{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 7:Liquid-Liquid Extraction " ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.1,Page number:429" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from pylab import *\n", "\n", "#For water phase:\n", "Cw=[1.23,1.29,1.71,5.10,9.8,16.90] #Chloroformm concentration in wt %\n", "Aw=[15.80,25.6,36.0,49.30,55.7,59.60] #Acetone concentration in wt %\n", "\n", "#For Chloroform phase\n", "Cc=[70.0,55.7,42.9,28.4,20.4,16.9] #Chloroformm concentration in wt% \n", "Ac=[28.70,42.10,52.70,61.30,61.00,59.6] #Acetone concentration in wt %\n", "for i in range(0,6):\n", " Cw[i]=Cw[i]/100 #Weight fraction\n", " Aw[i]=Aw[i]/100 #Weight fraction\n", " Cc[i]=Cc[i]/100 #Weight fraction\n", " Ac[i]=Ac[i]/100 #Weight fraction\n", "\n", "a1=plot(Cw,Aw)\n", "a2=plot(Cc,Ac)\n", "X=linspace(1,0)\n", "Y=linspace(0,1)\n", "a3=plot(X,Y)\n", "xlabel(\"$Weight fraction of chloroform$\")\n", "ylabel(\"$Weight fraction of acetone$\")\n", "title(\"Equilibrium for water-chloroform-acetone at 298 K and 1 atm.\\n\\n\")\n", "a4=plot([Cw[1],Cc[1]],[Aw[1],Ac[1]],label='$Tie line$')\n", "a5=plot([(Cw[2]+Cw[3])/2,(Cc[2]+Cc[3])/2],[(Aw[2]+Aw[3])/2,(Ac[2]+Ac[3])/2],label='$Tie line$')\n", "a6=plot([Cw[5],Cc[3]],[Aw[5],Aw[1]],label='$Conjugate line$')\n", "legend(loc='upper right')\n" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 42, "text": [ "" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAE7CAYAAAAVTRylAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdYk2f3B/BvWLJHAEWGIEPAgoqCCg7AVa1iB22V11FH\n0W6t1f5crba2FvtqX2utWvfGujduQduq4FbcCsgQlb1Xcn5/RFKCYUoGcD7XxaVJnnFyZ5yc576f\n5xYQEYExxhhrABqqDoAxxljTwUmFMcZYg+GkwhhjrMFwUmGMMdZgOKkwxhhrMJxUGGOMNZgmk1Qe\nP34MIyMjlI+QDggIwJo1awAAW7Zsweuvvy5dVkNDA48ePar1tiuvr0hPnz5F7969YWxsjGnTpill\nn+qm4mtXWXx8PDQ0NCAWixWy77Fjx0IoFKJ79+4K2T5j8tT1O0mdKT2pODg4QF9fH0ZGRtK/L774\n4pW326ZNG+Tm5kIgEAAABAKB9P8jRozA0aNH673tV12/LlauXImWLVsiJycH//3vf5Wyz9pQ5pu+\n4munTGfPnsWJEyeQkpKC8+fPK33/ilJdklal9evXo1evXtUuM3XqVLRr1w7GxsZwd3fHpk2bZB4/\ncOAAPDw8YGRkhB49euD27dsyj8+bNw92dnYwNTVFYGAgbt26VeW+Kr/HFy5cCGtr65e2qWzbt2+H\nn58fDAwMEBgY+ErbUsZ7QelJRSAQ4ODBg8jNzZX+LVmyRNlh1JpIJFLq/hISEuDu7l6vdcvKyho4\nGln1PU9W0XHVVk2vZUJCAhwcHKCrq1vnbavLc5RHFQm6oRgaGuLgwYPIycnBhg0bMGnSJJw7dw4A\ncP/+fYwcORIrV65EdnY2goKCMHToUOnrvH//fqxYsQJnz55FRkYGfH19MWrUqFrt94cffsCSJUtw\n5syZen8eG4q5uTmmTJmC6dOnv/K2lPJeICVzcHCgkydPyn1MJBLRV199RRYWFuTo6EhLly4lgUBA\nIpGIiIjs7e3pxIkT0uXnzJlDI0eOJCKiuLg4mWUDAgJozZo1RES0bt066tmzp3Q9gUBAS5YsIUdH\nR7KwsKBp06aRWCyWLuvn50dffvklmZub0+zZs2XWr7wfIiJ/f39avXr1S+ubmpqSk5MT/f3337R2\n7Vqys7Ojli1b0oYNG+Q+/w8++IC0tbVJR0eHDA0N6eTJk1RcXEyTJk0ia2trsra2psmTJ1NxcTER\nEZ0+fZpsbGxowYIFZGVlRaNHj35pm23atKFLly4REdHmzZtJIBDQrVu3iIho9erV9NZbbxER0YUL\nF6h79+5kampKrVu3ps8++4xKSkqIiKhXr14kEAjIwMCADA0Nafv27UREdODAAerYsSOZmpqSn58f\nXb9+Xbpfe3t7WrBgAXl6epKurq5Me5Xbu3cvdezYkYyNjcnJyYmOHj0qfe2++eYb6tGjBxkZGdGA\nAQMoLS1NbvsnJydTUFAQCYVCcnZ2plWrVsm8P4KDg2nkyJFkbGxMa9asqXL51atXk66uLmlqapKh\noSHNnTuXiIhWrlxJzs7OJBQKaejQoZSSkiLzPvr999/J2dmZHB0dKTIykmxsbOjnn38mS0tLat26\nNe3Zs4cOHTpELi4uJBQK6aeffpL72pd79913ycrKikxMTKh3794UGxsrfaygoICmTJlC9vb2ZGJi\nQj179qTCwkIiIjp37hz5+vqSqakpdezYkSIjI4mIaObMmaSpqUm6urpkaGhIn3/+ORER/f333+Tt\n7U0mJibk4+ND//zzj3Q//v7+VbZ/dfuS56effiInJycyMjKi9u3b0549e4iI6NatWzLtbWZmVm27\nlBs6dCj98ssvRET022+/0eDBg6WPicVi0tPTo1OnThER0Y8//kjvv/++9PGbN2+Srq5uldsWCAT0\n4MEDmjVrFrVt25bi4uKqXPbBgwcUGBhI5ubmZGFhQSNGjKCsrCzp4/b29rRw4ULq0KEDmZiY0LBh\nw6ioqEj6+M8//0ytW7cmGxsbWrNmDQkEAnr48GG1z33VqlUUEBBQ7TKZmZk0ePBgsrS0JDMzMxoy\nZAglJSURUdXvBYFAQMuWLSNnZ2cyMjKib775hh48eEDdu3eXxl7+XVAbKkkqFRNDRcuXLyc3NzdK\nSkqijIwMCggIIA0NDekXSOWENHfu3HonlT59+lBmZiY9fvyY2rVrJ5MUtLS0aOnSpSQSiaiwsLDG\npFJ5X1paWrR+/XoSi8U0e/ZssrGxkX5JHzt2jIyMjCg/P19uG4wZM4a++eYb6e1vvvmGfH196fnz\n5/T8+XPy8/OTPn769GnS0tKi6dOnU0lJifQLpqLRo0fTokWLiIgoNDSUnJ2dafny5URENGrUKFq8\neDEREV26dIkuXLhAIpGI4uPjyd3dXfpYeZtVfNNfvnyZWrZsSdHR0SQWi2nDhg3k4OAgffPZ29uT\nl5cXJSUlyXyYyl24cIFMTEyk74Xk5GS6c+cOEUm+1JycnOj+/ftUWFhIAQEBNH36dLnt36tXL/r0\n00+puLiYrl69SpaWltIvlTlz5pC2tjbt27ePiIgKCwurXX79+vUy75OTJ0+ShYUFXblyhYqLi+nz\nzz+n3r17y7TJgAEDKDMzk4qKiqSvx7x586isrIxWrVpF5ubm9J///Ify8vIoNjaW9PT0KD4+Xu5r\nTyR5/+Tl5VFJSQlNnjyZOnXqJH3sk08+ocDAQEpJSSGRSETnzp2j4uJiSkpKInNzc4qIiCAiouPH\nj5O5ubk0EVR8fxIRpaenk6mpKW3evJlEIhGFh4eTmZkZZWRkSNvf2dlZbvtXta/nz5/LfT47duyg\nJ0+eEBHRn3/+SQYGBpSamiq3vWtSUFBArVu3lv74WLp0Kb3xxhvSx8vKykhXV5eWLFlCRJL3mJ2d\nHd27d49KSkpo2rRp9Pbbb1e5fYFAQMHBweTi4kKJiYnVxvLgwQM6ceIElZSU0PPnz6l37940efJk\n6eMODg7UrVs3evLkCWVkZJC7uzutWLGCiIgiIiKoVatWFBsbS/n5+RQSEtJgSSU9PZ12795NhYWF\nlJubS++99570hyPRy++F8uf91ltvUW5uLsXGxpKOjg4FBgZSXFwcZWdnU/v27av8ISyP0pOKvb09\nGRoakqmpqfSv/As9MDCQ/vjjD+myx44dk/kCqZxUXqVSKX9jEhEtW7aM+vbtK122TZs2MjHXNam4\nuLhIH7t+/ToJBAJ69uyZ9D5zc3O6du2a3PYZM2YMzZ49W3rbyclJ+gEmIjp69Cg5ODgQkSSp6Ojo\nSCsXedasWUNDhw4lIiJ3d3das2YNDR8+nIgkr8WVK1fkrve///1P5gNY+U3/0UcfySQ/IiJXV1c6\nc+YMEUleq3Xr1lUZ14QJE2jKlClyHwsICKAff/xRenvZsmU0cOBAIpJt/8ePH5Ompibl5eVJl50x\nYwaNGTOGiCTvD39/f+ljNS1f+X0ybtw4+r//+z/p7by8PNLW1qaEhARpm5w+fVr6+OnTp0lPT09a\n9ebk5JBAIKDo6GjpMl26dKG9e/dW2S4VZWZmkkAgoJycHBKJRKSnpydTDZYLCwujUaNGydz3+uuv\nS78IAgICpJ8xIqKNGzdSt27dZJb39fWl9evXS5evqv1r2ldNOnXqJE3yldu7JqNHj6ZBgwZJb9+5\nc4cMDAwoMjKSiouL6fvvvycNDQ0KCwuTLjN79mwSCASkpaVFjo6O1VYfAoGATExMpL/g62LPnj3k\n5eUlve3g4EBbtmyR3v7666/po48+IiKisWPH0owZM6SP3bt3r8GSSmVXrlyRqQIrvxeIJM+7YqXa\npUsX+vnnn6W3v/rqK5mEWROV9Kns27cPmZmZ0r/x48cDAJ48eQI7Ozvpsm3atFFYHJX3k5KSIvex\n+mjVqpX0/3p6egAAS0tLmfvy8vJqta2UlBTY29tXGaulpSV0dHSqXL937944e/YsUlNTIRKJ8N57\n7+Hvv/9GQkICsrOz0alTJwDAvXv3MGTIELRu3RomJiaYNWsW0tPTq9xuQkICFi1aBDMzM+lfUlKS\n3HYsH5lnZGQEY2NjAEBSUhKcnJyq3L6VlZX0/1W1V0pKCoRCIQwMDGTaJzk5WXrb1ta2TstX9OTJ\nE5m2NzAwgLm5uczyld8r5ubm0uPW5a995fdDfn4+AEl/QXmbJCUlQSQSYfr06XB2doaJiQnatm0L\nAEhLS0NaWhqKiorktllCQgJ27Ngh81r8/fffSE1NlS5T8Vh6SkrKS58te3t7mdeuqvavzb4q2rhx\nI7y8vKTL3rx5s9r3VVWmTZuGW7duYfv27dL7XF1dsWHDBnz22WewtrZGeno62rdvL33Nly5dipMn\nTyIpKQnFxcX49ttv0adPHxQWFla5n23btmHnzp2YO3dutfE8ffoUw4cPh62tLUxMTDBq1KiXnlfl\nNix/3RX5PVdQUICJEyfCwcEBJiYm8Pf3R3Z2tkx/qLx+lcrv0cq3a/t9BajZkOLWrVvj8ePH0tsV\n/w9IPtTlLwyAKt/ItVF5PzY2NtLb1XVmlX8hFRQUNEgcNbG2tkZ8fLz09uPHj2FtbS29XVPHm7Oz\nM/T19fHbb7/B398fRkZGsLKywsqVK2VG3nz88cdo3749Hjx4gOzsbPz444/VDttt06YNZs2aJfPj\nIC8vD8OGDXsptvKRebm5ucjJyQEg+TJ+8OBBndqiMmtra2RkZMi84R8/fiyTSCq2T22Wr7z9im2f\nn5+P9PT0Wr9XapKXlydtE1tbW2zduhX79+/HyZMnkZ2djbi4OACSARIWFhbQ1dWV22Zt2rTBqFGj\nZF6L3NxcfP3113JjtLGxQUJCgsx9CQkJMs+rKjXtq/I2J0yYgN9//x0ZGRnIzMyEh4eH9Auutm03\nZ84cHD16FMeOHYOhoaHMY8HBwbhx4wbS0tIwd+5cxMfHw8fHBwBw5MgRhISEwNraGhoaGvjggw+Q\nmZlZ7Wiudu3a4cSJE1i2bBkWLFhQ5XIzZ86EpqYmbt68iezsbGzatKnWw9xr+p6rSm3aa9GiRbh3\n7x6io6ORnZ2NqKgokOSIVK238apUklSoilFE77//PpYsWYLk5GRkZmYiLCxMphE6deqEbdu2oays\nDBcvXsSuXbvq3UgLFy5EVlYWEhMTsWTJEpkvw+pYWlrCxsYGmzZtgkgkwtq1a/Hw4cN6xSBP5bYJ\nCQnBDz/8IP21+v3339d6BEs5f39/LF26FP7+/gAkwwor3gYkX3BGRkbQ19fHnTt3sHz5cplttGrV\nSuZ5hoaGYsWKFYiOjgYRIT8/H4cOHar1L5rx48dj3bp1OHXqFMRiMZKTk3H37t0q20EeOzs7+Pn5\nYcaMGSguLsb169exdu1ajBw5skGWDwkJwbp163Dt2jUUFxdj5syZ6N69u8Iq6Ly8PLRo0QJCoRD5\n+fmYOXOm9DENDQ2MGzcOU6ZMwZMnTyASiXDu3DmUlJRg5MiROHDgAI4dOwaRSISioiJERkZKK6rK\nr90bb7yBe/fuITw8HGVlZfjzzz9x584dDBkyRLpMVe1f074qys/Ph0AggIWFBcRiMdatW4ebN29K\nH2/VqhWSkpJQWlpaZZv89NNPCA8Px/Hjx2FmZvbS45cuXYJIJMLz588xYcIEvPnmm2jXrh0AoEOH\nDti+fTuePXsGsViMTZs2oaysDM7OzlXuDwDat2+PEydO4L///S9+/fVXucvk5eXBwMAAxsbGSE5O\nrtXw//I2ff/997F+/Xrcvn0bBQUF+O6776pdTywWo6ioCKWlpRCLxSguLq6yzfLy8qCnpwcTExNk\nZGS8tO3K74WaYq38/9pQSVIJCgqSOU8lODgYgOSL6vXXX0fHjh3h7e2N4OBgmSc0b948PHz4EGZm\nZpg7dy5GjBghs92qEoy88x7efPNNdOnSBV5eXhgyZIj0EJy8ZSvft2rVKvz3v/+FhYUFbt26hR49\nelS7r7okvsrrz549G97e3ujQoQM6dOgAb29vzJ49u07b9vf3R15eHnr37i33NiBJslu3boWxsTEm\nTJiA4cOHy2x77ty5+OCDD2BmZoadO3eiS5cuWLVqFT777DMIhUK4uLhg48aNtX6uPj4+WLduHb78\n8kuYmpoiICBA5hdbxe1UbpOK/w8PD0d8fDysra3xzjvv4Pvvv0efPn3krlfX5fv27Yt58+YhODgY\n1tbWiIuLw7Zt2+TGUdV9dXntR48eDXt7e9jY2MDDwwO+vr4y6y9cuBCenp7w8fGBubk5ZsyYAbFY\nDFtbW+zbtw/z589Hy5Yt0aZNGyxatEj62Zk0aRJ27twJoVCIyZMnQygU4uDBg1i0aBEsLCywcOFC\nHDx4EEKhUG7cFdulqn3J+5Xevn17fPXVV/D19YWVlRVu3ryJnj17yrTva6+9BisrK7Rs2VJum8ya\nNQuJiYlwdnaWfl+EhYVJH588eTLMzMzg5uYGc3NzrFq1SvrY7Nmz4erqig4dOsDMzAy//vordu3a\nJT0EW1nF59yhQwccPXoU3333HVauXPnSsnPmzMHly5dhYmKCoKAgBAcHV/taV2zDgQMHYvLkyejT\npw/atWuHvn37Vrvuxo0boa+vj08++QRnz56Fnp4eJk6cKHfZyZMno7CwEBYWFvDz88OgQYNktl35\nvVBdvPJiLz+UnZSUVPW6VNc0pETx8fFwdHREWVkZNDTU6kgdY4wxOfibmjHGWINR+6TSmM8GZoyx\n5katD38xxhhrXNS+UmGMMdZ4cFJhjDHWYDipMMYYazCcVBhjjDUYTiqMMcYaDCcVxhhjDYaTCmOM\nsQbDSYUxxliD4aTCGGOswXBSYYwx1mA4qTDGGGswnFQYY4w1GE4qjDHGGgwnFcYYYw2GkwpjjLEG\nw0mFMcZYg+GkwhhjrMFwUmGMMdZgOKkwxhhrMJxUGGOMNRhOKowxxhoMJxXGGGMNhpMKY4yxBsNJ\nhTHGWIPhpMIYY6zBcFJhjDHWYJSaVMaNG4dWrVrB09OzymW++OILuLi4oGPHjrhy5YoSo2OMMfaq\nlJpUxo4diyNHjlT5+OHDh/HgwQPcv38fK1euxMcff6zE6BhjjL0qpSaVXr16wczMrMrH9+/fjw8+\n+AAA0K1bN2RlZeHp06fKCo8xxtgrUqs+leTkZNjZ2Ulv29raIikpSYURMcYYqwu1SioAQEQytwUC\ngYoiYYwxVldaqg6gIhsbGyQmJkpvJyUlwcbG5qXlnE1M8DAnR5mhMcZYo+fk5IQHDx4odB9qVakM\nHToUGzduBACcP38epqamaNWq1UvLPczJAUVFgZycQCNHgtLTQUTN8m/OnDkqj0Fd/rgtuC24Lar/\ne/jwocK/x5VaqYSEhCAqKgppaWmws7PDd999h9LSUgDAxIkT8cYbb+Dw4cNwdnaGgYEB1q1bV/XG\nevcGrl0DZs4EPD2BFSuAoCAlPRPGGGPyKDWphIeH17jM0qVLa79BAwPg11+B4GBg3Dhg+3bJbaHw\nFaJkjDFWX2p1+KveyqsWMzNJ1XLggKojUpqAgABVh6A2uC3+xW3xL24L5RIQEdW8mHoRCASoMuwz\nZyRVi68vVy2MMVZBtd+dDaRpVCoVlVctQqGkatm/X9URMaZWhEIhBAIB/zXhP6EKf0w3vUqlIq5a\nGHuJMn6tMtWq6jXmSuVVcdXCGGNK1bQrlYq4amEMAFcqzQFXKsrAVQtjjClc86lUKuKqhTVjXKk0\nfVypKBtXLYwxphDNM6kA/56NHx4OTJkCjBoFZGSoOirGmr2srCx07twZ//vf/7BmzRoYGhpizpw5\nWLlyJd58801s2rQJ06dPx7Fjx6rcxtatW2FpaSlzX03rsIbRPA9/VZafL7mG2M6dwPLlwNChDbdt\nxtSMuh/+2rZtG/r27QtLS0skJiaiU6dOSE9PBwBcuHABRITu3btXu40rV65g/vz52LFjhzJCVjt8\n+EvVuGphTG3Y2dlJq4zTp0/D399f+pi+vj7at29f4zZOnTqFPn36KCxGVjW1mk9F5cr7WmbM4Csf\ns2ZNEBn5ytugel5zq0ePHtL/nz59WiY52NjYICIiArt27cL27dsBALGxsdi4cSN69+6NS5cu4dtv\nv0VkZCQWLlwIAMjIyMDx48el61