdfPmTRUYGKjeeustpZRShw8fVtWqVVPbtm1TGRkZ\n6rXXXlOVKlVSP/30kymWW8e+87g9e/ZUAwcOVMnJySorK0tt3brV9JpXqlRJTZgwQWVnZ6vo6Gjl\n4OCgkpOT83wdAgMD1bx585RSSg0cOFB9/PHHptdzx44dSimlrly5opydndWSJUuU0WhU3333nXJx\ncVFJSUl3HeMWg8GgevfurVJSUtSZM2dUzZo11bp165RSSq1cuVI1bNhQHT16VBmNRvXhhx+qDh06\n5Hput27d1NWrV1V6errpmiZPnqyys7PV3LlzlZubm3r66afVjRs31OHDh5W9vb06ffq0Ukqpdu3a\nqSVLliillEpNTVW7du3K89pPnz6d6zW9de5b7+fb38u3eHt7m/5/lFIqPj5eubm5qbVr1yqllNq4\ncaNyc3NTly9fNsXy+uuvq8zMTLV161bl6OiohgwZkmc8MTExuT4vSin1/vvvq/bt26tLly6pS5cu\nqQ4dOuT7nv7qq69U06ZNVXx8vEpKSlKBgYHKxsbGdH1r1qxRf/31l1JKqS1btigHBwe1b9++fM/9\n22+/qV9//VUZjUZ1+vRp1axZMzV9+vQ8z12RSDIqwI8//qj8/PxMf3t7e6tvvvnG9Pebb76pXnjh\nBaWUUsOHD1fvvPOOaduJEyfu+gA+//zzpu2zZs1SPj4+pr8PHTqknJ2d841x2LBh6r333lNK3Z2M\nvL291fz58wu9ntu5uLioQ4cOKaW0wjkoKMi07VYhpJT24fL09Mz13II+uPPnz1eVKlVSzs7OytnZ\nWbm4uKhdu3apCRMmqM6dO5v2u3DhgqpSpYq6efOm6bFvv/3WlJBvTxhK3Z00AgMD1UcffWTa/uWX\nX6rg4GCllFL//ve/1aBBg0zbUlNT1X333VdoMjp//ryysbHJM8Fs3rxZ2dvb5ypga9WqpX799dc8\nX4fbE8nQoUPV888/r+Lj43Pts2jRIhUQEJDrsfbt26sFCxaYjvH111/n2m4wGEzJTCmlQkND1aef\nfqqUUio4ODhX8jIajcrBwUGdOXPG9NzNmzffdU05OTlKKaWuXbumDAaD2r17t2mfhx56yPQFolOn\nTmrChAnq0qVLeV7zLXf+X9069+2fhVvv5VvuTEbh4eF3JZfu3burhQsXqri4OFWpUiWVlpZm2vb0\n00/ner/c7s7Pi1JKNWjQwJTolFJq/fr1ytvbO8/nd+nSxfQlSSmlNmzYcNf13a5v375qxowZ+Z77\nTv/3f/+n+vXrV+A+FYE0090mMTGRgQMH4uXlhZOTE0OGDMnV9APg4eFh+t3e3p7U1FQAEhIScjWd\neXl53XX8WrVqmX63s7PL9be9vT03btwoceyF3SSdOnUqPj4+ODs74+LiQkpKSq6mDXd3d9PvDg4O\npKenk5OTw/nz56lTp06uY9WvX7/A9v127dpx9epVrl69SlJSEgEBAUDu1yQuLo6srCxq166Ni4sL\nLi4uvPDCC1y6dKnI13zn/8Wt1+/8+fO5zuXg4ICbm1uhxzt79iyurq44OTnlud3NzQ0bm38+Mg4O\nDkX6P/vss89QStG2bVtatGjB/PnzTXHWq1cv177169fn/Pnzpr/zum90+3XfHkNcXJyp2dfFxcV0\nzefOnTPtf+f7xM3NzXQOe3t7IPd74fbXdd68eaZmuLZt297VXFWa4uLiWL58uelaXFxc2LFjBxcu\nXOD8+fO4uLiY4gXtdSuO8+fP53pOvXr1cr3ut7vzs33n/9natWtp164dbm5uuLi4EB0dfVe5cbvY\n2Fgef/xxateujZOTE++++26B+1cUkoxu884772Bra8sff/xBSkoKixcvLnL3zdq1a3P27FnT37f/\nXhIODg6kpaWZ/k5ISCjwhnZB27Zt28aUKVNYvnw5ycnJXL16FScnpyLdMK5du3auwgy0gqK4N9fv\n7IFXt25dqlSpwpUrV0yJKyUlhd9//x2AatWq5br+CxcuFPlcnp6euV7/tLS0In3Y69atS1JSUq77\nhKXB3d2dOXPmcO7cOWbPns1LL73EyZMnqVOnDnFxcbn2jYuLMyX/4r7G9erVY86cOabX8+rVq6Sm\nptKuXTvTPvfSKaJhw4Z8++23XLp0ifHjxxMSEsLNmzeLfZy8YrjzsXr16jFkyJBc13L9+nXefPNN\nateuzdWrV3O9Pwp6T+b1uKenZ66u5mfOnMHT0zPP59euXTvXvbfbf8/IyKB///68+eabXLx4katX\nr9KzZ0/TZyuvc7/44ov4+Phw4sQJUlJS+Oijj6SbOBU4GWVkZJCenm76MRqN3Lhxg6pVq1K9enXO\nnTvHlClTCj3OrTddaGgo8+fP5+jRo6SlpTF58uQ89ysqX19fvvnmG4xGI+vWrSu0d1pBrl+/TqVK\nlahRowaZmZlMmjSJa9euFem57du3p1KlSsycOZOsrCx++OEH9uzZU+wY7rz+2rVr061bN1577TWu\nX79OTk4OJ0+eNF2nr68vW7du5ezZs6SkpPDJJ58Uesxb+vfvT1RUFDt27CAzM5MPPvigSB/22rVr\n06NHD1566SWSk5PJysq6p9f9luXLlxMfHw9oN/UNBgO2trb06NGD2NhYvvvuO7Kzs1m2bBlHjx7l\n8ccfB7QkdvLkyQKPrbSmdgBeeOEFPv74Y/78808AUlJSWL58+T3Hf8uSJUtMNVcnJycMBkOummJR\nubu73zW04s5rfeaZZ4iMjGTDhg0YjUbS09OJiYnh3Llz1K9fH39/fyZMmEBWVhbbt28nKiqqwPNd\nuXIl13t+0KBBfPjhh1y+fJnLly8zadKkfLvih4aGMnPmTM6dO8fVq1dzderIzMwkMzOTGjVqYGNj\nw9q1a9mwYUOB575x4waOjo44ODhw9OhRvvrqq6K/eOVYhU1GzZs3x8HBwfSzcOFCJkyYwL59+3By\ncqJ3797079+/0NrIre3BwcGMGTOGLl260LhxY9q3bw9AlSpV7to3r79vPXbLjBkziIyMxMXFhW+/\n/fauXl3F+YYbHBxMcHAwjRs3xtvbG3t7+1xNDQXFct999/HDDz+wYMEC3NzciIiIoH///kV6TQp7\nfNGiRWRmZpp6fz311FOmGtBjjz3GgAEDaNWqFW3atKF3794Fvl63H7958+b85z//4emnn8bT0xNX\nV9dczSx5/V/csnjxYipXrkzTpk1xd3dn5syZee5XHHv37qVdu3Y4OjryxBNPMHPmTLy9vXFzcyMq\nKopp06ZRo0YNpk6dSlRUFK6uroDWA3LFihW4uroyduzYPI99+7X07duX8ePHM3DgQJycnGjZsiXr\n168vMP6CXtM7rV+/nhYtWuDo6Mi4ceNYunSp6f1dnOM+99xz/Pnnn7i4uPDkk08C8Pbbb/Phhx/i\n4uLC559/jpeXF6tWreLjjz+mVq1a1KtXj2nTppm+VHz77bf8+uuvuLq6MmnSJMLCwvKNu2nTpgwa\nNIgHHngAV1dXLly4wHvvvYe/vz+tWrWiVatW+Pv789577+X5/JEjR9K9e3dat26Nv79/rnLB0dGR\nmTNnEhoaiqurK9999x1PPPFEgeeeOnUq3377LdWrV+f5559n4MCBZu3Gby0Mqrhf2YthxowZfP31\n1yilGDlyJK+++ipJSUkMGDCAuLg4vL29iYiIwNnZ2Vwh6ObIkSO0bNmSzMzMEn17FEKI0mQ0GvH3\n98fLy4vIyMi7tsfExDBu3DiysrKoUaMGMTExFo3PbKXkH3/8wddff82ePXs4ePAgUVFRnDx5kvDw\ncIKCgoiNjaVr1665qrzW7scffyQjI4OrV68yfvx4+vTpI4lICFEmzJgxAx8fnzxrYcnJybz88stE\nRkbyxx9/sGLFCovHZ7aS8ujRowQEBGBnZ4etrS2dO3fm+++/Z/Xq1aYqdVhYGCtXrjRXCBY3Z84c\n3N3dadiwIZUrV5a2YCFEmRAfH090dDQjRozI817rt99+S//+/U29UGvUqGHpEM2XjFq0aMG2bdtI\nSkoiLS2N6Oho4uPjSUxMNHUddXd3JzEx0VwhWNzatWtJTk7mypUrfP/997m6yAohhF7GjRvHlClT\n8m2pOX78OElJSXTp0gV/f3+zTPJbGLNNYta0aVPGjx9Pt27dqFq1Kr6+vnfNRVbQhJtCCCHuXVRU\nFLVq1cLPzy/f+0BZWVns27ePn376ibS0NNq3b0+7du1o1KiRxeI064yazz77LM8++yygzbXl5eWF\nu7s7Fy5cwMPDg4SEhFwDP2/n6+vLwYMHzRmeEEKUOw0aNODEiROmv3fu3Mnq1auJjo4mPT2da9eu\nMXToUBYtWmTap27dutSoUQN7e3vs7e3p1KkTBw8etGgyMmtvuosXL1KrVi3OnDlD9+7d2bVrFx99\n9BFubm6MHz+e8PBwkpOT8+zEILP4ClE+de/+Hhs2fHjX482avc/QoZO5fh2uXfvnJ6+/09KgalWo\nXv2fH0fHkv1dpQqUpIEmv+vo3v191q2bnMczLHO8gsrOLVu2MHXq1Lt60x09epTRo0ezfv16MjIy\nCAgIYNmyZfj4+BTvIu6BWWtGISEhXLlyhcqVK/Pll1/i5OTEW2+9RWhoKPPmzTN17RZClE9JSRAb\nC8eO/fPv9u15FzvJybZcvaolCA+PgpNJ1aqgd0fVMWO6cfLku5w8+ZHpsQYN3uGVV4LLxPHyc+vW\nyOzZswEYNWoUTZs2JTg4mFatWmFjY8PIkSMtmojAzDWjeyE1IyGsQ3o6nDihJZs7E09mJjRpov00\nbqz9zJz5Hr/8Uno1Cj2tWbOVWbM2kp5ui52dkVdeCaJXr066Hs9ay05JRkKIQuXkwNmzdyeb2FhI\nSABv738Szu2Jx9397iawNWu28uqr6++qAcyYEXxPBbnQWGvZKclICGGSlPRPkrk94Zw4Aa6u/ySZ\n2xOPtzcUd9HY0q5RiH9Ya9kpyUiICub2ZrU7E09ezWpNmkCjRlCtmt6Ri6Kw1rJTkpEQ5dCtZrW8\najnFbVYT1sVay05JRkJYsdub1W5PPLc3q91ZyylJs5qwHtZadkoyEqKMy6tZ7da/WVl338Np3Fia\n1Soyay07JRkJYUZr1mxl5swNZGRUokqVbMaM6Zbnjfo7m9Vur+UkJMD99+fdeaBWLWlWE7lZa9kp\nlXUhzCSvLsyxse9y5AjUrNkpV+I5efLuZrXgYGlWExWH1IyEMJOgoPfYtOnuwZ3Vq79P796TpVlN\nmIW1lp3yfUuIUpSWBmvXwooVsHlz3h8vPz9bliyxcGBClHGyDKkQ9yg1FZYvh9BQqF0bvvoKAgPh\nkUey89zfzs5o2QCFsAJSMxKiBG7cgDVrtCS0cSMEBMBTT8F//gM1a2r7eHl1Iz7e/BNfClEeyD0j\nIYro+nWIitIS0E8/QYcOEBICffuCm1vez5Fpb4SlWWvZKclIiAKkpEBkpHYP6OefoWNHLQE98YTW\n+03o5NAhuHgR6tbVeoEIE2stO6WZTog7JCfD6tVaAoqJgc6dtSa4+fPBxUXv6Mqpdetgxw5tUNX5\n89q/CQkwYwYMGHD3/qtWwZYtWrVUklG5IDUjIYCrV7Xybfly2LYNunTRElDv3uDkpHd0ViwjA/bv\nh127tJ8BA6Bfv7v3++47bdBV7dq5f9zdZZBVMVlr2SnJSFRYV678k4B27ICuXbUE9Pjj2mqi4h78\n+COEh8Mff0DTploPj3btIChISzLCbKy17JRkJCqUy5e1cnLFCu2LelCQdg+oVy9tWWtRDCkpWkZ/\n4IG7tx05or3YDz0EDg6Wj60Cs9ayU5KRKPcuXvwnAe3eDd27azWgHj1k1oMiMxrh8GH49dd/mtzi\n4mDECJg+Xe/oxG2steyUZCTKpcRE+OEHLQH99ps2z9utBCRf1Evg4EFtVG+7dv80ubVsCZUr6x2Z\nuIO1lp2SjES5kZCgJaDly+HAAejZU0tAwcFgb693dGVYerr2gu3apTWvzZ6td0TiHlhr2SndVIRV\nO3funwT0++9a54Nx47SmODs7vaMrw5SCTz7RenD88YfWPbpdO20kb04O2MhMYcKyJBkJqxMfD99/\nryWgP//Uul+/+abWGaFKFb2jsxIGA9x3n9bjLSBA2i6F7qSZTliFM2e0+z8rVmjr//TpozXBde0q\nCahAFy5AdjZ4eekdibAQay07pS4uyqzTp2HqVO2L+4MParWgDz7Q7g3Nn6/dE5JElIcrV2DuXC1T\nN2umTaQnRBknNSNRpvz1l1b7Wb5cS0b9+mnjgLp0kY5bhTp6FF5/HbZv126aDRyodR+U3hsVirWW\nnZKMhO5OnPgnAcXHawnoqae0OeFkJphiuHgRNm3SbqLJCN4Ky1rLTklGwmzWrNnKzJkbyMioRJUq\n2YwZ0820fEJsrJZ8VqzQmt2efFJLQB07SgIqUEYGbNig1XjkhRJ5sNay06zv5k8++YQlS5ZgY2ND\ny5YtmT9/PqmpqQwYMIC4uDi8vb2JiIjA2dnZnGEIHaxZs5VXX12fa2G5I0fepVMn+P33Tly6BP37\na4P3H3kEbG11DLasy8rS1q9YulTrit2qlTbNjqen3pEJK2I0GvH398fLy4vIyMg899mzZw/t27cn\nIiKCJ5980qLxma0Dw+nTp5k7dy779u3j999/x2g0snTpUsLDwwkKCiI2NpauXbsSHh5urhCEjmbO\n3JArEQGcPfsR27Zt5IsvtOa4WbO0pjhJRAWYNUtLOhMmQOvW2mCqmBhJRKLYZsyYgY+PDwaDIc/t\nRqOR8ePHExwcrEvNymzJqHr16lSuXJm0tDSys7NJS0vD09OT1atXExYWBkBYWBgrV640VwhCRxkZ\neVe677/flo4dZUxlkXXs+M98cGPHQp06ekckrFB8fDzR0dGMGDEi30Qza9YsQkJCqFmzpoWj05it\nSHB1deX111+nXr16eHp64uzsTFBQEImJibi7uwPg7u5OYmKiuUIQOjIas/N83M7OaOFIyjiltKl4\nvv8+7+2+vnnPii1EMYwbN44pU6Zgk8+3wHPnzrFq1SpefPFFgHxrT+ZktmR08uRJpk+fzunTpzl/\n/jw3btxgyZIlufYxGAy6XLQwr99/hz//7EbNmu/merxBg3d45ZUgnaIqY44c0ZremjbVug/Gxuod\nkSinoqKiqFWrFn5+fvnWisaOHUt4eLip84MezXRm68Cwd+9eOnTogJubGwBPPvkkv/zyCx4eHly4\ncAEPDw8SEhKoVatWvseYOHGi6ffAwEACAwPNFa4oJbt2wRNPwJdfdqJaNZg1633S022xszPyyivB\npt50FVZ2tjYHXEKCturp4sXQpo02PY8QJTB9+vQCb3fs3LmT1atXEx0dTXp6OteuXWPo0KEsWrTI\ntM9vv/3GwIEDAbh8+TJr166lcuXK9OnTx+zx32K2rt0HDx5k8ODB7NmzBzs7O4YNG0bbtm2Ji4vD\nzc2N8ePHEx4eTnJycp6dGKy1e2JF9tNPMGgQLFigzY4g8vH779C8udw4E2ZRUNm5ZcsWpk6dmm9v\nOoDhw4fTu3dvi/emM1vNqHXr1gwdOhR/f39sbGx48MEHef7557l+/TqhoaHMmzfP1LVbWL+VK+H5\n57VxQ50qeOWnUC1b6h2BqMBu3RqZ/fdSIaNGjdIzHBMZ9Cru2eLF2qzZUVHa8BeBtirqN9/ARx9J\nE5ywKGstO6WdQNyTWbPg3Xe1MZmSiICbN7UXJDBQZsoWohhkPhFRIkppX/oXLoStW8HbW++IyoAN\nG+Cll7SsfPCgDEwVohgkGYliUwr+9S+t7N22DTw89I6oDPj+e3jjDfjPf6T3hhAlIPeMRLEYjTBq\nlHZLZM0acHXVO6IyIiNDe3FkxVShM2stO6VmJIosMxOeeQaSkmDjRqhWTe+IyhBZ5U+IeyIdGESR\npKVpg1mzsrRecxU2EaWlwR9/6B2FEOWOJCNRqJQUbeHQWrW0NYjs7PSOSCfr1kGLFvC//+kdiRDl\njjTTiQJdvAjBwdqaQ9OnV9BJAy5cgHHjYPdu+OorLTMLIUpVRSxaRBGdPavNpvD44zBjRgVNRMuW\naYvZ3X+/No2PJCIhzEJ604k8xcZCt24wZgy89pre0ejol1/A0VFrnhPCClhr2SnJSNzl4EHo0QMm\nT4bnntM7GiFEcVhr2Sn3jEQuO3dqy+t88QU89ZTe0VhYTk4FbYsUQn/yyRMmGzdC377aFD8VKhGd\nPw+hofDpp3pHIkSFJclIAPDDD9qA1h9+0HrPVQhGozZ9T+vW0LgxjB2rd0RCVFjSTCdYsADeeUcb\nRuPnp3c0FnLggDav0X33wZYt4OOjd0RCVGjSgaGCmzEDPv9cm/S0SRO9o7GgF17QlvsePlzuE4ly\nxVrLTklGFZRSMGmStv7bxo1Qv77eEQkhSoO1lp3STFcB5eTA66/D5s3aEhDu7npHJISo6KR9ooLJ\nztbGDv36q5aMynUiMhq1pWiPHNE7EiFEISQZVSAZGTBgAJw7pzXNubjoHZEZ7d8P7drBihVQSRoA\nhCjrJBlVEKmp0Lu39ntkJFStqm88ZnPjhjZ/UXCwtgR4TAw0aqR3VEKIQshXxgogORl69dKG0syd\nW44rCkYjtG2r9ZL74w+oWVPviIQQRSS96cq5xERtounAQK0Ld7nvxXz+PHh66h2FELqx1rKzvBdN\nFVpcHHTsqM0193//VwESEUgiEsJKVYTiqUI6dkxbi+jll2HCBDAY9I6olB09qg2WEkKUC5KMyqH9\n+6FLF/j3v+HVV/WOppRdv66tutq5M5w+rXc0QohSIsmonNm+XbtH9MUXMGyY3tGUslWroHlzrUfG\n4cPa6qtCiHKhvParqpDWrYMhQ7Qpfrp10zuaUpSUpI3UPXIEFi3SemMIIcoVSUblxPLlMHq0Vnno\n0EHvaEpZtWrw6KOwdClUqaJ3NEIIMzBrM92xY8fw8/Mz/Tg5OTFz5kySkpIICgqicePGdOvWjeTk\nZHOGUe5k8h4IAAAgAElEQVTNm6fdG9qwoRwmItCWeXjlFUlEQtwDo9GIn58fvW+Nfr/NN998Q+vW\nrWnVqhUPP/wwhw4dsnh8FhtnlJOTQ506ddi9ezezZs2iRo0avPnmm3z66adcvXqV8PDw3IFZaV95\nS/v8c5g5U0tEjRvrHU0pUKocdv0TwnLyKzs///xzfvvtN65fv87q1atzbfvll1/w8fHBycmJdevW\nMXHiRHbt2mWpkAELdmDYtGkTDRs2pG7duqxevZqwsDAAwsLCWLlypaXCKDeUgg8+gNmzYevWcpCI\nlNKWmW3XTptETwhRauLj44mOjmbEiBF5Jqr27dvj5OQEQEBAAPHx8ZYO0XL3jJYuXcqgQYMASExM\nxP3v6aLd3d1JTEy0VBjlQk6OtkL2tm3aT61aekd0j86c0W54HT+uZVdpjhOiVI0bN44pU6Zw7dq1\nQvedN28ePXv2tEBUuVkkGWVmZhIZGcmnn3561zaDwYAhn2aZiRMnmn4PDAwkUHpRmZaAOHlSWwLC\n2VnviO5BdrbWxvjxx1p2Xb5cEpEQxTR9+vQCW5eioqKoVasWfn5+xMTEFHiszZs387///Y8dO3aU\ncpRFoCxg5cqVqnv37qa/mzRpohISEpRSSp0/f141adLkrudYKDSrcvOmUn37KtW9u1KpqXpHUwp2\n7FAqKEip48f1jkSIcuPOsvPtt99WXl5eytvbW3l4eCgHBwc1ZMiQu5538OBB1aBBA3Vcp8+jRTow\nDBw4kB49epjuE7355pu4ubkxfvx4wsPDSU5Olg4MhbhxA/r21dYg+uYbrYNZuSAdFoQoVQWVnVu2\nbGHq1KlERkbmevzMmTM8+uijLFmyhHbt2lkizLuYPRmlpqZSv359Tp06haOjIwBJSUmEhoZy5swZ\nvL29iYiIwPmO9iZJRv9IStKWgGjeXLulYmurd0RCiLKqsGQ0bdo0Vq9ezezZswEYNWoUI0aM4Mcf\nf6RevXoAVK5cmd27d1ssZpAlJMq8Cxe02RSCgmDqVCuuRNy8Cfb2ekchRLlnrWWnzE1Xhp0+rS0B\nERpq5YkoMRFat9YWvBNCiDxIMiqjjhzRloAYMwbee8+KE1FKirYE+ODB0KKF3tEIIcooaaYrg377\nDR5/HD79FIYO1Tuae5CeDj16gI+PNo241WZUIayHtZadhSajadOm5bo4g8GAk5MTDz30EL6+vuYL\nzEpf0Hu1dSuEhMCcOVrvOatlNGrti7a28N130utCCAux1rKz0EGvv/32G3v37qV3794opVizZg0t\nW7bkv//9LyEhIYwfP94ScVYI0dEQFqaV3Y89pnc09+jMGW0A6/z5koiEKIdu3rzJd999x++//052\ndjZpaWnY2Njg6OhIQEAATz31FDY2Rb8TVGjNqGPHjqxdu5Zq1aoBcOPGDXr27Mm6det46KGHOHLk\nyL1dUX6BWWl2L6lly7T7QytXQvv2ekcjhLBWlig7N23axJ9//kmvXr1o0KBBrm1KKQ4dOsRPP/1E\n165dad26dZGOWWjN6NKlS9x32wjLypUrk5iYiIODA3Z2dsW8BJGXuXNh4kTYuBFatdI7GiGEyF96\nejre3t48lk/zjcFgoHXr1rRu3ZrDhw8X+biFJqPBgwcTEBBA3759UUoRGRnJ008/TWpqKj4+PkW/\nApGnKVPgyy9hyxZo2FDvaIQQomB2dnY0LGJh1bx58yIft0i96fbs2cOOHTswGAw8/PDD+Pv7F/kE\nJVXem+mU0rps//CDViPy8tI7ont0/jx4euodhRAVnqXKzsLuGYWEhGBbjPvF+Sajhx56iEceeYQe\nPXoQGBho8Sa58paM1qzZysyZG8jIqESVKtlUqtSNCxc6sW4d1Kypd3T3aM8ebb6iffvKQVYVwrpZ\n6z2jfJNRVlYW27dvZ926dcTExODq6kpwcDA9evSgsQVWcitPyWjNmq28+up6Tp78yPSYnd27LFzY\nndDQTjpGVgqOHoUuXbS+6HksZyyEsCxzl53p6enEx8cXqanu8OHDRW6qK/Kg13PnzrFu3TrWr1/P\niRMnaNeuHV9++WWRTlIS5SkZde/+Hhs2fJjH4++zbt1kHSIqJfHx8MgjWu+LYcP0jkYIgeXLzlGj\nRlG1alXat2/Pww8/jGcJm+uL3Am8Tp06PPfcc0RERLB3714GDx5cohNWRBkZefcTSU+34vE3SUna\nND8vvyyJSIgKrEOHDrzxxhtUqlSJzz77jPbt2/P8889z/vz5Yh2n0N50vXv3znMGBn9/fx566CHp\n3l0EVapk5/m4nZ3RwpGUoitXtPnm/vUvvSMRQujo7NmzVK9enX79+tGvXz++//57HnvsMebMmcO/\nilE+FJqM7r//fi5fvsygQYNQSrFs2TKqVatGbGwsI0eOZPHixfd0IRXBmDHdOHbsXeLi/rln1KDB\nO7zySrCOUd2jRo3g7bf1jkIIobNnn32WwYMHo5SiSZMm2Nra0r9/fxo1alSs4xR6z8jf35+9e/fm\n+Vjz5s2LNaipWIGVo3tGAKNGbSUqaiONGtliZ2fklVeC6NXLyjsvCCHKHL3KztOnT5OcnEzLli25\nfPkyb731FvPnzy/y8wutGaWmphIXF0f9+vUBiIuLIzU1FSDXzAyiYIcPd2LOnE706qV3JEIIUXLH\njh3DxsbmrpqPt7e36Xd3d/diJSIoQjKaNm0aHTt25IEHHgDgr7/+4ssvvyQ1NZWwsLBinayiio/X\n1icKCtI7knuwZw+0aaN3FEIInTVo0ICYmBg2bNiAjY0Nbdq0KZWJEIrUtTs9PZ1jx44B0KRJE4t0\nWihPzXTTp8OhQ/C//+kdSQnNnw///jccPAhOTnpHI4QogKXLzt27d/Pbb7+Rk5NDkyZNCAwMpFKl\nQus5dyk0GWVnZ7NmzRpOnz5NdrbWK8xgMPDaa6+VLPKiBlaOklH79jBhgtYT2upERsLIkRATA02b\n6h2NEKIQepadx44dIyYmhszMTOrUqUP37t2pWrVqkZ5bpK7d9vb2tGzZslhrUwhNXBwcPw5du+od\nSQls3w7PPQdRUZKIhBCFatKkCU2aNAHg/PnzREVFMWDAgCI9t9CaUatWrTh06NC9R1lM5aVmNG2a\nNmPO3Ll6R1JMv/+uZdAlS6BbN72jEUIUUbmdgaFbt26sX7++RAcX2qJ5oaF6R1ECjo5aBpVEJIQo\ngMVmYOjQoQP9+vUjJyeHypUrA1rmvXbtWskir0BOnYLTp7V5RK2Ot7f2I4QQBbDYDAyvvfYau3bt\nokWLFnLPqJiWL4cnn4QSdCwRQgirUFozMBRaTNarV4/mzZtLIiqBZcu0lVyFEKK88vT0ZNWqVblm\nYEhMTGTVqlX07du3yMcptANDWFgYp06dokePHqYZF6Rrd+FOnNBWVzh3Doqx2KE+jEb4/nt46ikw\nGPSORghxD/QsOw8dOkTLli0xlKAcKdJEqffffz+ZmZlkZmaWKMCKaPly6N/fChKRUjBmjDZFRN++\nIFM8CSGKYdGiRezbtw9fX186duzId999x9NPP13s4xSajCZOnFiS+EySk5MZMWIEhw8fxmAwMH/+\nfBo1asSAAQOIi4vD29ubiIgInJ2d7+k8Zc2yZTBzpt5RFMGkSfDLL9qgVklEQpRbRqMRf39/vLy8\niIyMvGv7mDFjWLt2LQ4ODixYsAA/P78iH/uDDz5g165dTJkyhdq1a5covhLdCJo9e3aR93311Vfp\n2bMnR44c4dChQzRt2pTw8HCCgoKIjY2la9euhIeHlySMMuvYMbh4ER5+WO9ICvHVV9o4orVroXp1\nvaMRQpjRjBkz8PHxybMJLTo6mhMnTnD8+HHmzJnDiy++WOTj1qhRg/vuu4+ePXvy3//+lwkTJpQo\nPrP2SkhJSWHbtm08++yzAFSqVAknJydWr15tmmQ1LCyMlStXmjMMi4uIgJCQMt5Et2oVfPghrF8P\n7u56RyOEMKP4+Hiio6MZMWJEnveTbi+TAwICSE5OJjExsUjHXrduHY8//jj9+/fn008/Zffu3SWK\nsUTJaNSoUUXa79SpU9SsWZPhw4fz4IMPMnLkSFJTU0lMTMT97wLQ3d29yBdtLSIioIgzYOinTRtY\ntw7+no1dCFF+jRs3jilTpuTbK/rcuXPUrVvX9LeXlxfx8fFFOnZgYCAxMTEsXryY9u3b37X+XVEV\naQRMVFQUhw8fJj093VTF++CDDwp9XnZ2Nvv27eOLL76gTZs2jB079q4mOYPBkG/Pi9vvVwUGBhIY\nGFiUcHX1559w9ao2OWqZ5ump/QghrNr06dMLbF2KioqiVq1a+Pn5ERMTk+9+d9aYitojzmAwsGfP\nHtq0aUOnTp3o1Klki4YWmoxGjRrFzZs3+fnnnxk5ciQREREEBAQU6eBeXl54eXnR5u91cEJCQvjk\nk0/w8PDgwoULeHh4kJCQQK1atfJ8/r12ntBDRITWQ1qGZQkhLGHs2LGMHTvW9PedSWTnzp2sXr2a\n6Oho0tPTuXbtGkOHDmXRokWmferUqcPZs2dNf8fHx1OnTp0inX/Lli0ATJo0CTs7Ozp37szo0aOL\nfR2FFpk7d+5k0aJFuLq6MmHCBHbt2mVa26gwHh4e1K1bl9jYWAA2bdpE8+bN6d27NwsXLgRg4cKF\nxRoYVZYpZSVNdEKICuPjjz/m7NmznDp1iqVLl/Loo4/mSkQAffr0MT22a9cunJ2dTbdSCtO/f39C\nQkKIjIxk0aJFtGvXrkRxFlozsre3B8DBwYFz587h5ubGhQsXinyCWbNmMXjwYDIzM2nQoAHz58/H\naDQSGhrKvHnzTF27y4PDhyE1FYpYcbSc5GSYMwf+9S8Z1CpEBXer5nSrV/SoUaPo2bMn0dHRNGzY\nkKpVqxa4ZHhGRgbXr1+nRo0aAHTs2NG0zd7ePteqr2fOnKFevXpFi6uwGRgmT57M6NGj+fnnn3n5\n5ZcBGDlyJJMnTy7SCUrKGmdgeP99uHkTpk7VO5Lb3Lypzbzt7w+ffy7JSIhyzhJlZ1RUFNeuXaNf\nv36mCsvtrl69yvLly2nWrFmuZFWQApPR/v37OXHiBC1atKBZs2akp6eTnp5ukQGq1paMlNLWn1uy\nROuoViZkZ2sztVavDosWyY0sISoAS5WdCQkJzJ8/n4sXL5Kenk5WVha2trY4ODjg5eXFyJEjcXJy\nKvLx8k1GkyZNYsmSJTz00EPs2rWLt99+m+eff77ULqTQwKwsGR08qM2m89dfZaTyoZS2SmtCAqxe\nDX8v/yGEKN+srey8Jd9k5OPjw969e3FwcODKlSt07969xP3HSxSYlb2g77yjzTf66ad6R/K3adO0\nCfJ++gmKuAa9EML6mbvsPHbsGDY2NsVeIqIw+SYjPz8/9u/fb/r7wQcfZN++faV68gIDs6JkpBQ0\naqT1pHvwQb2j+dvly1oVzc1N70iEEBZk7rIzOzubmJgYU1Jq06ZNrk4LJZVvMnJycso1eGnbtm2m\nG1EGg4HVq1ff88kLDMyKktG+fdrS4sePl5EmOiFEhWXpsnP37t389ttv5OTk0KRJEwIDA6lUghVF\n801GBY3UBcw+G4I1JaPx47V56D7+WO9IhBAVnZ5l59GjR9myZQuZmZnUqVOH7t27U7WItwkK7dqt\nF2tJRkpp07utXAmtW+sdjRCiorN02fn111/TuHFj2rZti52dnenxhIQEtm7dyoAizgKQb13q1mp9\neV2UwWDg0KFDJQi7/NmzR1sGqFUrHYM4fBgWLJA1zoUQFpeTk8P27duZOXMmaWlpNG7cmPbt2xMf\nH8/rr79e5OPkm4xsbW0xGAwMGjSI3r174+DgYBU1FUu7Nf2PbveK4uIgOBjK2ZpQQgjrUKVKFd55\n5x0AMjMzmTlzJjdv3mTFihWlk4wOHDjAkSNH+O677xg8eDA+Pj4MGjSI7t27l+jmVHl0ay666Gid\nArh8Gbp3hzfegMGDdQpCCFGRVa5cmWHDhtGnTx+aNGmCjY0Nw4YNw9fXt1jHKfI9o6VLlzJ69GjG\njx/Pv/71rxIFXRzWcM/ol1+0caWHD+tQM7pxAx59FB57THpOCCFM9Cg7jx07xpIlS0hOTmbIkCG0\nbdu22McoMBnFx8ezbNkyfvjhB1xcXBgwYAD9+vWjWrVq9xR4kQKzgmQ0bhw4O0MJV9m9N2PHaglp\n7lzpTy6EMDF32XnnRKkFKZWJUjt16sSNGzcIDQ3lySefxM3NLdc6Ga6urkUMvWTKejLKyYF69WDD\nBvDx0SGA69fB3h6kyVQIcZtyN1Gqt7e3tkMe37oNBgN//fVXMUIvvrKejLZvhxdfhN9/1zsSIYT4\nR7mbKFVvZT0ZjRkDtWrBe+/pHYkQQvyjrJed+ZFkVAJGI9StC5s3Q5MmekcjhBD/sHTZOWrUKKpW\nrUqHDh3o0KEDnp6eJTqOLHBTAtu3a7UiiyWi77+HV16x0MmEEKLoOnTowBtvvIGtrS2fffYZ7du3\n5/nnn+f8+fPFOo7c/S6BWwNdLWLzZu3m1Pr1FjqhEEIU3dmzZ6levTr9+vWjX79+fP/99zz22GPM\nmTOnWMOAJBkVk9GoVVS2b7fAyfbv17LesmXg52eBEwohRPE8++yzDB48GKUUTZo0wdbWlv79+xd7\nvaNiJ6OmTZsCMHr0aEaPHl3cp1u9LVugTh1o2NDMJzpxAnr1gv/+F7p0MfPJhBCiZDw9PVm1ahVx\ncXFcvXqVli1bkpiYyKpVq+jbt2+Rj1OiDgyXL1/m119/pVevXsV9apGV1Q4ML7ygzdL95ptmPtEz\nz0CnTmDBpd6FENbP0mXnkSNH+PLLL3FxcWHIkCElXgG20GQ0c+ZMhgwZgouLS4lOUFJlMRllZ4On\nJ/z6K9x/vwVOJgNahRDFZOmyc+rUqfTs2ZO4uDhWrFhBSEgIPXr0KPZxCu1Nl5iYSJs2bQgNDWXd\nunVlLkFY0ubN4O1tgUQEkoiEEFahZs2a+Pj40KNHD+bNm8fFixdLdJxCk9FHH31EbGwszz77LAsW\nLKBRo0a88847nDx5skQntGYW7UUnhBBWwM3NjYEDBxIZGcnBgwfNl4wAbGxs8PDwwN3dHVtbW65e\nvUpISIhFZu8uK7Ky4McfISTEDAdXSmuWE0IIK/D++++zZs0aLl++zOOPP86kSZPYtWsXw4cP5+GH\nHy7RMQttC5oxYwaLFi3Czc2NESNGMHXqVCpXrkxOTg6NGjViSgVZXfSnn6BRI6hf3wwHf+89yMyU\nlVqFEFbh5s2bnDlzhhUrVnDx4kVcXFxo27YtX3zxBdu3b6dDhw7FPmahySgpKYkffviB+neUwjY2\nNkRGRhb7hNbKbE10M2ZoA5e2bTPDwYUQovRNnToVgBdffBGAlJQU9uzZw7Zt22jQoEGJjilz0xVB\nZibUrg0HD4KXVyke+Jtv4O23tURkliqXEKKiKUtlZ3GYfW46b29vWrVqhZ+fn2n1v6SkJIKCgmjc\nuDHdunUjOTnZ3GHck40btTWLSjURrVsHr70Ga9dKIhJCmE16ejoBAQH4+vri4+PD22+/fdc+ly9f\nJjg4GF9fX1q0aMGCBQssHqfZk5HBYCAmJob9+/eze/duAMLDwwkKCiI2NpauXbsSHh5u7jDuSUQE\nhIaW8kGXLNF6RDRvXsoHFkKIf9jZ2bF582YOHDjAoUOH2Lx5M9vvmM/siy++wM/PjwMHDhATE8Pr\nr79OtoU7VVlk1u47q4yrV68mLCwMgLCwMFauXGmJMEokPR0iI6F//1I+8JIlUIKbfEIIUVwODg4A\nZGZmYjQa71qpu3bt2ly7dg2Aa9eu4ebmRiULj3W0SM3osccew9/fn7lz5wLaQFp3d3cA3N3dSUxM\nNHcYJbZhA7Rqpc28IIQQ1ignJwdfX1/c3d3p0qULPj4+ubaPHDmSw4cP4+npSevWrZkxY4bFYzR7\n6tuxYwe1a9fm0qVLBAUFmSZavcVgMOS5tDnAxIkTTb8HBgYSGBhoxkjzZpYmOiGEKCXTp08vtHXJ\nxsaGAwcOkJKSQvfu3YmJiclVnn788cf4+voSExPDyZMnCQoK4uDBgzg6Opo5+n9YtDfdv//9b6pV\nq8bcuXOJiYnBw8ODhIQEunTpwtGjR3MHVgZ6hNy8qdWIjh6FvytyJZOaCra2YGdXarEJIUReCis7\nJ0+ejL29PW+88YbpsZ49e/Luu++aBqx27dqVTz/9FH9/f7PHe4tZm+nS0tK4fv06AKmpqWzYsIGW\nLVvSp08fFi5cCMDChQuLNc24Ja1bBw8+eI+JKCtLm7Zh1qxSi0sIIYrq8uXLph7LN2/eZOPGjfjd\nsT5a06ZN2bRpE6DdRjl27BgPPPCAReM0azNdYmIi/fr1AyA7O5vBgwfTrVs3/P39CQ0NZd68eXh7\nexMREWHOMEps2bJ7bKLLyYHhw7VJT8eNK7W4hBCiqBISEggLCyMnJ4ecnByGDBlC165dmT17NgCj\nRo3inXfeYfjw4bRu3ZqcnBw+++yzuzo5mJsMes1HWpo20PXECahZswQHUEobR7R3r7Zk+N+9WYQQ\nwpz0LjtLStYpyEd0NAQElDARAXz6KWzaBFu3SiISQohCWGSckTW6pya6nBw4d06rEVl4UUIhhLBG\n0kyXhxs3oE4d+OsvcHPTJQQhhCgRa22mk5pRHtas0SZHkEQkhBCWIckoD/fci04IIUSxSDPdHa5f\n12bnPn26GLd7zpwBV1eoVs2coQkhRKGkma6ciIyEjh2LkYgSE+HRR7Xud0IIIUpEktEditVEd+0a\n9OgBQ4ZIu54QQtwDaaa7TUoK1K0LZ8+Ck1MhO6enQ8+e0KwZfPEF5DPZqxBCWJI005UDq1dDly5F\nSERGIwweDDVqwMyZkoiEEOIeSTK6TZGb6HJyoH17WLxYm41bCCHEPZFmur9dvQre3hAfDxZcwkMI\nIUqVNNNZuZUroWtXSURCCKEHSUZ/kxVdhRBCP9JMB1y5Ag88oM1tmue41Z07tV5zMumpEKKMk2Y6\nK/bjj9CtWz6JaM8e6NsXjh2zeFxCCFFRSDKigCa6Y8egTx+YNw/atbN4XEIIUVFU+Ga6S5egYUNI\nSLhjDbxz5+Dhh2HiRBg2zOxxCCFEaZBmOiv1ww/ajD65ElFKCnTvDi+9JIlICCEsoMIvOx4RAS+/\nfMeD1arBpEnQr58uMQkhREVToZvpEhOhSROtic7e3qynEkIIi5BmOiv0/ffQq5ckIiGE0FuFTkYy\n0FUIIcqGCpuMEhLg4EGtnwKLFmltdkIIIXRRYZPRihXQuzfYLV0AH3wAWVl6hySEEBVWhU1GEREw\n2jsS3noL1q0DLy+9QxJCiAqrQnbtjo+Hage30+bYcxAVBU2b6h2SEEJUaBUyGa2fe4alWf0xrFgC\nbdvqHY4QQlR4Zm+mMxqN+Pn50bt3bwCSkpIICgqicePGdOvWjeTkZHOHcJd5G+ry+5T12uyoQghR\njqWnpxMQEICvry8+Pj68/fbbee4XExODn58fLVq0IDAw0LJBYoFkNGPGDHx8fDAYDACEh4cTFBRE\nbGwsXbt2JTw83Nwh5HLmDMQeNxAwytei5xVCCD3Y2dmxefNmDhw4wKFDh9i8eTPbt2/PtU9ycjIv\nv/wykZGR/PHHH6xYscLicZo1GcXHxxMdHc2IESNMI4JXr15NWFgYAGFhYaxcudKcIdxl+XJtRYjK\nlS16WiGE0I3D35NvZmZmYjQacXV1zbX922+/pX///nj93ZGrRo0aFo/RrMlo3LhxTJkyBRubf06T\nmJiIu7s7AO7u7iRaeHxPRAQMGGDRUwohhK5ycnLw9fXF3d2dLl264OPjk2v78ePHSUpKokuXLvj7\n+7N48WKLx2i2ZBQVFUWtWrXw8/PLd54kg8Fgar4zG6MR3nwTEhI4dQr++gu6dDHvKYUQoiyxsbHh\nwIEDxMfHs3XrVmJiYnJtz8rKYt++fURHR7N+/XomT57M8ePHLRqj2XrT7dy5k9WrVxMdHU16ejrX\nrl1jyJAhuLu7c+HCBTw8PEhISKBWrVr5HmPixImm3wMDA4t/U00pGDMG/vwTXFxYPhOefBIqVcg+\nhEKI8mj69OlFvt3h5OREr1692Lt3b67ytG7dutSoUQN7e3vs7e3p1KkTBw8epFGjRmaKOg/KAmJi\nYtTjjz+ulFLqX//6lwoPD1dKKfXJJ5+o8ePH5/mcUglt4kSl/PyUSklRSin10ENK/fTTvR9WCCHK\nqjvLzkuXLqmrV68qpZRKS0tTHTt2VJs2bcq1z5EjR1TXrl1Vdna2Sk1NVS1atFCHDx+2WMxKKWWx\nOsKt5ri33nqL0NBQ5s2bh7e3NxEREeY54VdfweLFsGMHVK/OiRNw9ix06mSe0wkhRFmUkJBAWFgY\nOTk55OTkMGTIELp27crs2bMBGDVqFE2bNiU4OJhWrVphY2PDyJEj77qvZG7lcz2jAwe0tSG2bYMH\nHgDgk0+0ZPTll6UYpBBClDHWup5R+UxGSsHFi/B3rz0APz+YPh06dy6lAIUQogySZFTKSvMFjY3V\nklB8PNjalsohhRCiTLLWZFQhZu2OiICQEElEQghRVlWIZLRsmQx0FUKIssz6k1FyMvTpA1eu5Ln5\nzz8hKQk6dLBwXEIIIYrMupPRzZvacq0PPAB3zLV0y/Ll8NRTYGPdVyqEEOWa9XZgyM7WplNwdNTG\nE+WRbZSC5s1h3jxo396MwQohRBkhHRgsSSl4/nnIyoL58/Ot9hw+DDduQECAheMTQghRLNY5S9um\nTXDkiPbvffflu1tEhDTRCSGENbDeZrqMDKhSJd/NSkHTploLnqwsLoSoKKSZztIKSEQAhw5p+apN\nGwvFI4QQosSsNxkVIiICQkPB3MslCSGEuHfWkYxycoq1u1Iy0FUIIaxJ2U9Ghw+Dvz+kpxf5Kfv3\nawnpwQfNGJcQQohSU7aT0Zkz0KMHvP462NkV+WkREVqtSJrohBDCOpTZ3nQ1DAYuN2kCL7wAY8cW\n+Zu94R0AAAtGSURBVHlKaRMy/Pgj+PqaMUAhhCiDpDddKVsD2gwLxUhEAHv3QuXK0Lq1WcISQghh\nBmU2GR0C+OijYj/vVscFaaITQgjrUWab6UpS1VQK6teHNWugZUszBSaEEGWYNNOVAb/+ClWrQosW\nekcihBCiOMpVMpImOiGEsE7WOVHqHdas2crMmRuIiamEv382bdp0o1evTnqHJYQQooisPhmtWbOV\nV19dz8mTWmeHnTvh1VffBZCEJIQQVsLqm+lmztxgSkS3nDz5EbNmbdQpIiGEEMVl9ckoIyPvyl16\nuq2FIxFCCFFSVp+MqlTJzvNxOzujhSMRQghRUlafjMaM6UaDBu/meqxBg3d45ZUgnSISQghRXOVi\n0OuaNVuZNWsj6em22NkZeeWVIOm8IISokKx10KvZklF6ejqdO3cmIyODzMxMnnjiCT755BOSkpIY\nMGAAcXFxeHt7ExERgbOz892BWekLKoQQerqz7MyvLM7Lnj17aN++PRERETz55JOWChkwYzOdnZ0d\nmzdv5sCBAxw6dIjNmzezfft2wsPDCQoKIjY2lq5duxIeHm6uEHQVExOjdwglZs2xg8SvN4m/bMmv\nLL6T0Whk/PjxBAcH61IRMOs9IwcHBwAyMzMxGo24uLiwevVqwsLCAAgLC2PlypXmDEE31vyGtubY\nQeLXm8Rf9txZFru6ut61z6xZswgJCaFmzZqWDg8wczLKycnB19cXd3d3unTpQvPmzUlMTMTd3R0A\nd3d3EhMTzRmCEEJUeHeWxT4+Prm2nzt3jlWrVvHiiy8CWlOfpZk1GdnY2HDgwAHi4+PZunUrmzdv\nzrXdYDDoctFCCFGR3FkW31n7Gzt2LOHh4ab7TXo001msN93kyZOxt7fn66+/JiYmBg8PDxISEujS\npQtHjx69a/+GDRty8uRJS4QmhBDlhqenJ+fOnct3+62y+I033jA99sADD5gS0OXLl3FwcGDu3Ln0\n6dPH7PHeYra56S5fvkylSpVwdnbm5s2bbNy4kQkTJtCnTx8WLlzI+PHjWbhwIX379s3z+SdOnDBX\naEIIUWHkVxbf7q+//jL9Pnz4cHr37m3RRARmTEYJCQmEhYWRk5NDTk4OQ4YMoWvXrvj5+REaGsq8\nefNMXbuFEEKYR35l8ezZswEYNWqUzhFqyuygVyGEEBVHmZsOaN26dTRt2pRGjRrx6aef6h1OsTz7\n7LO4u7vT0krXPD979qyp12OLFi2YOXOm3iEVS3p6OgEBAfj6+uLj48Pbb7+td0jFZjQa8fPzo3fv\n3nqHUiLe3t60atUKPz8/2rZtq3c4xZKcnExISAjNmjXDx8eHXbt26R1SkR07dgw/Pz/Tj5OTk9V9\nflFlSHZ2tmrQoIE6deqUyszMVK1bt1Z//vmn3mEV2datW9W+fftUixYt9A6lRBISEtT+/fuVUkpd\nv35dNW7c2Kpef6WUSk1NVUoplZWVpQICAtS2bdt0jqh4pk2bpp5++mnVu3dvvUMpEW9vb3XlyhW9\nwyiRoUOHqnnz5imltPdPcnKyzhGVjNFoVB4eHurMmTN6h1IsZapmtHv3bho2bIi3tzeVK1dm4MCB\nrFq1Su+wiqxjx464uLjoHUaJeXh44OvrC0C1atVo1qwZ58+f1zmq4inK4L6yKj4+nujoaEaMGGHV\nU2FZY+wpKSls27aNZ599FoBKlSrh5OSkc1Qls2nTJho0aEDdunX1DqVYylQyOnfuXK4X0MvLq8Au\nisJ8Tp8+zf79+wkICNA7lGIpbHBfWTZu3DimTJmCjU2Z+lgWi8Fg4LHHHsPf35+5c+fqHU6RnTp1\nipo1azJ8+HAefPBBRo4cSVpamt5hlcjSpUt5+umn9Q6j2MrUu14GwJYNN27cICQkhBkzZlCtWjW9\nwymWwgb3lVVRUVHUqlULPz8/q6xZ3LJjxw7279/P2rVr+c9//sO2bdv0DqlIsrOz2bdvHy+99BL7\n9u2jatWqVjlvZmZmJpGRkTz11FN6h1JsZSoZ1alTh7Nnz5r+Pnv2LF5eXjpGVPFkZWXRv39/nnnm\nmXzHgFkDJycnevXqxd69e/UOpUh27tzJ6tWruf/++xk0aBA///wzQ4cO1TusYqtduzYANWvWpF+/\nfuzevVvniIrGy8sLLy8v2rRpA0BISAj79u3TOariW7t2LQ899JBu88vdizKVjPz9/Tl+/DinT58m\nMzOTZcuWWXzgVUWmlOK5557Dx8eHsWPH6h1OsV2+fJnk5GQA0+A+Pz8/naMqmo8//pizZ89y6tQp\nli5dyqOPPsqiRYv0DqtY0tLSuH79OgCpqals2LDBanqWenh4ULduXWJjYwHtvkvz5s11jqr4vvvu\nOwYNGqR3GCVitkGvJVGpUiW++OILunfvjtFo5LnnnqNZs2Z6h1VkgwYNYsuWLVy5coW6desyadIk\nhg8frndYRbZjxw6WLFli6poL8MknnxAcHPz/7d1dKLNvHAfwL56IFU5WyluMptjW1EgNB0R5Kw68\ntBTLgVB2wIlSK+TEFFJe4wwpB5MQYeVEU4uFE2aUlpwpZlr2HDxt8ed5Hk9/uW2+n6P7vra6rt21\nfbvue9f1E3hk7/O7xX3+yB9vWV9fX6OyshLAr9teGo0GRUVFAo/q/UZGRqDRaPD4+AiJRIKZmRmh\nh/RP7u7usLm56VfP6p7jolciIhLcl7pNR0RE3xPDiIiIBMcwIiIiwTGMiIhIcAwjIiISHMOIiIgE\nxzCigBMSEgKlUgmZTIbq6mo4nc5P6Tc4OBj19fW+c7fbDbFY7CsHMTs7C7FYDKVSifT0dExNTX3K\nuIj8AcOIAk5ERAQsFgusVitCQ0MxNjb2Kf2KRCIcHR3h4eEBALCxsYG4uLgXC1jr6upgsViws7OD\nrq4u3NzcfMrYiL46hhEFNLVajdPTU9zf30Or1SI7OxuZmZkwGo0AAJ1Oh56eHgDA+vo68vPz4fF4\n0NDQgObmZqhUKkilUqysrLyrv5KSEt97vVuzPF9X7j0Wi8WQSCSw2+1oaWmBSqVCRkYG9Hr9B356\nIv/BMKKA5Xa7sba2Brlcjt7eXhQUFGBvbw9bW1vo7OyE0+lEf38/FhYWsL29jfb2dszOzvpmMpeX\nlzCbzVhZWUFzczMeHx//2mdNTQ3m5+fhcrlgtVp/W4LDZrPBZrMhNTUVfX19MJvNODg4gMlkgtVq\n/dDrQOQPvtTedEQfwel0+vbWy8vLg1arRU5ODpaXlzEwMAAAcLlcuLy8hFQqxeTkJHJzczE0NISk\npCQAv/aGq66uBgCkpKQgOTkZJycnUCgUf+xbJpPBbrdjbm4OpaWlr15fWFjA7u4uwsLCMDExgejo\naIyNjWFychJutxsOhwPHx8d+s8Eo0UdhGFHACQ8Ph8ViedW+tLSE1NTUV+2Hh4cQi8V/LeT43qJ3\nFRUV6OjogMlkevVMqLa2FsPDw77z8/NzGAwG7O/vIyoqCo2Njb5nTkTfCW/T0bdQXFz8IgS8YXVx\ncYHBwUFfQThv/R2Px4PFxUV4PB6cnZ3BZrNBKpXi6uoKhYWFf+xLq9VCr9e/WYLgv/sS397eQiQS\nITIyEtfX11hdXfXLHbuJ/i/OjCjgvPVj3t3dDZ1OB7lcjqenJyQnJ8NoNKKpqQkGgwExMTGYnp5G\nQ0MDzGYzgoKCkJCQgKysLNze3mJ8fByhoaFwOBz48ePtr42339jYWLS1tfnavO3Pj70UCgWUSiXS\n0tIQHx8PtVr9kZeCyG+whATRGxobG1FeXo6qqqoX7aOjo0hMTERZWZlAIyMKTJwZEf2D1tZWoYdA\nFJA4MyIiIsHxDwxERCQ4hhEREQmOYURERIJjGBERkeAYRkREJDiGERERCe4nNa6wS0zZo18AAAAA\nSUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x7ffd128>" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.5,Page number:526" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "\t# A-Na+ B-Cu+2\n", "\t# Using the data from Table 9.1\n", "KA = 1.98 \n", "KB = 3.47 \n", "import math\n", "from scipy.optimize import fsolve\n", "from pylab import *\n", "from numpy import *\n", "Q = 2.4 \t\t\t\t\t# [eq/L of resin]\n", "\t# Charge ratio is 'n'\n", "n = 2 \n", "C = 0.05 \t\t\t\t\t#[total concentration, eq/L]\n", "\t# From equ 9.48\n", "KAB = KB/KA \n", "\t# From equ 9.47\n", "\t# ya*(1-xa)**2/(xa*(1-ya)**2) = KAB*Q/C = T\n", "T = KAB*Q/C \n", "\t# Substituting values of xA in the range 0.1< xa <1.0, we generate the # \tdistribution curve\n", "ya=zeros((20))\n", "for i in range(1,20):\n", " def f16(ya):\n", " return(ya*(1-i*0.05)**2/(i*0.05*(1-ya)**2)- T) \n", " ya[i] = fsolve(f16,0.99) \n", " \n", "xa =[0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95] \n", "\n", "a1=plot(xa,ya) \n", "ylim(0,1)\n", "xlabel(\"$xa,Fraction of Cu+2 in Solution$\") \n", "ylabel(\"$ya,Fraction of CuR2 in resin$\") \n", "plt.grid()\n", "show(a1)\n", "print\"The curve is similar in shape to an adsorption isotherm of the very favorable type.\"" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAETCAYAAAAoF0GbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtUVIXaP/AvBiJ5QwRBGBJFA7yBBt4JvKWiqSd9E19T\nMTOPZmmnfql5LCsztcvSJHvtpImZHgstspBKAz0qNzUxkdcQiauoiAiCcd2/P/bLbBCEGYa9Zw/z\n/aw1C/awmXnmWaz9sJ9nXywEQRBARET0AG2MHQAREakbCwURETWKhYKIiBrFQkFERI1ioSAiokax\nUBARUaMULRTPPvssHB0dMWDAgAeu89JLL6FPnz7w9vbGb7/9pmB0RETUEEULxYIFCxAVFfXAn0dG\nRuLKlStITU3FZ599hiVLligYHRERNUTRQuHv748uXbo88Offf/895s+fDwAYOnQoCgsLcf36daXC\nIyKiBqhqRpGTkwNXV1ftskajQXZ2thEjIiIiVRUKALj/iiIWFhZGioSIiADA0tgB1Obi4oKsrCzt\ncnZ2NlxcXBpcLzc3V8nQiIhMnru7O65cuaL376mqUEydOhWhoaEIDg5GXFwcbG1t4ejoWG+93Nzc\nense5mrdunVYt26dscNQBeZCwlxIlM6FIAAlJcDNm9IjP7/xx+3bQKdOgL39gx9+fkAjB4zqpLkd\nGkULxezZs3H8+HHk5+fD1dUVb731FioqKgAAixcvRlBQECIjI9G7d2+0b98eX3zxhZLhmaQ///zT\n2CGoBnMhYS4khuZCEICiorob/oYeN25I31tYAA4O0sPeXvras2f9ImBnB1iq6t/2uhQNbf/+/U2u\nExoaqkAkRGTOysqkjfv16+LX+x81z9+8CVhb193w1zy6dwcGDqz/fPv2xv6ELUvFNYx0ERISYuwQ\nVIO5kJhjLkpKgLw8cQNf+2tBQQhmzKhbEEpLxQ16t26Ao6P4tebRr1/d5x0cgHbtjP3pjMvCFG9c\nZGFhwRkFkRn466/6G/6ar/c/V1kJODmJD0dH6WvtQlDzva2t2B4yN83ddrJQmLiYmBgEBgYaOwxV\nYC4kas6FIADFxcC1a00/SkvrbvRrf73/uY4dG974qzkXSmvutpOtJyJqMUVFQE6O+MjNbXjjn5sr\nbtC7d6//GDiw7nKXLub5n7/acI+CiJpUWSm2d2qKwIMe1dWAi4v4cHYWH/cXA2dn8b9/Uh5bT0TU\nLBUV4kY+MxPIyhIf2dl1C8DNm0DXrlIRuP/h7Cx+7dyZewBqxkJhpth/lTAXkppcVFWJw96aAtDQ\nIz9f7PO7utZ9aDRSAXByAqysjP2pmod/FxLOKIjM0L17QEaG+PjzT/GRkQH8/rs4L7h2TTyZq3YB\neOQRYPhwadnJSd0ne5HxcY+CSMVKSuoXgdrf374tbvh79ADc3MSvNQ9XV3FvwNraqB+BVIStJyIT\nVFkpzgbS0qRHerpUEO7elTb8bm5SMaj52r070EZ114AmtWKhMFPsv0rUmoviYuDqVakQ1P4+O1ts\n/bi7i49evcRHTVHo1q15w2G15sIYmAsJZxRERlRQAFy+DPzxR91CkJYm7hX06iUVg379gKlTxe97\n9GBriNSPexREOiorA65cEYvB5ctSYbh8WTzE1MMD6NMH6N27bmFwcuIho6QObD0RtYDqavG8gYaK\nQW6uuAfg4SE+Hn1U+r65LSIiJbFQmCn2XyX65KK6WhwWJycDFy+KX5OTxaLQqVP9QvDoo+J9BEzl\nXAL+XUiYCwlnFEQNEARxYFy7IFy8CKSkiNcR6t9fnBmMGwcsXy4WhU6djB01kbpwj4JaBUEQr0VU\ne++g5vuHHxaLQb9+UmHo10+83ASROWHricyGIIhHFp07V/dRXS0WgppiUPO1a1djR0ykDiwUZqq1\n91+rqsRBcu2CcP682B4aPFh6DBoE/PFHDEaPDjR2yKrQ2v8u9MFcSDijIJNXXi62imoKwm+/ARcu\niGcf1xSD118Xvzo41P/91FTlYyYyB9yjIKMQBPFSFadPA6dOAQkJ4oC5Z8+6ewo+PpwlELUUtp5I\n1crLxb2EmsJw+rR43sHIkcCIEcCwYYC3tzh4JiJ5NHfbycuJmbiYmBhjh9Cg/Hzg+++BVasAf3/x\nUtd//7t4SYunngJiY8UT2775Bnj5ZfGy14YWCbXmwhiYCwlzYTjOKMhg1dXiwLlmb+HUKfFmOcOG\niXsLb74JDBnC8xOITBVbT9QsWVnATz8BP/8M/PqrWARq2kgjR4qHpT70kLGjJKLaOKMgWZWWAseP\nS8Xh5k1g/HjgiSfEry4uxo6QiJrCGYWZkqv/Kgji7TQ/+EAsBI6OwHvviYel7tkjngW9bx8QEqKe\nIsFetIS5kDAXhuOMgrTy84FffpH2GmxsgAkTgGXLgIMHOWMgMldsPZmx6mrx6KPISLE4pKYCAQFi\ncZgwQbyvAhG1HpxRkE4EQbwExr59wL//DdjaAk8+KRaG4cOBtm2NHSERyYUzCjOla/81NRV4+23A\ny0s8j8HKStyT+P13YMMGcU/C1IsEe9ES5kLCXBiOM4pWLCcHOHAA2L8fyMwEZs0CvvhCPL+Bd2Mj\nIl2x9dTKFBSIg+d9+4CkJGDaNOC//xsYPRqw5L8FRGaNMwozVlIiXi5j/37xXIcnngBmzwaCgoB2\n7YwdHRGpBWcUZkYQgKNHgXHjYuDiAoSFATNnimdMf/ONOIcwtyLBXrSEuZAwF4ZjM8LEVFUB334L\nbNwoni09frzYZurWzdiREVFrpWjrKSoqCitWrEBVVRWee+45rFy5ss7P8/Pz8cwzzyAvLw+VlZV4\n9dVXERISUu91zLH1VF4O7N0LbN4s3p9h9Wpg6lSgDfcJiUhHqp9RVFVVwcPDA0ePHoWLiwv8/Pyw\nf/9+eHl5addZt24dysrK8N577yE/Px8eHh64fv06LO+bwppToSgpAf71L+DDDwFPT7FAjB7No5aI\nSH+qn1EkJCSgd+/ecHNzg5WVFYKDgxEREVFnne7du6OoqAgAUFRUhK5du9YrEuaioEA876FnT+A/\n/wEOHRIvrzFmTN0iwf6rhLmQMBcS5sJwim2Fc3Jy4Orqql3WaDSIj4+vs86iRYswZswYODs7o7i4\nGF9//bVS4alGbi7w0UfArl3ioa0nToh7EkRExqJYobDQoVeyYcMG+Pj4ICYmBmlpaRg/fjySkpLQ\nsWPHeuuGhITAzc0NAGBrawsfHx8EBgYCkP6DMKXl7GzgxIlAhIcDY8bE4NNPgVmzmv79wMBAVcTP\nZfUt11BLPMZarnlOLfEouRwTE4Pdu3cDgHZ72RyKzSji4uKwbt06REVFAQDee+89tGnTps5AOygo\nCGvWrMHIkSMBAGPHjsWmTZvg6+tbN+hWNKM4f168fPexY8DSpcBLLwH29saOiohaI9XPKHx9fZGa\nmoo///wT5eXlOHDgAKZOnVpnHU9PTxw9ehQAcP36dVy+fBm9evVSKkRFXbwITJoknhTn5wekp4sz\nCX2LxP3/PZoz5kLCXEiYC8Mp1nqytLREaGgoJkyYgKqqKixcuBBeXl7YsWMHAGDx4sV4/fXXsWDB\nAnh7e6O6uhqbN2+GnZ2dUiEqQhCA0FCxKLz5pnhOhLmdGEdEpoWX8FDQ9evAggXiDYL27eP9HohI\nWapvPZm7H38EfHyAQYOAU6dYJIjIdLBQyOzePeDFF8VB9b//Dbz7rngviJbC/quEuZAwFxLmwnAs\nFDL6/XdxUH3jhnh0U0CAsSMiItIfZxQyEATg44+B9euBDz4A5s3jJTeIyPiau+1s9lFPsbGx0Gg0\ndc62JiAvTxxYFxQAsbGcRRCR6dOr9bR+/XrMnz8fCxcuREZGBg4dOiRXXCbphx/EYbWvL3DypDJF\ngv1XCXMhYS4kzIXh9Nqj6NevH/75z3/izp07iIyMhLu7u1xxmZR794D/9//EQvH114C/v7EjIiJq\nOXrNKL799ltoNBr4+fnJGVOT1DSjSEoS70k9cCDw6aeAra2xIyIiapgi96NYsWIFACAtLQ3t2rVD\nQEAAli1bpvebGkoNhaK6Gti6FdiwQbxXxNy5HFgTkbopMsyeOXMmAGDUqFG4d+8ekpOT9X7D1qC0\nFJgxAygsBOLiAGN24GpfFdPcMRcS5kLCXBiuyWH27Nmztd/n5eUhIyMDd+/exW+//Ybi4mJZg1Or\nl18Wb0d64oRxiwQRkRKabD1VVFTA6v9OJf7444/RtWtXREREwMLCAt26dcO2bdsUCbQ2Y7aevv4a\nWLMGOHcOaOA2GUREqqXIjOLq1avIy8vDiBEjUFRUhKqqKnTp0kXvNzWUsQpFejowdChw5Ajw2GOK\nvz0RkUEUuSigo6Oj9pDYTp06GaVIGEtFBTB7NrB6tbqKBI8RlzAXEuZCwlwYTq9h9t69e2FtbY1D\nhw7B3t4eTz/9NCZOnChXbKqydq14U6H/O/CLiMhs6LVHYWNjg759+6KgoAC7du1CUVGRXHGpys8/\nA3v3Al98ob5DYHk0h4S5kDAXEubCcHoVisGDB+Pf//43Pv74Y+zevRuVlZVyxaUaeXlASAjw5ZeA\ng4OxoyEiUp5ehaJ///746KOPMHjwYLi4uKBfv35yxaUK1dXilV+few4YPdrY0TSM/VcJcyFhLiTM\nheH0mlHk5eXh7t276N27N7y9vdG5c2e54lKF998Xr+P0xhvGjoSIyHj0Ojz2k08+gZeXFywsLODv\n748DBw5gzpw5csbXICUOj42LA6ZNAxITgUcekfWtiIgUocjhseXl5RgzZgxKSkpgaWkJ21Z6BbzC\nQvFQ2B07WCSIiPQqFJ6envD398ehQ4fw3Xff4ezZs3LFZTSCADz/PDB5MjB9urGjaRr7rxLmQsJc\nSJgLw+lVKDp06IC9e/fC29sbN27cwPLly+WKy2j+9S/g8mXxFqZERKTnjCI4OBhhYWGwtraWM6Ym\nyTWjSE4GAgOB//wH8PRs8ZcnIjIqRWYUtra2OH78OCoqKvR+I7UrLQVmzQI2b2aRICKqTe9CkZiY\niKeffhpBQUFYu3atXHEp7uWXAW9v8eQ6U8L+q4S5kDAXEubCcHqdRzF58mR069YNa9asgSAIyMzM\nlCsuRX3zDXDsmHjpcLVdooOIyNj0mlHUFhsbC41GA1dX15aOqUktOaOouXR4ZCTg69siL0lEpEqK\n3I9i/fr1SE1NhaWlJcaPH4/r168b5cinlioUFRWAvz/w9NPAP/7RAoEREamYIsPsfv36ISwsDB99\n9BEEQdDem8JUrV0L2NmZ9qXD2X+VMBcS5kLCXBhOrxkFACQmJsLPz6/OvbRNUc2lw8+dA9roVS6J\niMyLXq2nFf/3r3daWhratWuHgIAALFu2TLbgHsTQ1lNeHjB4sFgoxoxpwcCIiFSsudtOvfYoZsyY\nAQsLC4waNQr37t1DcnKy3m+oBsuWAc8+yyJBRKQLvZou/v7+GDVqFADxbne+JnqY0OnTwN//buwo\nWgb7rxLmQsJcSJgLwzVZKGrPIsLDw7Fv3z7cvXsXp0+fRnR0tKzByaGsDLh1C+je3diREBGZhiZn\nFBUVFbCysgIAfPzxx+jatSsiIiJgYWGBbt26Ydu2bTq/WVRUFFasWIGqqio899xzWLlyZb11YmJi\n8PLLL6OiogL29vYN/jdgyIwiLQ0YN048f4KIyJwoch7F1atXkZeXhxEjRqC4uBiVlZXo0qWLTr9b\nVVUFDw8PHD16FC4uLvDz88P+/fvh5eWlXaewsBAjR47ETz/9BI1Gg/z8fNjb29cP2oBC8euvwNtv\nA9wbJSJzI+t5FPHx8Th48CCsra0xYsQIAEBCQgJyc3N1fqOEhAT07t0bbm5usLKyQnBwMCIiIuqs\ns2/fPsyYMQMajQYAGiwShsrMbF03I2L/VcJcSJgLCXNhuCYLxdq1a/HBBx8gISEBCxcuxObNmwEA\nAQEBePzxx3V+o5ycnDqX+9BoNMjJyamzTmpqKgoKCjB69Gj4+vriyy+/1Pn1ddXaCgURkdyaPDzW\n1tYW33zzjXY5JiYG7777LlavXo02epypZqHD1fYqKipw7tw5HDt2DKWlpRg+fDiGDRuGPn366Pw+\nTcnIAIYNa7GXM7rAwEBjh6AazIWEuZAwF4ZrslC0a9cOBQUFOHDgAObPn4/AwEAMGDAAn3zyiV73\npXBxcUFWVpZ2OSsrS9tiquHq6gp7e3vY2NjAxsYGjz/+OJKSkhosFCEhIXBzcwMgFjMfHx/tH0TN\nrmZDy5mZgIdHDGJiGv45l7nMZS63luWYmBjs3r0bALTby2YRmlBUVCSEhYUJL7zwgnDv3j3t83l5\necLWrVub+nWtiooKoVevXkJ6erpQVlYmeHt7C5cuXaqzTkpKijB27FihsrJSKCkpEfr37y8kJyfX\ney0dwn6gRx8VhJSUZv+66kRHRxs7BNVgLiTMhYS5kDR329nkHsVrr72GvLw83Lp1C4IgoKqqCuXl\n5XB0dISTk5POBcnS0hKhoaGYMGECqqqqsHDhQnh5eWHHjh0AgMWLF8PT0xMTJ07EwIED0aZNGyxa\ntAh9+/Ztbg2sRxDEGYURroxORGSymjw8dsuWLVixYgWuX7+OLVu24PTp08jMzERubi6efPJJhIeH\nKxWrVnMP8bpxA+jbF8jPlyEoIiKVk+1aTx06dAAAODo64pFHHsF7770HACgrK4O1tbXeb2hMGRlA\njx7GjoKIyLQ0edjSpk2bsHLlSkRGRsLR0VH7vLW1NW7evClrcC2tNR4aWzO4IuaiNuZCwlwYrsk9\nigULFmDIkCGIj4/HmTNnsGXLFjg5OcHb2xt//PEHwsLClIizRWRmco+CiEhfzbpndkZGBuLj47Fj\nxw4cO3ZMjrga1dw+24oV4h4Fb3tKROZIkftR1OjRowd69Oih11FPapCZCfzfVdKJiEhHzb4JaHx8\nPAYPHtySsciuNQ6z2X+VMBcS5kLCXBhOr0Ixd+5cLFmyBF9++SU6dOiAXbt2yRWXLFrjMJuISG56\nzyjS09Nx+vRpxMbGwtLSElu2bJErtgdqTp+ttBTo2hUoKQHaNHs/iojIdCkyo4iLi4MgCJgzZw7m\nzJmDgwcP6v2GxlJzRjaLBBGRfvTabB49ehQnTpzArFmzEBISgvPnz8sVV4trrW0n9l8lzIWEuZAw\nF4Zrco8iLCwMGo0Gvr6+mDZtGoqLixu8hanatcZBNhGREpqcUXz77bc4evQoBg0ahODgYHTo0AG/\n/PILxowZg4ceekipOOtoTp9t7VrA0hJ4802ZgiIiUjnZZhRFRUX45JNP6jwXEBCAffv2YdKkSbLc\nrlQOmZkA719CRKS/JmcUd+7cqfdc27ZtMXfuXBw5ckSWoOTQWltP7L9KmAsJcyFhLgzXZKG4efMm\nCgoKGvxZWVlZiwckl9Y6zCYikluTM4pr165h3rx5WLVqFcaOHat9XhAEvPrqq/jwww9lD/J++vbZ\nqqqAhx8GiooAE7syOhFRi2nujEKnE+6uXr2KZ555BsXFxQgMDISNjQ3i4uLwj3/8A9OnT29WwIbQ\n98Pm5AC+vsC1azIGRUSkcs0tFE22nr777ju0adMGp0+fxo4dO+Dm5gYXFxfs2rXLKEWiOVpz24n9\nVwlzIWEuJMyF4Zo86un48ePQaDRwc3PDzZs38corrygRV4tqrYNsIiIlNNl6+vXXX7Ft2zb89ddf\nuHfvHqZMmYIBAwagf//+cHFxUSrOOvTdfdq8Wbxf9gcfyBgUEZHKyTqjqPHhhx/C19cXycnJuHjx\nInJzc6HRaPDiiy/Cw8ND7zdvLn0/7LJlgIcH8OKLMgZFRKRyss0oanvllVcQEBCApUuXYvv27fju\nu+8watQofP/993q/sZIyMjijMAfMhYS5kDAXhjP4Wqpt27aFp6dnS8Qim9Y8zCYikpteraeUlBRs\n374dXbp0wdy5c9GnTx85Y3sgfXefbG2Bq1cBOzsZgyIiUjlFWk8//vgjlixZguHDh2Pjxo0mcQmP\nO3eAykqgSxdjR0JEZJr0KhQODg7o27cvJk2ahJ07d+LGjRtyxdVisrLEQ2MtLIwdiTzYf5UwFxLm\nQsJcGE6vO9x17doVwcHBmDNnDh555BGTKBSteZBNRKQEve+ZffnyZYSFhaG8vByLFi1S9LDYGvr0\n2T79FDh/HtixQ+agiIhUTpF7ZgOAh4cHNmzYgNjYWDz88MN6v6HSeFY2EZFh9JpRrF+/HvPnz8fC\nhQuRkZGBQ4cOyRVXi2nth8ay/yphLiTMhYS5MJxehaJfv34ICwvDRx99BEEQ4O7uLldcLaa1Fwoi\nIrnpNaP49ttvodFo4OfnJ2dMTdKnz+bqCpw8yfYTEZEi13pasWIFACAtLQ3t2rVDQEAAli1bpveb\nGkrXD1tRAbRvD5SUAFZWCgRGRKRiipxwN2PGDMycOROHDx/Gnj17MGzYML3fUEk5OYCTU+suEuy/\nSpgLCXMhYS4Mp1ehsLe3x4EDB/DGG28gOzsbvr6+csXVIjifICIynF6tpw8++ABBQUHIyMhAeHg4\nZs6ciUmTJskZX4N03X3auxeIjAT27VMgKCIilVOk9WToJTyioqLg6emJPn36YNOmTQ9cLzExEZaW\nlgYffstzKIiIDKdXoai5hMfhw4eRlJSkV6GoqqrCsmXLEBUVhUuXLmH//v1ISUlpcL2VK1di4sSJ\nzap8tZlD64n9VwlzIWEuJMyF4fQqFFOmTMFbb72F2NhYfPnll5g6darOv5uQkIDevXvDzc0NVlZW\nCA4ORkRERL31tm3bhpkzZ8LBwUGf0BrEPQoiIsM1WShmz56t/T48PBxnz57F6tWr8dRTTyE3N1fn\nN8rJyYGrq6t2WaPRICcnp946ERERWLJkCQCxn2YIc9ijCAwMNHYIqsFcSJgLCXNhuCav9bRnzx7t\n97m5uejatSsWLlwICwsLdOvWDaNHj9bpjXTZ6K9YsQIbN27UDlwMaT0JgnkUCiIiuTVZKKxqnYQw\nZcoU5OXl4euvv0ZRURGqqqp0fiMXFxdkZWVpl7OysqDRaOqsc/bsWQQHBwMA8vPzceTIEVhZWTXY\n4goJCYGbmxsAwNbWFj4+Ptr/HGJiYnDnDmBlFYhOnaQeZe2ft5bl2v1XNcRjzOWa59QSjzGXz58/\nrz1BVg3xGHN5y5Yt9bYPaopPzuWYmBjs3r0bALTby2YR9HDt2jXt9yUlJfr8qlBRUSH06tVLSE9P\nF8rKygRvb2/h0qVLD1w/JCREOHjwYIM/0yXsc+cEYeBAvUI0SdHR0cYOQTWYCwlzIWEuJHpu8rV0\nGmZv2LABR44cweHDh7XPJScnIzo6WueCZGlpidDQUEyYMAF9+/bFrFmz4OXlhR07dmCHDDeLMJdB\nds1/EcRc1MZcSJgLw+l0wl1KSgqio6Oxc+dOODs7w8nJCUOGDEFOTg7WrVunQJh16XLSyMcfA3/8\nAYSGKhQUEZHKyXrCnZeXF5YuXYrly5fj8OHDeOedd2BtbY0nn3xS7zdUirkMsmv3580dcyFhLiTM\nheH0Oo/iyJEjKC8vh5OTE0aPHq3qe2abS+uJiEhuehWKJ554Am3btgUAuLq6orKyUpagWoK57FGw\n/yphLiTMhYS5MJxehaJbt26YNWuW9hIeFy9elCsug5lLoSAikptehWLy5Ml45513EBsbi6+++gqz\nZs2SKy6D/PUXUFAAdO9u7Ejkx/6rhLmQMBcS5sJwehWKzz//HAUFBXjzzTcxbdo0nDt3Tq64DJKd\nDbi4AG30+nRERNQQve5HsWHDBjz00ENISkpCcXEx3N3dsWXLFjnja1BTh3gdOwasXw/ocZoHEVGr\n19zDY5u8hEdtGo0G8+bNAwCUl5c3ePVXNeB8goio5ejVnLGyskJISAgOHTqE1NRUZGdnyxWXQcyp\nULD/KmEuJMyFhLkwnF57FLNnz8bgwYOxd+9eREdHa/cu1CYjAxgxwthREBG1DnrNKP7zn//A399f\nznh00lSfbdw44LXXgCeeUDAoIiKVU+Se2Z988gnKysr0fhOl8axsIqKWo1ehsLW1xfHjx1FRUSFX\nPAarrgaysoBaN9Nr1dh/lTAXEuZCwlwYrskZxebNm+Ho6Ag7OzvY2toiMTERn376KcrKyvDYY4/h\nnXfeUSJOnd28CXTsCDz8sLEjISJqHZqcUcydOxd79uyBhYUFTp48CQcHB3h4eEAQBGRmZqKHEXo8\njfXZEhKApUuBM2cUDoqISOVkO48iICAAFhYWKCwsRE5ODkpKSuDg4AA7OzujFImmmNOhsURESmhy\nRlFTfWxtbfH0008jPDwcOTk5sgfWXOY2yGb/VcJcSJgLCXNhuCb3KNasWYPIyEj4+Phg4MCB8PT0\nxIABAwAA8fHxGDp0qOxB6iMzEzDkHuJERFRXkzOKrVu3YujQoYiLi0NiYiLi4+NRXl6OgIAAlJSU\n4NChQ0rFqtVYn+1vfwOeeQaYMUPhoIiIVE62GcXy5csBAMOGDdM+l5+fj4SEBISq8IbU5tZ6IiKS\nW7MuxG1vb4+goCCsXbu2peMxmLkNs9l/lTAXEuZCwlwYzqA7NgwfPryl4mgRJSVAaSng4GDsSIiI\nWg+9rvVUW3p6OsaNG4edO3eirKwMEyZMaOnYHuhBfbaUFGD6dODyZcVCISIyGYrcj6K2nj174sSJ\nE3BxcWnuS7Q4c2s7EREpwaDWk5qKBGCeg2z2XyXMhYS5kDAXhtP7ntlxcXEoKyvDqVOnEB4eLldc\nzcI9CiKilteq7pk9dy4wdiwQEqJ4SEREqsd7ZkPcozC31hMRkdz0aj21bdsWCxYsUO09s82x9cT+\nq4S5kDAXEubCcHrtURw5cgTFxcVYt24dhg4disWLF8sVl96qqoDcXECjMXYkRESti97nUaSkpCAu\nLg6xsbE4d+4cnn76abz66qto08agA6j00lCfLTsbGDJELBZERFRfc2cUehWKuLg4CIKgPSP7m2++\ngbe3N06cOIHnnntO7zdvroY+7OnTwD/+AcTFKRYGEZFJaW6h0Gs34OjRozhx4gRmzZqFBQsW4OLF\ni8jJyYFDGy42AAARtElEQVSjo6Peb9zSzPEcCoD919qYCwlzIWEuDKfXjGL69OkoLS3FypUrtc99\n/vnncHV1bfHA9GWOg2wiIiU0+1pPxtTQ7tPSpUDfvsCyZUYKiohI5RRpPakZ9yiIiOSheKGIioqC\np6cn+vTpg02bNtX7+VdffQVvb28MHDgQI0eOxIULF3R6XXMtFOy/SpgLCXMhYS4M1+yrxzZHVVUV\nli1bhqNHj8LFxQV+fn6YOnUqvLy8tOv06tULJ06cQOfOnREVFYXnn38ecTocymSuw2wiIrkpOqOI\njY3FW2+9haioKADAxo0bAQCrVq1qcP3bt29jwIAB9c4Av7/PdueOeKJdURFgYSFT8EREJs4kZhQ5\nOTl1jpDSaDTIycl54Po7d+5EUFBQk69bszfBIkFE1PIUbT1Z6LElj46Oxq5du3Dq1KkGfx4SEgI3\nNzcAQE6OLdq39wEQCEDqSQYGtv7l2v1XNcRjzOWa59QSjzGXz58/jxUrVqgmHmMub9myBT4+PqqJ\nR8nlmJgY7N69GwC028tmERQUGxsrTJgwQbu8YcMGYePGjfXWS0pKEtzd3YXU1NQGX+f+sD/5RBAW\nL27ZWE1FdHS0sUNQDeZCwlxImAtJczf5is4oKisr4eHhgWPHjsHZ2RlDhgzB/v376wyzMzMzMWbM\nGOzduxfDhg1r8HXu77OtXAnY2gKrV8v+EYiITJbi98xuDktLS4SGhmLChAmoqqrCwoUL4eXlhR07\ndgAAFi9ejLfffhu3b9/GkiVLAABWVlZISEho9HUzM4GBA2UPn4jILLWKM7NHjAA2bQL8/Y0YlJHE\nxMRoe5PmjrmQMBcS5kJiEkc9yYV3tiMiko/J71FUVADt2wOlpYCloo00IiLTYrZ7FNnZQPfuLBJE\nRHIx+UJhrtd4qlH7HAJzx1xImAsJc2E4ky8UGRnmXSiIiORm8jOK9evF+cSGDUYOiohI5cx2RmHu\nrSciIrmZfKEw98uLs/8qYS4kzIWEuTCcyRcK7lEQEcnLpGcUggB06ADk5QEdOxo7KiIidTPLGcWt\nW4C1NYsEEZGcTLpQsO3E/mttzIWEuZAwF4Yz6UJh7oNsIiIlmPSMYutW4MoVYNs2Y0dERKR+Zjmj\nYOuJiEh+Jl0o2Hpi/7U25kLCXEiYC8OZdKHgHgURkfxMekbh6AicPy9eZpyIiBrX3BmFyRaK0lIB\ntrbAvXtAG5PeLyIiUobZDbOzswGNhkWC/VcJcyFhLiTMheFMdjPLQTYRkTJMtvW0c6eAEyeA3buN\nHQ0RkWkwu9YT72xHRKQMky0UmZlsPQHsv9bGXEiYCwlzYTiTLhTcoyAikp/Jzijc3QVERgKPPmrs\naIiITIPZnUdhbS3g9m3AxsbY0RARmQazG2Z36sQiAbD/WhtzIWEuJMyF4Uy2UHCQTUSkDJNtPT31\nlICDB40dCRGR6TC71hP3KIiIlGGyhYKHxorYf5UwFxLmQsJcGI6FgoiIGmWyM4ozZwQ89pixIyEi\nMh1mN6PgHgURkTIULRRRUVHw9PREnz59sGnTpgbXeemll9CnTx94e3vjt99+e+Br2dvLFaVpYf9V\nwlxImAsJc2E4xQpFVVUVli1bhqioKFy6dAn79+9HSkpKnXUiIyNx5coVpKam4rPPPsOSJUse+HoW\nFnJHbBrOnz9v7BBUg7mQMBcS5sJwihWKhIQE9O7dG25ubrCyskJwcDAiIiLqrPP9999j/vz5AICh\nQ4eisLAQ169fVypEk1RYWGjsEFSDuZAwFxLmwnCKFYqcnBy4urpqlzUaDXJycppcJzs7W6kQiYio\nAYoVCgsde0X3T+R1/T1z9eeffxo7BNVgLiTMhYS5MJylUm/k4uKCrKws7XJWVhY0Gk2j62RnZ8PF\nxaXea7m7u7OA1BIWFmbsEFSDuZAwFxLmQuTu7t6s31OsUPj6+iI1NRV//vknnJ2dceDAAezfv7/O\nOlOnTkVoaCiCg4MRFxcHW1tbODo61nutK1euKBU2EZHZU6xQWFpaIjQ0FBMmTEBVVRUWLlwILy8v\n7NixAwCwePFiBAUFITIyEr1790b79u3xxRdfKBUeERE9gEmemU1ERMpR9ZnZLXmCnqlrKhdfffUV\nvL29MXDgQIwcORIXLlwwQpTK0OXvAgASExNhaWmJQ4cOKRidcnTJQ0xMDAYNGoT+/fsjMDBQ2QAV\n1FQu8vPzMXHiRPj4+KB///7YvXu38kEq5Nlnn4WjoyMGDBjwwHX03m4KKlVZWSm4u7sL6enpQnl5\nueDt7S1cunSpzjo//vijMGnSJEEQBCEuLk4YOnSoMUKVnS65OH36tFBYWCgIgiAcOXLErHNRs97o\n0aOFyZMnC+Hh4UaIVF665OH27dtC3759haysLEEQBOHmzZvGCFV2uuTizTffFFatWiUIgpgHOzs7\noaKiwhjhyu7EiRPCuXPnhP79+zf48+ZsN1W7R8ET9CS65GL48OHo3LkzADEXrfX8E11yAQDbtm3D\nzJkz4eDgYIQo5adLHvbt24cZM2Zojy60b6XXvdElF927d0dRUREAoKioCF27doWlpWIjWkX5+/uj\nS5cuD/x5c7abqi0UPEFPoksuatu5cyeCgoKUCE1xuv5dREREaC8B0xoPpdYlD6mpqSgoKMDo0aPh\n6+uLL7/8UukwFaFLLhYtWoTk5GQ4OzvD29sbW7duVTpM1WjOdlO1JZUn6En0+UzR0dHYtWsXTp06\nJWNExqNLLlasWIGNGzdqL6l8/99Ia6BLHioqKnDu3DkcO3YMpaWlGD58OIYNG4Y+ffooEKFydMnF\nhg0b4OPjg5iYGKSlpWH8+PFISkpCx44dFYhQffTdbqq2ULTkCXqmTpdcAMCFCxewaNEiREVFNbrr\nacp0ycXZs2cRHBwMQBxiHjlyBFZWVpg6daqiscpJlzy4urrC3t4eNjY2sLGxweOPP46kpKRWVyh0\nycXp06exZs0aAOJJZz179sTly5fh6+uraKxq0KztZotNUFpYRUWF0KtXLyE9PV0oKytrcpgdGxvb\nage4uuQiIyNDcHd3F2JjY40UpTJ0yUVtISEhwsGDBxWMUBm65CElJUUYO3asUFlZKZSUlAj9+/cX\nkpOTjRSxfHTJxcsvvyysW7dOEARByMvLE1xcXIRbt24ZI1xFpKen6zTM1nW7qdo9Cp6gJ9ElF2+/\n/TZu376t7ctbWVkhISHBmGHLQpdcmANd8uDp6YmJEydi4MCBaNOmDRYtWoS+ffsaOfKWp0suXn/9\ndSxYsADe3t6orq7G5s2bYWdnZ+TI5TF79mwcP34c+fn5cHV1xVtvvYWKigoAzd9u8oQ7IiJqlGqP\neiIiInVgoSAiokaxUBARUaNYKIiIqFEsFERE1CgWCiIiahQLBRERNYqFgoiIGqXaM7PJPGzduhXv\nvvsu3n33XVhYWOD48eMYMGAAXnvtNYNfu6KiAvPmzat3b3ZD/Prrrzh8+DACAgIwffp0XLt2Ddu3\nb4eDgwM6d+6MTp06oaioSHsZ5+bG/dlnn+Gvv/5CYWEh3nnnHe3zunyeM2fO4NSpU+jSpQtu374N\nd3d3TJkypd56r776KmxsbLSvr2tsLZ1TMgEteHkRIr3FxsYK06dP1y5XV1cLu3fvbtZrXbp0SXj3\n3XdbKrQGTZ8+XUhMTBTS09OFtLQ0Ydy4cXWuGbR06VLh6NGjOr3W9evXhdLS0nrP79u3T/uaM2fO\nFOLi4nSOr7S0VFi0aJF2+b333hMyMzMbXHf79u3CDz/80OjrKZFTUj+2nsio4uLi4OPjAwAoLCyE\nhYVFs6/BEx0djUGDBrVkePX89ddf8PX1hZubG5555hmsWrWqTryDBg3S+YqkKSkpuHHjRr3nL1++\njAMHDgAAevXqpdc9Vi5cuIDS0lLtsr+/f517D9SWkJCAoUOHNvp6SuSU1I+tJzJIVVUVDhw4gKtX\nr8LV1RUJCQl45ZVXEB8fj4qKCmRnZ6Nbt2547rnnGvz9xMREzJw5E4Ig4KeffoKLiwtOnTqFH3/8\nEYWFhXjhhRfg7++P/fv313u9H3/8ETdu3MDPP/+MSZMmYefOnfj73/+OvLw8lJaW4ocffoCzszNm\nzpyJH374Abdu3cLNmzcxefJk5Ofn4+DBgwgICAAAJCcn45///CcA1FvXy8sLAPDhhx/i3r17iIiI\ngIODA4qLizF27Ng6nyc4OBjp6emIiIjAuHHjMGzYMMydO1evmwatWrUK1dXVAICkpCS89NJLuHr1\nqvbzODk5ITw8vMHYvby8cPToUfj7+yM4OBgvvPDCAz/TjRs3YG9vjwsXLuD777+vF++RI0daLKdk\n2rhHQQZJSkrCjBkz0KtXL1RXV+O//uu/UFxcjJ9++gnz5s3DQw89hP79+z/w9+Pj43H16lU8//zz\nsLW1hYODAzp27IinnnoKYWFh8Pf3x+XLl+u93h9//IE9e/ZgwYIFCAsLw7x58+Ds7IxFixbByckJ\neXl56Nq1K8rLy3H58mXs3bsX8+fPR1BQELZv3669UYtGo8Hf/vY3pKamAkCD69bw9fXFlClTMG3a\nNMTGxiIwMLDe5+nQoQOKi4thZWUFQRCQnp6ODh066JXTdu3a4eGHH0ZMTAzGjBkDFxcX7ecpKyvT\nrnd/7ADQqVMn/O///i+effZZ7NixAwcOHGjwMxUVFWnvWXL37t0G4500aVKL5JRMHwsFGWTw4MGw\ntrbWbjgDAwMRHh6uvUlQUlLSA1sX+fn5KC8vxyuvvIKXXnoJfn5+8PDwwJkzZzB69GhYW1sDAPbu\n3Vvv9Xbv3o1nnnkGANC2bVvk5eXByclJ+9ojRoxAREQEnnzySYSFhWHOnDkAgIyMDHTp0gWjRo1C\nWloa/Pz8cOfOHe39kxtat0ZycjIGDBgAQLy0tY2NTZ3PU15ejl9++QUjRozAuXPnMHz4cJw+fRoj\nRozQrpOWloatW7di69atCA8Px65du7TL+fn52vVu3bqFU6dOaYf6NZ9n2rRpD4y9uroaCQkJsLW1\nxYIFC/DGG2/g5s2b2LNnT53PZGtri8TERAwZMkT72g3F21I5JdPHQkEGSUxMRH5+Pi5evIiePXvi\nxIkTKCwshIeHB8rLy1FcXIwzZ84AANLT0+v8bkJCgrZNMWDAANjZ2UEQBJSVlcHKykq7XkOvV1lZ\niUceeQSAeEezn3/+GUOGDEFiYiJKS0tRVFQECwsL/P777ygvL9euGx4ejrlz5+LevXto164dACAy\nMhLjx49HbGxsg+vWuHjxonbvaPLkyYiLi6tzS8kDBw5gzJgxAKAtIrGxsRg8eDDi4+MBiHdXW758\nOZYvX46ZM2fi2Wef1S7b29sDEG9TuW/fPqxevRqVlZU4duwYiouLYWFhgQsXLjww9t9//x2XLl3S\nxpOcnIwpU6agrKys3mc6c+YMfH19ER0d/cB4a4qJoTkl0/fQunXr1hk7CDJdu3btQlZWFjp37ow7\nd+6gffv2eOyxxxAdHY1r167h7t27sLOzQ+fOnTF69GgsX74cgDjEfv/99yEIAtzc3LS3rszMzERe\nXp52gwsADg4O9V7vySefxHfffYfCwkLk5+ejZ8+eOHPmDJydnfHoo4+itLQUCQkJePTRRxEYGIjI\nyEhcuXIFfn5+GDp0KJKSkmBpaYkhQ4YgIyMDWVlZGDp0KAYOHFhv3Rr/+te/8PzzzwMA7Ozs0KVL\nF3z++efIyspCcnIyJk2apG3bnD17Frdv30Z2djYKCwsxYcIEtG3btk7uav67t7W1rfP8//zP/2DN\nmjX46KOP8P777+PFF19E+/bttZ+n5r/1+2P/7bffUFJSgnPnzuHkyZPw9vaGr68vevToUeczDRs2\nDHl5eUhKSkJQUBBsbGwajLe8vLxFctq5c+eW/8MjRfHGRaSYmJiYBvv6anfo0CGUl5fj5MmTCA0N\nbbHXPXnyZJ0iSaRWbCKSYmoPYk2JlZUV0tLS8OKLL7bo644aNapFX49ILtyjICKiRnGYTUREjWKh\nICKiRrFQEBFRo1goiIioUSwURETUKBYKIiJqFAsFERE1ioWCiIga9f8B9Oi5Uysw0u0AAAAASUVO\nRK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x8ef8748>" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "The curve is similar in shape to an adsorption isotherm of the very favorable type.\n" ] } ], "prompt_number": 63 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.8,Page number:535" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "\t# From example 9.7 \n", "alpha = 0.891 \n", "\t# For bed length Z = 1.829\n", "Z1 = 1.829 \t\t\t\t\t\t# [m]\n", "\n", "#Calculation\n", "\n", "LUB = (1-alpha)*Z1 \t\t\t\t\t# [length of unused bed, m]\n", "\t# For this bed length \n", "tb1 = 139.7 \t\t\t\t\t\t# [min]\n", "\t# If the bed length is increased to Z2 = 3 m\n", "Z2 = 3 \t\t\t\t\t\t# [m]\n", "\t# New break through time will be given by equation 9.64\n", "tb2 = tb1*(Z2/Z1)*(1-LUB/Z2)/(1-LUB/Z1) \t\t# [min]\n", "\n", "#Result\n", "\n", "print\"The new time of breakthrough assuming constant LUB is\",round(tb2),\"minutes\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The new time of breakthrough assuming constant LUB is 240.0 minutes\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.9,Page number:536" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "import math\n", "F = 7 \t\t\t\t\t# [water flow rate, L/s]\n", "Z = 3 \t\t\t\t\t# [m]\n", "d = 2.6 \t\t\t\t# [m]\n", "\n", "#Calculations\n", "\n", "A = math.pi*d**2/4 \t\t\t# [cross sectional area, square m]\n", "vo = 0.013 \t\t\t\t# [superficial velocity, m/s]\n", "\n", "cf = 7*10**-3 \t\t\t\t# [Ca2+ ion concentration, eq/L]\n", "qstar_F = 2.9 \t\t\t\t# [cation capacity, eq/kg]\n", "rowp = 1.34 \t\t\t\t# [kg/L]\n", "e = 0.38 \t\t\t\t# [porosity]\n", "\t# From equation 9.66\n", "t_star = Z*qstar_F*rowp*(1-e)/(vo*cf*3600) \t\t\t# [hour]\n", "\n", "#Result\n", "\n", "print\"The ideal breakthrough time for the ion exchanger is\",round(t_star),\"hour\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The ideal breakthrough time for the ion exchanger is 22.0 hour\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.11,Page number:542" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration\n", "mtc = 0.02 \t\t\t\t\t# [mass transfer coefficient, cm/min]\n", "p = 0.03 \t\t\t\t\t# [permeance, cm/min]\n", "F = 1 \t\t\t\t\t\t# [cubic m/h]\n", "W = 1000 \t\t\t\t\t# [water wash rate, kg/h]\n", "\t# Density of 25% H2SO4 solution at 298 K is \n", "d1 = 1175 \t\t\t\t\t# [kg/cubic m]\n", "x = 0.25 \t\t\t\t\t# [fraction of H2SO4 in solution]\n", "cF = 294 \t\t\t\t\t# [kg/cubic m]\n", "\n", "\n", "#Calculation\n", "\n", "\n", "K = (1/p+1/mtc)**-1 \t\t\t\t # [overall mass transfer coefficient, cm/min]\n", "\n", "\t# Flow of H2SO4 in feed\n", "F_sul = F*d1*x \t\t\t\t# [kg/h]\n", "import math\n", "\t\t# For 60% recovery and rest in dialysate\n", "yr = 0.60 \n", "yd = 0.40 \n", "\t\t# Transmembrane flow of acid\n", "Ft = F_sul*yr \t\t\t\t\t# [kg/h]\n", "\t# From the given water transport number, Transmembrane counterflow of water \n", "Fw = Ft*0.8 \t\t\t\t\t# [kg/h]\n", "\n", "\t# Now inlet and outlet concentration from material balances\n", "\t# Flow of acid in dialysate\n", "Fad = F_sul*yd \t\t\t\t# [kg/h]\n", "\n", "\t# Total dialysate flow\n", "D = F*d1-Ft+Fw \t\t\t\t# [kg/h]\n", "x_aD = Fad/D \t\t\t\t\t# [mass fraction of acid in dialysate]\n", "\n", "\t# Density of 10.3 wt % aqueous solution of sulfuric acid at 298K is\n", "d2 = 1064 \t\t\t\t\t# [kg/cubic m] \n", "\n", "cR = x_aD*d2 \t\t\t\t\t# [kg/cubic m]\n", "\t# Flow of acid in diffusate\n", "Fd = Ft \t\t\t\t\t# [kg/h]\n", "\t\t# Total Diffusate flow\n", "Di = 1000-Fw+Fd \t\t\t\t # [kg/h]\n", "x_aDi = Fd/Di \t\t\t\t\t# [mass fraction acid in diffusate]\n", "\n", "\t# Density of 17 wt % aqueous solution of sulfuric acid at 298 K is\n", "d3 = 1114 \t\t\t\t\t# [kg/cubic m]\n", "\n", "cP = x_aDi*d3 \t\t\t\t\t# [kg/cubic m]\n", "\t# At the free end of dialyzer \n", "deltaC1 = cF-cP \t\t\t\t# [kg/cubic m]\n", "\t# At the dialysate end\t\n", "deltaC2 = cR-0 \t\t\t\t# [kg/cubic m]\n", "lmdf = (deltaC2-deltaC1)/(math.log(deltaC2/deltaC1)) \t# [math.log-mean driving force, kg/cubic \t\t\t\t\t\t\t\tm]\n", "\n", "\t# Therefore\n", "Am = Fd*100/(K*lmdf*60) \n", "\n", "#Result\n", "\n", "print\"The membrane area required is\",round(Am),\"square m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The membrane area required is 229.0 square m\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.12,Page number:545" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "\t# A-NaCl\n", "vo = 0.05 \t\t\t\t\t# [superficial velocity of water in the shell, \t\t\t\t\t\tm/s]\n", "T = 298 \t\t\t\t\t# [K]\n", "Pf = 70 \t\t\t\t\t# [bar]\n", "Pp = 3 \t\t\t\t\t# [pressure at permeate side, bar]\n", "p = 1.1*10**-5 \t\t\t\t# [water permeance, g/square cm.s.bar]\n", "R1 = 0.97 \t\t\t\t\t# [salt rejection]\n", "R = 8.314 \n", "xAf = 0.02 \t\t\t\t\t# [fraction of NaCl in feed side]\n", "xAp = 0.0005 \t\t\t\t\t# [fraction of NaCl in permeate side]\n", "MA = 58.5 \t\t\t\t\t # [gram/mole]\n", "\n", "\n", "print\"\\nSolution 9.12(a)\" \n", "\t# Solution(a)\n", "\n", "deltaP = Pf-Pp \t\t\t\t# [bar]\n", "\t# Density of both feed and permeate is 1 g/cc\n", "df = 1000\t\t\t\t\t # [kg/cubic m]\n", "dp = df \n", "\t# Bulk feed salt concentration \n", "csf = xAf*2*1000/MA \t\t\t\t# [kmole/cubic m]\n", "\t# Bulk permeate salt concentration\n", "csp = xAp*2*1000/MA \t\t\t\t# [kmole/cubic m]\n", "\n", "\t# From equation 9.76\n", "pif = R*T*csf/100 \t\t\t\t# [osmotic pressure at feed side, bar]\n", "pip = R*T*csp/100 \t\t\t\t# [osmotic pressure at permeate side, bar]\n", "deltapi = pif-pip \t\t\t\t# [bar]\n", "\n", "Y = deltaP-deltapi \t\t\t\t# [bar]\n", "\t# Transmembrane flux of water\n", "nH2O = p*Y*10**-3/(df*(10**-4*1/(60*60*24))) \t# [cubic m/square m.day]\n", "\n", "print\"The transmembrane flux of water is\",round(nH2O,2),\"cubic m/square m.day.\"\n", "\n", "print\"\\nSolution 9.12(b)\" \n", "\t# Solution(b)\n", "\n", "\t# Properties of water are\n", "dw = 1000 \t\t\t\t\t# [kg/cubic m]\n", "uw = 0.9*10**-3 \t\t\t\t# [kg/m.s]\n", "DA = 1.6*10**-9 \t\t\t\t# [Diffusivity of NaCl in water, square m/s]\n", "d = 290*10**-6 \t\t\t\t# [outside diameter of fibres, m]\n", "phi = 0.4 \n", "\t# For a superficial velocity of 5 cm/sec\n", "Re = dw*vo*d/uw \t\t\t\t# [Renoylds number]\n", "Sc = uw/(dw*DA) \t\t\t\t# [Schmidt number]\n", "Sh = 8.63 \t\t\t\t\t# [Sherwood number]\n", "\t# Therefore \n", "ks = Sh*DA/d \t\t\t\t\t# [m/s]\n", "\t# From equation 9.81\n", "\n", "t = nH2O*R1/(ks) \n", "#Since we have to find the value of 't' PER DAY...therefore we will divide by day\n", "#.ie\n", "t=t/(24*60*60)\n", "\n", "#result\n", "print\"The concentration polarization factor is\",round(t,3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Solution 9.12(a)\n", "The transmembrane flux of water is 0.48 cubic m/square m.day.\n", "\n", "Solution 9.12(b)\n", "The concentration polarization factor is 0.113\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.13,Page number:548" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#variable declaration\n", "import math\n", "\t# w-water a-proteins\n", "T = 293 \t\t\t\t\t# [K]\n", "d = 2 \t\t\t\t\t\t# [diameter of tube, cm]\n", "dw = 1 \t\t\t\t\t# [g/cubic cm]\n", "uw = 0.01 \t\t\t\t\t# [cP]\n", "Da = 4*10**-7 \t\t\t\t\t# [Diffusivity of proteins, square cm/s]\n", "vo = 1.5*100 \t\t\t\t\t# [m/s]\n", "Qm = 250*10**-3/3600*100 \t\t\t# [water permeance, cm/s.atm]\n", "cR = 40 \t\t\t\t\t# [g/L]\n", "\n", "print\"Solution 9.13(a)\\n\" \n", "\t# Solution(a)\n", "\n", "v = 25*10**-3/3600*100 \t\t\t# [cm/s]\n", "\n", "Re = d*vo*dw/uw \t\t\t\t# [Renoylds number]\n", "Sc = uw/(dw*Da) \t\t\t\t# [Schmidt number]\n", "Sh = 0.0048*Re**0.913*Sc**0.346 \t\t# [Sherwood number]\n", "ks = Sh*Da/d \n", "\t# From equation 9.87\n", "cS = cR*math.exp(v/ks) \t\t\t\t# [g/L]\n", "\n", "\t# From figure 9.12\n", "pi1 = 2 \t\t\t\t\t# [osmotic pressure, atm]\n", "\t# For 100% rejection deltapi = pi1 because pi2 = 0\n", "\t# Therefore\n", "deltapi = pi1 \t\t\t\t\t# [atm]\n", "\t# From equation 9.83\n", "deltaP = deltapi+(v/Qm) \n", "\n", "print\"The required pressure differential to produce a water transmembrane volume flux of 25 L/square m.h when the membrane is clean is\",deltaP,\"atm\"\n", "\n", "\n", "print\"\\nSolution 9.13(b)\\n\" \n", "\t# Solution(b)\n", "\n", "\t# Membrane permeance is reduced fivefold by fouling\n", "Qm = Qm/5 \t\t\t\t\t# [cm/s.atm]\n", "\t# Here deltaP remains same\n", "\t# Equations 9.83 and 9.87, and the osmotic pressure data of Figure 9.12 must be solved \tsimultaneously by trial and error to calculate new values for these three variables.\n", "\t# The results are\n", "cS2 = 213 \t\t\t\t\t# [g/L]\n", "deltapi2 = 1.63 \t\t\t\t# [atm]\n", "v2 = 6.53*10**-4 \t\t\t\t# [cm/s]\n", "\n", "#Result\n", "\n", "print\"The water flux if the applied pressure differential remains the same as calculated in part (a) is\",round(v2*1000*10**-2*3600,1),\"L/square m.hr\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Solution 9.13(a)\n", "\n", "The required pressure differential to produce a water transmembrane volume flux of 25 L/square m.h when the membrane is clean is 2.1 atm\n", "\n", "Solution 9.13(b)\n", "\n", "The water flux if the applied pressure differential remains the same as calculated in part (a) is 23.5 L/square m.hr\n" ] } ], "prompt_number": 9 } ], "metadata": {} } ] }