y6dAkXLlxASkoKvL29IRKJcOjQIaxdu7bK7bE6oEZIKWFHRhI5\nOhKNHEmUnq74/TGmJI3pY+/g4EA3b96U3j5+/DhlZmaSt7c3ERE9ffqU7O3t6dmzZ0RENGPGDBKJ\nROTm5lblOhEREXTy5El66623iIhILBaTo6NjldtrjKp6jZXx2vPhr6r4+wPXrzfLKx8zpg7i4uJQ\nWFiI1157TXpfv379sH79eowZMwYAsGPHDtjb2+PKlSvYsmULPvvsM0RHR8PHx6fKdQYOHIjjx49j\n1KhRAIBz585Jl6+8vc8//1w5T7YJ4Y762oiKkpzX4ufH57WwRk/dO+rLrV27FseOHcO2bdtk7u/W\nrRuOHTuGv/76C0+fPsWzZ88wffp0AEBKSgq2bNkCc3NzmJmZ4e23335pncGDB6N79+44evQoTExM\n8NFHH+G9995DaWkpUlJSZLb35MkTWFhYQFtbW7lP/hVxR72646qFMaW5desWVqxYgWXLliE7Oxur\nV6+GWCyWPu7o6IiDBw+ia9euCAkJQV5eHg4ePIh9+/YhJiYG7dq1Q1JSksyVesvX6datGwoKCmBq\nagoTExMAgIGBAZ49ewahUPjS9qKjoxtdQlE1rlTqiqsW1sg1lkqF1R9XKo0JVy2MMVYlrlReBVct\nrBFSm88PUxiuVBorrloYY0wGVyoNhasW1kio5eeHNSiuVJoCrloYY4wrFYXgqoWpMbX//LBXxpVK\nU8NVC2OsmeJKRdG4amFqplF9fli9cKXSlHHVwhhrRrhSUaaoKGD8eMDXl6sWpjKN9vPDao0rlebC\n318yXwtXLYxViacTbty4UlEV7mthKqLunx+eTvjVcaXSHHFfC2Ny8XTCjRtPJ6xKBgbAkiVAcLCk\natm+nasWphYiBZGvvI0ACqjXejydcCPX4HNJKkEjDbt6eXlEn39OZG1NtH+/qqNhTVhj+vzwdML1\nU9VrrIzXnisVdcFVC2MyqppOePHixXKnE37+/HmV0wlXXGfgwIGYMWNGjdMJP3/+nKcTrgfuU1E3\n5X0tQiH3tbBm7fTp0wgICHjp/vDwcIwcORKHDh2Cnp4eBg0ahAEDBmDEiBEAgLNnzyIgIAB79uyR\nu075tvv27QsA2LhxI0JDQ3HkyBG52ystLVXwM21aOKmoIwMDSZUSHg58+SUwahSQkaHqqBhTCp5O\nuHFT6pDiI0eOYPLkyRCJRPjwww/xf//3fzKPp6WlYeTIkUhNTUVZWRmmTp0qLVkrUvchkQ0qPx+Y\nORPYuRNYvhwYOlTVEbFGrll9fpopVQ4pVlpSEYlEcHV1xYkTJ2BjYwMfHx+Eh4fD3d1duszcuXNR\nXFyMn376CWlpaXB1dcXTp0+hpSXb9dMsPxRnzkj6WvhsfPaKmuXnp5lpFuepREdHw9nZGQ4ODtDW\n1sbw4cOxb98+mWVat26NnJwcAEBOTg7Mzc1fSijNVu/ekrPxy/ta9u9XdUSMMfYSpSWV5ORk2NnZ\nSW/b2toiOTlZZpnQ0FDExsbC2toaHTt2xK+//qqs8BqHin0tU6ZwXwtjTO0orQwQCAQ1LjN//nx0\n6tQJkZGRePjwIfr3749r167ByMjopWXnzp0r/X9AQIDcUSJNVnnVMnOmpGrhvhbGmByRkZGIjIxU\n6j6VllRsbGyQmJgovZ2YmAhbW1uZZf755x/MmjULAODk5IS2bdvi7t278Pb2fml7FZNKs1RetZSf\n17JjB/e1MMZkVP7B/d133yl8n0o7/OXt7Y379+8jPj4eJSUl+PPPPzG00q9rNzc3nDhxAgDw9OlT\n3L17F46OjsoKsXHivhbGmBpR6pDiiIgI6ZDi8ePHY8aMGfjjjz8AABMnTkRaWhrGjh2Lx48fQywW\nY8aMGfjPf/7zctA8ekU+HiHGaoE/P01fsxhS3JD4Q1ENPq+F1YA/P00fJ5U64g9FLXDVwqrAn5+m\nr1mcp8KUjPtaGGMqwJVKc8BVC6ugMX1+Dhw4gOjoaFhbW0NPTw96eno4d+4cwsLCoKurW69tRkdH\nY+3atVixYkUDR1s7W7duxaRJk/D8+XMAkmmO+/TpgwEDBjTYPlRZqfDp6s0Bn9fCGhmxWIwJEybA\nzc0N8+bNk96/d+9e3Lhxo94JBQC6du2Krl27NkSYL+nbty+OHj1a7ZVA3N3dZYb5hoWFKSQWVeHD\nX80Fn43PGpHy8ymmTp0qc7+vry9ef/11VYRUo+TkZBBRjZeWaupTHfPhr+aIR4g1a7X5/ERG1nwF\njJoEBNTvM5qeng47OzvcvXtX5tJOAEBEKCwsRGZmJtauXYvOnTsjJiYGo0aNQnZ2Ns6fP1/lNMH5\n+fnYv38/oqOjMWbMGAiFQsTExGDHjh0IDw9HaWkpBg0aJD1XTiQSISwsDG5ubnj27Bmio6Oxbt06\n3Lt3D5s2bYKvry/Cw8MxbNgwtGjRAqtWrYKWlhYGDRqEUaNGVTktcVBQEBYuXAhLS0uZaY4B4PLl\ny9U+h9pOdazKw1+NZ17RChpp2OonKorIyYlo5Eii9HRVR8OURN0/P3v27CFXV9cqH8/LyyMfHx9K\nS0sjIqLDhw/TRx99VO00wUREp06dIiKiTz/9lI4ePUrHjh2jxMRE6tWrFxERnT17lsaNGyddfvr0\n6bR+/XoiItq8eTP98ssvlJeXRx07dqTMzEwiIgoMDKSnT58SEVFISAhdvHiRiKqelrisrEw61XHl\naY6JGm6q46peY2W89nz4qznjEWJMDWlqaspMsFXRli1bsH37dnh7e8Pc3ByAZFIvfX19DBw4EMeP\nH5c7TTAABAYGAgDOnDmD3r17o3///li/fj1GjhwJADh58iT69+8PACgrK8Mff/yBYcOGAZBcQ6t/\n//7YvXs3PD09YWpqiqKiIuTl5aFly5YgIly5cgVdunQBIDst8ZYtW6TTEsfExEhj6tevH9avXy8z\nZ1R1z6GFMsmRAAAgAElEQVSqbaqbOiWV1NRUPHjwAADw7NkzFBcXKyQopkTc18LUTN++fZGWlobU\n1FTpfWKxGKtWrcLrr7+OkpISODs7AwAKCwuxa9cuTJkyBUDV0wSXe/ToEVq3bi3t6D9//jx69uwJ\nADhx4gQCAwNx9OhRFBQUwMbGBrq6uigpKcH169fh4eGBtLQ0dOzYUbp89+7dceTIEdy+fVs6N9S2\nbduqnJa48lTHlac5ru45NJapjuuUVHbt2oXHjx/j9OnTEAqF2Llzp6LiYsrGVQtTE/r6+ti/fz/m\nzJmDX375BRs2bMCWLVvwzjvvwMLCAiEhIUhPT8fBgwexaNEirF69GjY2NtVOE1zu6NGjGDhwoPT2\nW2+9hf3792PHjh1wdHTE4cOH0bFjRxgbG+PNN9/Ejh07MH/+fLi5uQEAQkJCkJSUhIiICDx//hwa\nGhrIysqCUCiEiYkJwsPDERAQUOW0xJWnOq44NTKApjHVcV2Olf3yyy9ERHTgwAEiIjp48GCDH4+r\njTqGzeqK+1qatOb4+YmIiCAiov79+9OjR49qXP7JkydUWFhIRERhYWG0a9cuhcbX0Kp6jZXx2tfp\nPBU3Nzf06tULLi4uKCsrw/Xr1zF48GBF5DqmSuVVy4wZkqplxQogKEjVUTFWL/n5+fj++++RmJiI\n8ePHo23btjWuM3v2bHTu3BmmpqbQ1NTEO++8o4RIm4Y6DylOSEjA3r17oaenh2HDhknLNGXiIcVK\nFBUlORvfz4/Pxm8i+PPT9DWqa3/Z29tj0qRJ8PT0lM4nz5owf3/g+nXAzExStRw4oOqIGGNqrE6V\nyg8//ID79+9DS0sL/fv3x9OnTzFp0iRFxicX/9JSkfKqpUcPSdViZqbqiFg98Oen6Ws0lcprr72G\nDRs24JdffgERwcnJSVFxMXVUXrWYmgIeHly1MMZeUqdKZc+ePbC1tZU5oUgV+JeWGqhYtSxezH0t\njQh/fpq+RlOpREVFYcuWLQgKCsJ7772HpUuXKioupu4qVi3c18IYe6FOlUpUVBTmzZsHX19fvPfe\neygpKYG3t7ci45OLf2mpGR4h1qgIhUJkZmaqOgymQGZmZsiQc2UMtatUYmJisGTJEvj5+eHXX3+V\nTjLDmjkeIdaoZGRkgIj4rwn/yUsoylKnpGJpaYn27dtj0KBBWLNmDZ49e6aouFhjY2AALFkiuYbY\nl1/yNcQYa6bqlFTMzc0xfPhwHDhwANeuXeOkwl5W+RpiXLUw1qzU+Yz6u3fvYsOGDSgpKUFoaChc\nXV0VFVuVuE+lkThzRtLX4uvLfS2MqQFlfHfWKamkpqbCysoKgORqmvr6+goLrDqcVBqR/HzJNcR2\n7eJZJhlTMbVJKvPnz4eXlxeSkpIQGhoKQNJpn5eXJ534Rpk4qTRCXLUwpnJqM/rr7bffRlxcHFas\nWIGgoCCEhobi6tWriIqKUmhwrAnhvhbGmoU6Hf6KiIjAoEGDkJqaipiYGFhbW0unz1QmrlQaOa5a\nGFMJtalUynl5eeHBgwewsrJCt27d4OHhoai4WFPGs0wy1mTxdMJMNQwMJFVKeDgwZQqf18JYE1Gn\npFJSUoI+ffogPz8fWlpaMDU1VVRcrLngvhbGmpQ6JZXy6YR3796NvXv34tKlS4qKizUnFasWPhuf\nsUatzvOpbN68GR07dsT169dVMkEXa8K4amGs0avT6K+QkBCsX78eLVq0wOPHjxEbG4tBgwYpMj65\nePRXM8AjxBhrcGo3+mvAgAFo0aIFAKBNmzYoKytTSFCMcdXCWONUp6TSsmVLDBs2THpByZs3byoq\nLsa4r4WxRqhOSWXw4MGYN28ezp07hy1btmDYsGF12tmRI0fg5uYGFxcXLFiwQO4ykZGR8PLygoeH\nBwICAuq0fdZEcdXCWKNRpz6V1atXw8PDA15eXrh48SKePHmCd999t1brikQiuLq64sSJE7CxsYGP\njw/Cw8Ph7u4uXSYrKws9evTA0aNHYWtri7S0NFhYWLwcNPep1IpILEKJqAQlohIUi4ol/5YV1+q+\nivdXvM/RzBHvtX8PBjoGqnlS3NfCWL0p47tTqy4LP3v2DFFRUViyZAlyc3Ph5ORU66QSHR0NZ2dn\nODg4AACGDx+Offv2ySSVrVu3Ijg4GLa2tgAgN6EwgIjwMPMhTjw6gROPTuDa02soKit6KUGISYwW\nWi3QQrMFdDR1oKOpgxZaFf7/4n6591Wxzq7buzDl6BQMe20YQruEonPrzsp98uVVy4wZkqplxQog\nKEi5MTDGqlSnpGJra4vRo0cDkJwIuW/fvlqvm5ycDDs7O5ltXbhwQWaZ+/fvo7S0FIGBgcjNzcWk\nSZMwatSouoTYZD3Pf45Tcadw4tEJHH90HKXiUvRz7Ic3Xd/Ej31+hL62/ksJQEujTi9vrSXlJGHt\nlbV4+8+3YalvidDOoQjxDIFxC2OF7O8l5bNMvvuupGrZvp2rFsbURJ2+dbS1tTFmzBgMHToUrq6u\nSEpKqvW6AoGgxmVKS0tx+fJlnDx5EgUFBfD19UX37t3h4uJSlzCbhILSAvz1+C9pNfIw8yH87f3R\nz7EfpvhOgZuFW63aVBFsjW3xrf+3mNVrFo4/Oo5Vl1dh+snpeMftHUzoMgFdbboqJ7byqmXmTK5a\nGFMTNSaVvXv3olOnTnBwcEBISAg6d+6MzZs34/Tp09KqpTZsbGyQmJgovZ2YmCg9zFXOzs4OFhYW\n0NPTg56eHnr37o1r167JTSpz586V/j8gIKBJdOrn5ADbd+QjU98BCx4Xwr2lF/q17YelbyyFj7UP\ntDW1VR2iDE0NTQx0HoiBzgORmpeK9VfXY8TuEdDX1kdo51CM7DASZnpmig2ifIRYcDBXLYxVEhkZ\nicjISOXulGowefJkiomJISKiffv21bR4lUpLS8nR0ZHi4uKouLiYOnbsSLdu3ZJZ5vbt29S3b18q\nKyuj/Px88vDwoNjY2Je2VYuwG43SUqLDh4mGDycyMSF6+22i7YcC6Pb9eaoOrV5EYhGdfHSShu8c\nTiY/mdDI3SPpTPwZEovFit95Xh7RF18QWVsTvcJ7lbGmShnfnTWO/jp16hR+++03FBUVobCwEIMH\nD0aHDh3g4eEBGxubOiWwiIgITJ48GSKRCOPHj8eMGTPwxx9/AAAmTpwIAFi4cCHWrVsHDQ0NhIaG\n4osvvnhpO4199BeR5KjNxo2SUzDs7YHRo4FhwwBzcyA/PxZXr/ZBt24PoKVlpOpw6y2tIA0br23E\nqsurAAAfen2IDzp9AAt9BQ/A4BFijMmlNtMJl1u0aBG8vb0RGxuLmzdvIiUlBba2tvj888/h6uqq\nyDhlNNakkpICbN0qSSY5OZJz+UaNAtq1e3nZW7f+AwMDT9jbz1B+oA2MiPB34t9YeWkl9t/dj4HO\nAxHaORSBbQOhIajTqVK1l58v6WvZuRNYvhwYOlQx+2GsEVG7pCLPtm3bkJiYiGnTpjVUTDVqTEkl\nPx/Yu1eSSKKjJYf+R40CevUCNKr5Ps3Pv4OrV3u/qFaUNKpKCTILM7HlxhasurwK+SX5GO81HmO9\nxsLK0EoxO+SqhTEptbv2lzw6Ojpwc3NriFiaDLEYOHUKGDMGsLUFtmwBxo4FkpOB1asBf//qEwoA\nGBi4QSgciKSkX5USs7KY6Znhs66f4erEq9gavBUPMx/C/Xd3vPPnO4i4H9Hw15PjWSYZU6o6VSq3\nb9/GsmXLYGZmhlGjRqlsqK+6Viq3b0sqki1bJH0jo0cDISGAVT1/hBcU3Mfly77o1u0BtLWb7oRo\naffScHLtSWQcyoBGvgZS16ZinNc42JnY1bxyXXDVwpo5tatUDh06hI8//hi+vr4ICwtDRESEouJq\nNJ4/B377DfDxAfr2BUQi4NAh4MoVyTUQ65tQAEBf3wUWFkORlPS/hgtYDZCIkP1PNh7NfISYDjG4\n2+MuOqR0QPA3wfA57IOn+U/RcUVHDNk6BPvu7EOZuIGqF65aGFO4OlUqGzZswAcffFDlbWVRdaVS\nVAQcPCipSs6ckZxvN2qUJKloajbsvgoLH+HSpa7o1u0etLUb7y/rsuwyZBzNQPrBdGREZECntQ7M\nh5jDfIg5jLsZQ6Ape7Jkfkk+dtzagVWXVyEuMw7jvMZhvNd4tDVr2zABcdXCmiG166g/ePAgNm/e\njBEjRqBNmzY4duyYUjvoy6kyqdy/DwwcKBkG/MEHwDvvAEYKHvV7924otLVbwdHxB8XuqIEV3CtA\n+sF0pB9MR25MLkx6mUgSyWBz6Nrr1no7sc9iseryKmy+vhmdW3dGaOdQvOn2JnQ0dV4tQB4hxpoZ\ntUsqAHD37l1s2LABJSUlCA0NVepQ4nKqSioXL0qqknnzgA8/VN5+CwvjcelSF3Ttehc6Oup7kU1x\niRjZf2VLE4koXyRNImZ9zaBp8GplXFFZEXbf3o1Vl1fh1vNb+KDjB/iw84doZy5nTHZdlFct3btL\nrinGVQtrotQyqZQ7d+4cbG1tZS4SqSyqSCrHjwMjRgCrVgFvvqnUXQMA7t37GJqaJnByClP+zqtR\n8qwEGRGSw1qZJzKh105PeljLsJOhwq4Bdi/9HlZfXo0N1zbA3cIdoZ1DEdw+GLpata+AZHDVwpoB\ntUsqP/zwA+7fvw8tLS30798fT58+xaRJkxQZn1zKTirbtgGTJkm+b3r1UtpuZRQVJeLixU7o2vU2\ndHRaqiYISE5kzL+eL61G8m/lw6yfGcyHmEM4SIgWVi2UGk+JqAT77+7HqsurcCnlEkZ2GInQzqF4\nreVr9dsg97WwJkztksqePXvw9ttvIzs7G4cPH4aRkRGGDBmiyPjkUmZSWbIE+PlnICJCMmBIle7f\n/xwCQQs4Oy9U6n5FhSJkncqSJhKBtgDmQZJqxLS3KTRaKOis+DqKy4zDmitrsO7qOtib2GNClwl4\n/7X3oa+tX7cNVaxa+MrHrAlRy6Ria2sLHx8fRcZUI2U0DBEwe7bke+XoUeDF3GIqVVycgpgYD/j4\nxKJFi9YK3VdRUhEyDkkOa2VFZcHQy1B6WEvfTV9ll92vjTJxGQ7fP4xVl1fh78d/Y7jHcIR2DoVX\na6+6bejMGclZq35+XLWwJkHtksrkyZMBAA8fPoSuri78/f3x2WefKSy4qii6YcrKgI8+Aq5fl5xz\nYmmpsF3V2YMHX4KI4OKyuEG3S2JCbkyutBopelwE4SAhzAebQ/i6ENpC9brsfm2VTyi25soaWOpb\nYmKXiRjdcTRaaNXyMF1+vmSWyV27uGphjZ7aJZWzZ89CIBCgZ8+eKCwsRGxsLLy9vRUZn1yKbJjC\nQmD4cMm5KLt2AYaGCtlNvRUXpyImpj18fG6gRYu6XSW6srKcMmQez5QkksPp0LbU/vfcke7G0NBS\nj8NaDUEkFuH4o+NYcmEJ7qTdwU99f8L7r71f+4orKkrS18JVC2vE1C6pNPXLtGRmSgb9tGkDrFsH\n6LziaRCK8uDBVIjFRWjXbmmd1y14UCA9rJVzPgfGPYylw3712uopIFr1czruNKYenwotDS0s7L8Q\nvexrOfqCqxbWyKldUlm4cCHeeOMNJCQkYOfOnXj33XcxaNAgRcYnlyIaJjlZclJjv37AokU1X/BR\nlUpKniE62h3e3lehq1v9kG5xqRjZf1c4dyRbBOFgIcyHmMOsnxm0DBUzj726E5MY4TfCMevULHi1\n9kJY3zC4WtTynCuuWlgjpXbX/rK0tET79u0xaNAgrFmzBs+ePVNUXEp15w7QowcwciTwyy/qnVAA\nQEenJVq3DsXjx/PlPl6aXorUzamIHR6Lf1r+g4dTH0LTUBPum93hm+wLt9VusHzLstkmFADQEGhg\nRIcRuPPZHfjZ+qHnup747PBneJ7/vOaV/f0lHW5mZpIhgQcOKD5gxhqJOn19mpubY/jw4Thw4ACu\nXbvWJJJKdDQQEADMmQP83/8BajyoSYad3VQ8e7YdhYXxICLk3cxDQlgCLve8jPNtz+P5zucw62cG\nn1gfeF/0Rtu5bWHsbQyBRiN5gkqiq6WLaT2m4fant6GloQX3390x/+x8FJQWVL+igYFkvPnWrcDk\nyZKLv2VkKCdoxtRYs75My5Ejku+CdesAFZxu80pERSLc+etr5D9OhOj7LwFA2sluGmAKTd0GvrJl\nM/Eg4wFmnJyBC0kXMC9wHkZ2GAlNjRrakvtaWCOhFn0qISEhCA8PBwDs3LkTJSUlCAoKwo0bN1Bc\nXIzAwECFBihPQzTMli3AlCnAnj2SQ+ONQXFKMdIPS/pGsk5nQb+bCPnT3sFrraIg9PRQ63NHGpt/\nEv/B1GNTUVBagIUDFqKfY7+aV+K+Fqbm1CKplJaWQltbco7CkiVLYG5ujn379kEgEKBly5b47bff\nFBqgPK/aMNu3A1OnSs6Sf62eV/NQBhITci9XOHfkURGEr0s62YUDhdA210Zc3FwUFyfAzW2dqsNt\ncogIu2/vxvST0+EsdMbP/X6GZ6saLqvAVQtTY2qRVCp69OgRUlNT4efnh5ycHIhEIpiZmSkyPrle\ntWF8fCRXGh44sAGDaiBleWXIPCE5dyTjUAa0TLX+PXfEzxga2rLdYKWlWYiOdoGX1z/Q11fNEO+m\nrkRUghUXV+DHsz8iqF0Qvg/8HtZG1tWvFBUFjB/P1xBjakXtkkpqaiqsXkxlWFBQAH39Ol5TqYG8\nSsNcvw4MHgzExzf8hFr1VRhXKKlGDqUj5+8cGHeXnDsiHCyEvnPNbRwfPw+Fhffg7r5JCdE2X1lF\nWfjp7E9YfWU1PvX5FNP8psGoRTWT6XDVwtSM2iSV+fPnw8vLC0lJSQgNDQUAxMTEIC8vr9H1qXz5\npeQs+XnzGjioOhCXiZFzLkd6WKs0rRTmb0iqEbP+ZtAyrttQ37KyHFy44IROnc7CwMBNQVGzcglZ\nCZh9ejZOPjqJOf5zML7zeGhpVPOacV8LUxNqk1Ru376N06dPY82aNbC2toaVlRW6du2K5ORkzJ07\nV6EBylPfhikpAWxtgXPnACcnBQRWjdLMUmQceTGd7pEM6NrrSg9rGXkbvfJQ34SEn5CffwPt229t\noIhZTS6lXMK049OQmpeKn/v/jMEug6seLMFVC1MDapNUym3cuBGjR49Gamoqjh07htdeew1dunRR\nZHxy1bdhdu0Cli4FTp9WQFCVEBEK7vw7nW7elTyYBphKDmu9IYSubT0nk6pCWVkuLlxwRqdOp2Bg\noMajD5oYIsLh+4cx7fg0tDJshYX9F6KLdTWfCa5amAqp3Rn1ERERKCkpgZWVFQIDAxvdyY9r10o+\nz4oiLhYj43gG7k+6jwvOF3D99esoiitCm/9rA7+nfvDc7wnrCdYNnlAAQEvLCHZ2UxEf/12Db5tV\nTSAQYHC7wbj+8XWEeIQgKDwII3ePREJWgvwV+Gx81sTVKakMGDAAOi+usmhnZ4eysjKFBKUIycmS\nw17BwQ273ZKnJXiy7gluBt/E363+RvyceOi00oHHHg90T+iOdsvawfwNc2jqKX5UgI3NJ8jOPou8\nvOsK3xeTpaWhhQldJuDuZ3fhZOaEzis74+vjXyOrKOvlhflsfNaE1SmptGzZEsOGDZNepuXmzZuK\niqvBbdwIvPce8KoD1ogIuVdyET8vHpe6XUK0WzQyIjJg8aYFut3vhs7/dIb9THsYdlDc/OxV0dQ0\ngJ3d14iPn6vU/bJ/GbUwwneB3+HGxzeQUZgB16Wu+PX8rygRlby8MFctrAmq82Va7t27h/Xr16Os\nrAwfffQRHB0dFRVblep6XJAIaNcO2LQJ6N697vsT5YuQeTJTOuxX00BTOp2uSU+Tl84dUSWRqBAX\nLjjD0/MAjIw6qzqcZu/G0xv4+sTXuJ9+H2H9whDsHiz/xwb3tTAlULuO+tWrV8PDwwNeXl64ePEi\nnjx5gnfffVeR8clV14b56y9gwgQgNrb2F4wsSihC+iFJJ3v2X9kw8jGSzjui30415+fUVlLSEmRm\nnoCn535Vh8JeOPHoBKYdnwY9LT0sHLAQfnZyrg3EI8SYgqldUpk/fz40NTVx7do15ObmwsnJCYsX\nN+y0trVR14YZNw5o315yaZaqkIiQc+Hfc0dKnpRA+MaLS6IMEELLpPFcJl4kKsKFC87w8NgDY2Mf\nVYfDXhCTGJuvb8asU7PQzaYbwvqFwVno/PKCZ84AY8dy1cIanNollfIhxQBQUlKCffv24b333lNY\ncFWpS8Pk5kpmcrxzB2jVSvaxsuwyZBx9ce5IRAZ0rHX+vSRKV2MINBvvBRqTk5chPf0gOnQ4rOpQ\nWCWFpYVYfH4xFp1bhBGeI/CN/zew0LeQXYirFqYAajekWFtbG2PGjMHu3btx//59JCUlKSquBrNj\nh6Q/tDyhFNwrQOIvibja5yrO2Z1D6oZUGPsao8ulLvC55gPHHx1h4mvSqBMKALRuPR75+TeRnX1O\n1aGwSvS09TCj1wzc+vQWRCSC++/uWPDXAhSWFv67UMURYl9+ySPEWKNRr/lUNm/ejKysLIwePRo+\nPso/vFKXbOvvJ8bXb2TDNePFdLr5Imk1YtbHDJoGanIBMAVISVmJ5893oWPHo6oOhVXjXvo9TD8x\nHZeeXMKPfX7Efzz/Aw1Bhd97+fnAzJnAzp3A8uXA0KGqC5Y1amp3+Ovs2bPo1auXIuOpldo2TOyJ\nQsQNuAQrHz1YvBitZdhR+UN9VUUsLkF0tCvc3DbB1LSnqsNhNTibcBZTj09FmbgM/+3/X/Rp20d2\ngTNnJB2EfOVjVk9ql1SGDx+ODRs2oEWLFoqMqUa1bZjp/0fQyivFD7/rKCEq9fTkyVo8fboFnTqd\nVHUorBZSi4uxOPYw/rgXCSNjF0T5DkZbs7b/LsBVC3sFatenYmpqiqioKJSWltZrZ0eOHIGbmxtc\nXFywYMGCKpeLiYmBlpYWdu/eXa/9AEBZGbBxkwAjPmu+CQUAWrUahaKiBGRmRqo6FFbJ85ISHElP\nx48JCXj75k3YnTsH95gYXNJ0xIfen6KXoQ68V/lgwV8LUCp68ZkzMJBUKeHhkqlLua+FqZk6VSrT\np0+HkZERLl68iOLiYnTp0gXzankNeZFIBFdXV5w4cQI2Njbw8fFBeHg43N3dX1quf//+0NfXx9ix\nYxEs57oqtcm2hw4BP/wguTRLc5eauhFPnqxBp06RzebQn7rJKC3FpdxcXMzNlf6bWVaGLkZG8H7x\n18XICI66ujKv0aPMR/jk0CdIzk3GyiEr4Wvn++9GuWphdaQWh7/27t2LTp06wcHBAX/99RcsLS3h\n6uoKIsLjx49hb29fqx2dO3cO3333HY4cOQIACAsLAyBJVBUtXrwYOjo6iImJwZAhQ+qdVIKDJTM7\nvpj+pVkTi8sQE9Me7doth5lZX1WH0+RllZbicl4eLlZIIs9LS+FlaChNIN5GRnDS04NGLZI8EWF7\n7HZ8efRLDHUdip/6/gQzvQozrnJfC6sltTj8FRUVhbS0NABAeno6XF1dpcHVNqEAQHJyMuzs7KS3\nbW1tkZyc/NIy+/btw8cffyzdR308fw6cPAkMG1av1ZscDQ0tODjMQVzctwp/QzU3OWVliMrKwqLE\nRITcugWXCxdge+4cvo2LQ0pxMYaam+OQpyeyevZElJcXFjk7I6RVK7jo69cqoQCSz8Ewj2G49ekt\nCCDAa8tew7ab2/59LXv3Bq5dkyQTT09gP19JgalOjaeJBwUF4ccff0RRUREKCwtx7949eHp6wtPT\nEzY2NrXeUW0SxOTJkxEWFibNpvX9Aty8GXjzTcDYuF6rN0ktWw5HQsIPyMw8BqHwdVWH0yjllZXh\naoUK5GJuLhKLi9HR0BBdjIwwUCjEbHt7uOnrQ1MBhxlNdU2xfMhyjO44GhMPTsT6q+uxbPAyOJo5\n/tvXEhwsqVp27OCqhalEjUmlT58+6NNHMrRx0aJF8Pb2RmxsLPbv34+UlBTY2tri888/l1YwVbGx\nsUFiYqL0dmJiImxtbWWWuXTpEoYPHw4ASEtLQ0REBLS1tTFUzrHiijNOBgQEICAgAIDk4pFr1gC/\n/17TM2teBAJNODjMRVzctzAzG8B9KzUoEIlwNS9P2v9xMTcXcUVF8DQwgLeREfqameHrNm3QXl8f\nWhrKvaCor50vLk24hP+d/x+6ruqKqX5T8ZXvV9DW1P63apk5U1K1cF9LsxYZGYnIyEil7rPOJz9W\ntm3bNiQmJmLatGnVLldWVgZXV1ecPHkS1tbW6Nq1q9yO+nJjx45FUFAQ3nnnnZeDrua4YEwMEBIC\n3L9f+4tHNhdEYsTEdICT088wN39D1eGojSKRCNfy82U60R8UFqK9vr5MJ/prBgbQUXICqUlcZhw+\nOfwJknKS8MeQP2QvVMl9LawSZfSp1OkqiampqbCysgIAFBQUQF9fHzo6OnBzc6t5R1paWLp0KV5/\n/XWIRCKMHz8e7u7u+OOPPwAAEydOrEf4L1u7VnItPk4oLxMINNC27XeIi/sWQuGgZlmtFIvFuFGx\nEz0vD3cLCuD6IoF0MzbGpzY28DAwQAs1SyDytDVri8P/OYwdt3bg3e3vynbkc9XCVKBWlcr8+fPh\n5eWFpKQkhL4YThUTE4Pc3FzpoTFlqirbFhQAtraSeY8qHVljLxCJcfFiZ7Rt+z0sLJr2F0yJWIzY\nFxVI+d/tggK46OnJDOXtYGAAXc3Gf7merKIszDw5E3vv7MWiAYsw3GP4vz8cuGphUJMhxQBw+/Zt\nnD59GmvWrIG1tTWsrKzQtWtXJCcny/RtKEtVDbNli6STPiJC6SE1Kmlp+xAXNwfe3pchEKj/r/Ha\nKBWLcaugQKYP5GZ+Phx1daWHr7yNjNDR0BD6TSCBVOdc4jlMPDgRrY1aY9kby+AkdJI8wOe1NHtq\nk1TKRUREYNCgQUhNTUVMTAysra3RpUsXRcYnV1UN06+fZDKu999XekiNChHh0iVv2NvPgqXly31W\n6o6EDhgAABtbSURBVK5MLMadggLp4auLubm4npeHNi8SiLeREboYGqKToSEMtRrPPDgNqVRUiv+d\n/x9+/vtnfOX7Fb7y+wo6mi+uLsFVS7OldkmlosuXL6NDhw7QUsGHVl7DxMcD3t5AcjKg4kuTNQpp\naQcRFzcD3t7X1LpaERHh3osEUt6RfjUvD9YtWsh0onsZGsK4mSaQ6sRlxuHTw5/icfZj/DHkD/Ro\n00PyAFctzZLaJZWtW7ciOjoanTp1gp+fH2JiYjBixAhFxieXvIaZO1dyCaQlS5QeTqNERLh8uRvs\n7KaiZUv1KO3ERHhQWCjTB3I1Lw8ttbVl+kC8DA1hqq2t6nAbDSLCzls7MfnoZAxxGYKwfmH/npHP\nVUuzonZJ5c8//0T//v1x/vx57N+/H5aWlrW+9ldDktcwnTpJfnD5+laxEntJevoRPHw4BT4+NyAQ\nKLefgYjwqKhIJoFczs2FUFtbevjK28gInY2MIOQE0iCyirIw6+Qs7LmzR7Yjn6uWZkMtkkqPHj3Q\ntWtXeHt7Izk5GePGjYOFhUV1qyicvIaxsQEuXOBRX3VBRLhypQdsbD5Dq1b/Ueh+4ouKZDrRL+Xl\nwUhTU6YTvYuhISx0mvdVpZXhfNJ5TDw4EVaGVrId+Vy1NHlqkVT2798PFxcXnDt3DufPn8edO3cg\nFArh6+uLwMBAdO3aVaEByiOvYQwNgSdPACMjpYfTqGVknMD9+5/CxycWGhqv3idBREgsLpY5kfBi\nbi50NTRk+kC6GBmhFScQlSkVlWLx+cVY8PcC2Y58rlqaNLVIKvLk5+cjOjoad+7ckV78UZkqN0xp\nKaCnJ/m3GZ7P90qICFev+qN161BYWY2q87opJSUynegXc3OhAchcjbeLkRFa8+gJtRSfFY9PD3+K\nhKwE2Y58rlqaJLVLKhMnToSBgQH8/Pzg6+tbpwtKNqTKDZOeDri48FxF9ZWZGYm7dz9E1653qq1W\nUl9UIBUPYZURySYQQ0PYtGjRLM/Wb6wqduQPdhmMBf0WSDryK1YtK1YAQUGqDpW9IrVLKhs2bED/\n/v1x4cIFREVF4cKFC/D09MTcuXNhbW2tyDhlVG6Yhw+B/v2BR4+UFkKTc/VqIFq1Go3WrccCAJ6V\nlMgcvrqYm4sisVimD8TbyAh2nECajOyibMw8ORO77+zGogGLEOIRInltz5yRXPvIz4+rlkZO7ZLK\nDz/8gMmTJ8PQ0BAAsGvXLvTr1w8rV66s8YKSDalyw1y+DIwfD1y5orQQmpS0khJcTj0G8eNPsNpk\nH6LzipArEqHLi0u6lycQh0qzErKm6ULSBUw4OAGtDFph+eDlko78/Hxgxgxg1y6uWhoxtbug5Lhx\n4zBixAgQEVxdXaGpqYng4GC4uLgoKr5aycoCTE1VGkKjkVlxWtsXZ6NnlJais5EtPtFsg1HapxDW\n8WM46elxAmmmutl2w8XQi/j1wq/otrobpvhOwVS/qdBZskR2vpbFi7lqYS+pV0d9fHw8srKy4Onp\nibS0NEyfPh3r1q1TRHxyVc62e/YAGzYAe/cqLYRGIbusDJcrdaI/rTStbRcjI7i8mNY2O/sf3LoV\ngm7d7kFDgzvW2b8d+fFZ8fhjyB/o2aYnVy2NmFoc/goJCUF4eDgAYOfOnSgpKcHQoUNx/fp1FBcX\nIzAwUKEBylO5YdatA6KigPXrlR6K2sgtK8OVSvOiJ7+YlbBiR3q7GmYlvH59EMzNh8LGRvmj+ph6\nIiLsur0Lk45MwmCXwQjrFwahnlDyoRs3DujRg6uWRkItkkppaSm0X5zRvGTJEpibm2Pfvn0QCARo\n2bIlfvvtN4UGKE/lhlm8GIiLk/QhNgf5L2YlrNiJ/rioCB0MDaVnonsbGcGtHrMS5uRE4+bNd9Ct\n2wNoauoq6Bmwxii7KBuzTs3Crtu7/u3ILyjgqqURUYukUtGjR4+QmpoKPz8/5OTkQCQSwczMTJHx\nyVW5YebOlUwj/N13Sg9F4QpEIlyrNK3to6IieLyY1ra8I729vj60G2hSqRs3gmBmNgC2tp83yPZY\n01Lekd/SoCWWD14OZ6Hzv1ULjxBTa2rXUa+vr4+WLVsCAIqKimBiYqKQoOoqOxuws1N1FK+uSCTC\n9UrT2t4vLIT7i1kJ/UxM8IWtLTwUPK2tg8N3uHEjCK1bfwhNTT2F7Yc1ThU78ruv7o4vu3+JaT2n\nQef6dUnVwrNMNmt1qlR+//13uLu7QyAQoFevXvjzzz/V4irFY8cCvXpJfig1FiViMW5USiB3CgrQ\nTk9PphPdU0WzEt68+TZMTPxhZzdZ6ftmjUdCVgI+PfwpHmU+wsqglZKOfD4bX22pXaVSUlKCPn36\n4ODBg9DS0oKpmozjzc4G1KRokqu00rS2l/LyEJufD6cKCWR869b4//buPSaqa20D+IMyKLcWBKui\nVOrMpGgR5ECLgEiNxxYvxaRawVrthdKrvXBSU9NLik3TVr/T5LS1X2Nz9Hhy8BCMErlUqYkVaRUE\ntDLKpR9SRcHWC4K3Ua7r+4MyDMMIW5zZe8/w/BJjBjZrvXuJ+827195rhXp6wl0luxIGBaXDYEhA\nQEAqRo70VDocUqnJPpORtzwP2dXZSN6RjPm6+Vg/bz3GVFR0v40/fTrnWoaZQZNKVVUVpk2bBgAI\nDg5GXFwc9Ho9Ojo6YDAYsHDhQrsHORg1vafS0dWFarNNpXq2tQ0aPdo0/7Fq/HiEeXnBUyUJxBov\nrzDcc08sGhu/xf33v6N0OKRiLi4uWDJtCf465a/44McP8ND/PoS/z/s7nv7HP+DS817L9u2sWoaJ\nQW9/xcTEIC8vD35+fgCA+vp67Nq1C+7u7khKSlJkXsWyhIuIADZt6t75UU6dQqDGYl/0iuvXEfjn\nroQ9SSTcQbe1vX79BCoq5iIqqg6url5Kh0MOorSxFC/lvQTtGC12LtvJlY9VRBVPf23fvh2BgYFo\nampCbGysIk97WbIcGK0W+OEHQKezX59dZtva9ryJfuz6dYx3c+uzmGK4tzfudcAEcjuVlcnw8pqB\nyZPXKh0KOZCOrg4cP38c4RPCe7/IuRbFqSKpmDt06BAuX76MWbNmKTqfYjkw/v5AdTUwdqxt2u8S\nAnVm29oeuXYNR69fh/+fuxL2/PnLMNjW9saNahw7Fo+oqJNwdb1H6XDI0XHlY0WpIqlkZmZi+fLl\nAACj0Yjm5mbk5+fDaDQiJSUF99wj/4XGfGCEANz+3FtoKHs+CSFwysq2tj6urn0WU/yLtzf8nDyB\n3E5V1TPw8AhGUNAHSodCzoJViyJUkVS8vLzg4eGBUaNGwcvLCz4+PvD19YWPjw/0ej3WKfDGofnA\n3LjRXaEYjYP/nBAC9bdumW5f9VQhniNH9nkTPcLbG2O5K6GJ0fh/OHo0BlFRJ6HRqOSJCHJ8rFpk\np4qkkpWVhcceewy7d++Gn58fEhIS7BqQFOYD09jYPUH/++99jxFCoKG1td+eIJoRI/Cwxb7o47kr\n4aCqq5/D6NFBeOCBdKVDIWfDqkU2qkgqRqMRHh4eAIBz585h165dmDx5sqKPEpsPTFVV92rc+471\n3xcdQJ/qI9LbGwFMIENy82YdjhyJQlRULTQa5R/WICfDqkUWqkgqSUlJWLx4cZ9AampqUFRUhDVr\n1mDRokV2DdAa84HZevAaXmo6jnvGdPXbF30SdyW0qZqaFIwefT+Cgj5SOhRyVqxa7EoVSUWn0yEi\nIsI0j9Lzt4+PD/z9/TF37ly7BmiN+cDsPdCJ9/+nHaV5TCD21tZ2ESNGjOJTYGRfrFrsRhXLtGRn\nZyM0NNSuQdwNNzESntdHgvnE/tzcbPTMNtFAPD27qxS+je+QBl3qVs0JBQC6ugA7LthLREqZPRuo\nqAB8fbvXEMvLUzoiksDhL8ednUwqRE7L0xP46isgMxNISwNWrgQuX1Y6KhqAw1+Ou7oAFa/LSES2\n0FO1jBnDqkXlHD6psFIhGiZ65lpYtaiaw1+OOadCNMxYVi25uUpHRGYc/nLM219Ew5B51fK3v7Fq\nURHZk0pBQQGCg4Oh1+uxfv36ft/ftm0bwsLCEBoaitjYWBgMhgHb4+0vomGMcy2qI+vluLOzE6tX\nr0ZBQQGqqqqQmZmJ6urqPsdMmTIFRUVFMBgM+PDDD/HSSy8N2CYrFaJhjnMtqiJrUiktLYVOp0NQ\nUBA0Gg2Sk5ORk5PT55jo6GjTbpJRUVFoaGgYsE3OqRARAM61qISsl+PGxkYEBgaaPk+aNAmNjY23\nPX7z5s1YsGDBgG3y9hcRmXCuRXGy7nt7J2tz7d+/H1u2bMHBgwetfj89PR0AcPw40NLyKIBH7zo+\nInISPVXLe+91Vy3DdA2xwsJCFBYWytrnHW0nfLdKSkqQnp6OgoICAMBnn32GESNG4N133+1znMFg\nwJNPPomCggLorGw8b74oWkYGUFDQ/TcRUT9c+dhEjgUlZb1xFBkZidraWpw+fRptbW3IyspCYmJi\nn2POnDmDJ598EhkZGVYTiiXe/iKiAXGuRVay3v5ydXXFxo0b8fjjj6OzsxMpKSmYOnUqNm3aBAB4\n+eWX8fHHH6O5uRmvvvoqAECj0aC0tPS2bfLpLyIalLWVj7/6alhXLfYi6+0vWzEv4f75T6C4GNi8\nWeGgiMgxmO/X8u23gMXdEmfmdLe/7IGVChHdET4hZldOkVQ4p0JEd4xzLXbh8JdjTtQT0ZBZVi3P\nPMOq5S45/OWYt7+I6K71VC1+fqxa7pJTJBVWKkR01zjXYhMO//RXR0d3YnFzUzgoInIe5k+IOdHb\n+HI8/eXwSYWIyG6KioDnnwdiYpzibXw+UkxEpKTZswGDAfD15X4tErFSISKS4sCB7rfxHbhqYaVC\nRKQW8fGsWiRgpUJEdKcctGphpUJEpEasWm6LlQoR0d1woKqFlQoRkdqxaumDlQoRka2ovGphpUJE\n5EhYtbBSISKyCxVWLaxUiIgc1TCtWlipEBHZm0qqFlYqRETOYBhVLaxUiIjkpGDVwkqFiMjZOHnV\nwkqFiEgpMlctrFSIiJyZE1YtrFSIiNTgwAEgJQWIjrZb1cJKhYhouIiPByoqupPJ9OlAbq7SEQ0J\nKxUiIrUpKuqea7Fx1cJKhYhoOJo922GrFlYqRERqZsOqhZUKEdFw52BVCysVIiJHcZdVCysVIiLq\n5QBVCysVIiJHNISqhZUKERFZp9KqhZUKEZGjk1i1OF2lUlBQgODgYOj1eqxfv97qMW+++Sb0ej3C\nwsLwyy+/yBkeEZFjsqxaFFxDTLak0tnZidWrV6OgoABVVVXIzMxEdXV1n2N2796NkydPora2Ft99\n9x1effVVucJzWIWFhUqHoBoci14ci17DZiw8PburlMxMIC0NWLkSuHxZ9jBkSyqlpaXQ6XQICgqC\nRqNBcnIycnJy+hyTm5uLZ599FgAQFRWFlpYWnD9/Xq4QHdKw+Q8jAceiF8ei17AbC4WrFtmSSmNj\nIwIDA02fJ02ahMbGxkGPaWhokCtEIiLnoGDVIltScXFxkXSc5SSS1J8jIiILllWLDFxl6QXAxIkT\ncfbsWdPns2fPYtKkSQMe09DQgIkTJ/ZrS6vVMtmYWbdundIhqAbHohfHohfHoptWq7V7H7IllcjI\nSNTW1uL06dMICAhAVlYWMjMz+xyTmJiIjRs3Ijk5GSUlJfDx8cG4ceP6tXXy5Em5wiYiojsgW1Jx\ndXXFxo0b8fjjj6OzsxMpKSmYOnUqNm3aBAB4+eWXsWDBAuzevRs6nQ6enp7417/+JVd4RERkAw75\n8iMREamTqpdp4cuSvQYbi23btiEsLAyhoaGIjY2FwWBQIEp5SPm9AICysjK4uroiOztbxujkI2Uc\nCgsLER4ejpCQEDz66KPyBiijwcbi0qVLSEhIwIwZMxASEoKtW7fKH6RMXnjhBYwbNw7TB5iYt+t1\nU6hUR0eH0Gq14tSpU6KtrU2EhYWJqqqqPsd8//33Yv78+UIIIUpKSkRUVJQSodqdlLE4dOiQaGlp\nEUIIsWfPnmE9Fj3HzZkzRyxcuFDs2LFDgUjtS8o4NDc3i2nTpomzZ88KIYS4ePGiEqHanZSx+Oij\nj8TatWuFEN3jMGbMGNHe3q5EuHZXVFQkjh49KkJCQqx+397XTdVWKnxZspeUsYiOjsa9994LoHss\nnPX9HiljAQBff/01li5dirFjxyoQpf1JGYf//ve/WLJkiekpS39/fyVCtTspYzFhwgRcvXoVAHD1\n6lX4+fnB1VW2KWVZxcXFwdfX97bft/d1U7VJhS9L9pIyFuY2b96MBQsWyBGa7KT+XuTk5JiW+XHG\nx8+ljENtbS0uX76MOXPmIDIyEv/5z3/kDlMWUsYiNTUVlZWVCAgIQFhYGL788ku5w1QNe183VZuq\n+bJkrzs5p/3792PLli04ePCgHSNSjpSxePvtt/H555+bVmS1/B1xBlLGob29HUePHsW+fftgNBoR\nHR2NmTNnQq/XyxChfKSMxaeffooZM2agsLAQdXV1mDdvHioqKuDt7S1DhOpjz+umapOKLV+WdHRS\nxgIADAYDUlNTUVBQMGD568ikjMWRI0eQnJwMoHuCds+ePdBoNEhMTJQ1VnuSMg6BgYHw9/eHu7s7\n3N3dMXv2bFRUVDhdUpEyFocOHcL7778PoPsFwAceeAC//vorIiMjZY1VDex+3bTpDI0Ntbe3iylT\npohTp06J1tbWQSfqi4uLnXZyWspY1NfXC61WK4qLixWKUh5SxsLcc889J3bu3CljhPKQMg7V1dVi\n7ty5oqOjQ9y4cUOEhISIyspKhSK2HyljkZaWJtLT04UQQvzxxx9i4sSJoqmpSYlwZXHq1ClJE/X2\nuG6qtlLhy5K9pIzFxx9/jObmZtM8gkajQWlpqZJh24WUsRgOpIxDcHAwEhISEBoaihEjRiA1NRXT\npk1TOHLbkzIW7733Hp5//nmEhYWhq6sLGzZswBgJ2+86ouXLl+PAgQO4dOkSAgMDsW7dOrS3twOQ\n57rJlx+JiMhmVPv0FxEROR4mFSIishkmFSIishkmFSIishkmFSIishkmFSIishkmFSIishkmFSIi\nshkmFbIpg8EAnU6HpKQkGI1GZGVlwcvLC5mZmQCA7du3IyYmBlVVVf1+tr29HcuXL79t27m5uYiN\njZUUx48//oi0tDTs2rVraCdixWDxDcVAcd7ufN955x18+OGHdu+faCiYVMimQkNDERERgcWLF8PD\nwwOPPfYYPDw8TBfjwMBA5OXlWV0uRKPRmJKPNXq9Ho888ki/r1dXV+PTTz/t87Wvv/4aK1aswIwZ\nM4Z8LpbtDhbfUAwU5+3OV6vVYubMmXbvn2goVLv2FzkuX19f09Lau3fvxqhRo0zfa2pqgp+f35Da\nLS4utrqq7P79+xEeHt7na7du3brrFWittWtrA8V5u/MtLS3FU089Zff+iYaCSYVszsfHBwBw7tw5\n+Pn5wcvLC0ajEceOHTPdztmzZw9qamrg5uaGJUuWwGg0Ij8/HwEBAVi6dCnOnTuHLVu2IDAwEIcO\nHcKmTZtQUlICnU6HrKwsdHZ24umnn8aePXuwefNmvPLKK/jjjz8wfvx4fPHFF7h58yZycnLg5+eH\n/Px8tLS0oKWlBa+//jri4uKQmZmJ9vZ2NDQ04L777sOLL76I77//HhcuXMDevXsxf/78Pu1axpef\nn4+mpiZcvHgRCxcuxKVLl7Bz507Ex8cDACorK/HBBx8AQL9jp06dCgCmOHNzc5GYmNin//Xr11s9\nXwC4cOGCaRdHy7abmpr6ne+VK1ck9T9YW6+99hqys7MRHx8PIQQKCwuRkJCAS5cuAQBWrVol028Y\nqZpN1zwmEkJ8/vnnIiMjQ3zzzTdCCCFmzpwpGhoaRF5enhBCiNOnT4tZs2YJIYTYt2+fqK2tFQcP\nHhQZGRli27ZtQgghEhMTxbVr10RjY6NIS0sTQggRFxcnLl68KJqamsRbb71l6m/RokV9+i8sLBQb\nNmwQQghRU1MjPvnkE/HDDz+IW7dumb727LPPmmItLi4Wv/76q1i2bJkQQojW1tZ+7ZrHV1NTI5KS\nkoQQQlRWVorVq1eLn376Sbz11luitLRUCCHEqlWrTH1ZHmstTmv9WzvflpYWsWLFitu2bXm+UvuX\n0pblOcbHx4tr1671+/eg4Y1zKmRzPj4+qKmpweTJkwF03w7Lz8/HrFmzAAC7du2CXq9Hfn4+XFxc\noNPpEBMTg5ycHCQmJuL06dMQQsDLywuHDx9GTEwMbty4gTFjxsDf3x8lJSWmOYCe6sRcZWUlpk+f\nDgB48MEHUV5ejjlz5phuw2VkZJg27KqoqEB4eDi2bt2KZ555BgDg5ubWr92e+J544gn8+9//xooV\nKwAA9fX18PX1xaxZs1BXV4eHH34YV65cMe1/bu1Y8zhDQ0MBoF//169ft3q+ZWVliIqKum3blucr\ntX8pbZmfo9FoNFWh5vERMamQzfn4+KCoqAgLFy40fTYajabbYu7u7khMTMSiRYsQFxeHCxcu4OrV\nq3BxcYHBYEBLSwsefPBBAMCBAwcQHR2N0tJSREdHA+h+KiomJgZHjx5FWVkZHnnkEZSVlcFoNAIA\nTpw4YUoqQgi0trZCo9GY4utpv62tDdeuXUN5eTk6Ojpw//33A+jeOXDv3r192u2J7/jx42hrazMd\nu2PHDqxcuRI3b97E6NGjAXTPI82bNw/FxcVWj+1x4sQJhISEAEC//nNycqye75EjRxAREYH9+/db\nbdvyfKX2L6Ut83MsLy83PUSQm5uLuLg4GAyGO/tFIafEORWyOX9/f6xZs8b0Wa/XIyUlxfQ5KSkJ\nX375JTQaDVpaWrB06VIYjUbcd999aG1tRVRUFEaOHImdO3fi8OHDmDhxInJzczFnzhwAwNixY1FW\nVoakpCQIIXDkyBFotVp4eHgA6J7L6dke9cyZM4iIiOgT36pVq7B3715UVVVBq9Xi999/xyuvvIKs\nrCycOXMGrq6ueOihh5CXlwedTgcPDw80Nzeb4ktNTUVubi6OHTuGpUuXQq/Xo7y83DSf4u3tjbq6\nOsTGxlo9tod5nJb9X716tc/5lpeXY9myZfjtt9/w888/IyUlBQEBAf3arq+v73O+Uvu3dpxlW5WV\nlaZzPHHihCm+CRMm4PDhwzZ/3JocEzfpItU5f/48xo0bhytXrmDNmjX47rvvJP1cdnY22tra8PPP\nP2Pjxo12jnLolI5T6f7JubFSIdVZu3YtFi9ejNraWqSnp0v+OY1Gg7q6Orzxxhv2C84GlI5T6f7J\nubFSISIim+FEPRER2QyTChER2QyTChER2QyTChER2QyTChER2QyTChER2QyTChER2QyTChER2cz/\nA9dtwhN+6SZ1AAAAAElFTkSuQmCC\n", "text": [ "" ] } ], "prompt_number": 42 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.2,Page number:433" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "\t# 'b'-solvent 'f'-feed 'r'-raffinate 'e'-extract 'c'-one of the # component in \t feed\n", "F = 50 \t\t\t\t\t# [feed rate, kg/h]\n", "S = 50 \t\t\t\t\t# [solvent rate, kg/h]\n", "xcf = 0.6 \n", "xbf = 0 \n", "ycs = 0 \n", "ybs = 1.0 \n", "\t# The equilibrium data for this system can be obtained from Table 7.1 and # Figure 7.6\n", "\t# Plot streams F (xcF = 0.6, xBF = 0.0) and S (yes = 0.0, yBs = 1.0). After # locating \tstreams F and S, M is on the line FS its exact location is found # by calculating xcm \tfrom\n", "#Calculation\n", "\n", "xcm = (F*xcf+S*ycs)/(F+S) \n", "\n", "\t# From figure 7.8\n", "xcr = 0.189 \n", "xbr = 0.013 \n", "yce = 0.334 \n", "ybe = 0.648 \n", "M = F+S \t\t\t\t\t# [kg/h]\n", "# From equation 7.8 \n", "E = M*(xcm-xcr)/(yce-xcr) \t\t\t# [kg/h]\n", "R = M-E \t\t\t\t\t# [kg/h]\n", "\n", "#Result\n", "print\"The extract and raffinate flow rates are\",round(E,2),\"kg/h and\",round(R,2),\" kg/h respectively\\n\"\n", "\n", "print\"The compositions when one equilibrium stage is used for the separation is\",xcr,\"and\",xbr,\" in raffinate phase for component b and c respectively and\",yce,\"and\",ybe,\"in extract phase for component b and c respectively\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The extract and raffinate flow rates are 76.55 kg/h and 23.45 kg/h respectively\n", "\n", "The compositions when one equilibrium stage is used for the separation is 0.189 and 0.013 in raffinate phase for component b and c respectively and 0.334 and 0.648 in extract phase for component b and c respectively\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.4,Page number:439" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration\n", "\n", "\t# C-acetic acid A-water\n", "\t# f-feed r-raffinate s-solvent\n", "fd = 1000 \t\t\t\t\t\t# [kg/h]\n", "xCf = 0.35 \t\t\t\t\t\t# [fraction of acid]\n", "xAf = 1-xCf \t\t\t\t\t\t# [fraction of water]\n", "\t# Solvent is pure\n", "xAr = 0.02 \n", "yCs = 0 \n", "\n", "import math\n", "from pylab import *\n", "from numpy import *\n", "print \"Solution 7.4(a)\\n\"\n", "\t# Solution(a)\n", "\n", "\t# From Figure 7.15\n", "xCMmin = 0.144 \n", "\t# From equation 7.11\n", "Smin = fd*(xCMmin-xCf)/(yCs-xCMmin) \t\t\t\t# [kg/h]\n", "\n", "#result\n", "print\"The minimum amount of solvent which can be used is\",round(Smin),\"kg/h\"\n", "\n", "print \"Solution7.4(b)\" \n", "\t# Solution(b)\n", "\n", "S = 1.6*Smin \t\t\t\t\t\t\t# [kg/h]\n", "\t# From equation 7.11\n", "xCM = (fd*xCf+S*yCs)/(fd+S) \n", "\n", "\t# Data for equilibrium line\n", "\t# Data_eqml = [xCeq yCeq]\n", "Data_eqml =matrix([[0.0069,0.0018],[0.0141,0.0037],[0.0289,0.0079],[0.0642,0.0193],[0.1330,0.0482],[0.2530,0.1140],[0.3670,0.2160],[0.4430,0.3110],[0.4640,0.3620]]) \n", "\n", "\t# Data for operating line\n", "\t# Data_opl = [xCop yCop]\n", "Data_opl =matrix([[0.02,0],[0.05,0.009],[0.1,0.023],[0.15,0.037],[0.20,0.054],[0.25,0.074],[0.30,0.096],[0.35,0.121]]) \n", "\n", "\n", "a1=plot(Data_eqml[:,0],Data_eqml[:,1],label='$Equilibrium line$')\n", "a2=plot(Data_opl[:,0],Data_opl[:,1],label='$Operating line$') \n", "legend(loc='upper right') \n", "xlabel(\"wt fraction of acetic acid in water solutions, xC\") \n", "ylabel(\"wt fraction of acetic acid in ether solutions, yC\") \n", "title('Mc-Cabe thiele Diagram')\n", "\n", "\t# Now number of theoritical stages is determined by drawing step by step # stairs from\t \txC = 0.35 to xC = 0.02\n", "\t# From figure 7.16\n", "\t# Number of theoritical stages 'N' is\n", "N = 8 \n", "\n", "show(a1)\n", "show(a2)\n", "print\"\\nThe number of theoretical stages if the solvent rate used is 60 percent above the minimum is \",N" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Solution 7.4(a)\n", "\n", "The minimum amount of solvent which can be used is 1431.0 kg/h\n", "Solution7.4(b)\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEZCAYAAACEkhK6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYlGXbwOHfIOSK+w4qIiqYSgpKLiju2uZWinu5ZPpq\nmdZn2vu6tGqWpWlGpikuZOaCSqCpYOIChQsqrgiJ4Bqisigw3N8fk6PIMgMyDOB1HgeHzMzz3M81\nIzPX3LtGKaUQQgghDLAwdwBCCCGKB0kYQgghjCIJQwghhFEkYQghhDCKJAwhhBBGkYQhhBDCKJIw\nRIliZ2fHnj17TFJ2UFAQ9erVy/HxCRMm8MknnxhVlinjBLC2tiY6Otpk5YunkyQMkW92dnaULl2a\nf/75J9P9rVq1wsLCgkuXLuWr3J07d9KpUycqVqxIzZo18fDwYPv27Uadq9Fo0Gg0+bru4ywsLLh4\n8aLRxy9btoz//ve/Rh2b3ziDgoKwsLDA2toaa2tr6tWrx+DBg/nrr78yHXf37l3s7OzyXL4QuZGE\nIfJNo9Fgb2+Pj4+P/r4TJ06QkpKS7w/tX3/9lUGDBvH6668TGxvL9evX+eijj4xOGAWtKM5rtbGx\n4e7du9y9e5fDhw/j6OiIu7s7e/fuNfm1tVqtya8hii5JGOKJDB8+HG9vb/3t1atXM3LkyEwftCkp\nKUybNg07OzsqV66Mu7s79+7dy1KWUoqpU6cya9YsRo8ejbW1NQCdOnXihx9+ACAyMpKuXbtSvXp1\natSowfDhw7l9+3amckJDQ3n22WepWrUqo0eP5v79+/rHduzYwXPPPUeVKlXo0KEDJ06cyPZ5derU\nCQBnZ2esra3ZuHGj/rGFCxdSq1Yt6taty6pVq/T3v/766/zvf//L87WUUsybNw8HBweqV6/O4MGD\nuXXrVrbHPs7Gxoa5c+cyduxYpk+frr//0dqRn58frVq1olKlStSvX5+5c+dmKsPb25sGDRpQvXp1\nPvnkE+zs7PTJZ86cObz66quMGDGCSpUqsXr1av7880/atWtHlSpVqFu3LpMnTyYtLS3TtZctW0bj\nxo2pWLEis2bNIjIyknbt2lG5cmU8PT0zHS+KESVEPtnZ2andu3erpk2bqtOnT6v09HRla2ur/v77\nb6XRaNTff/+tlFJq4sSJqkuXLiouLk5ptVp16NAhdf/+/SzlnT59Wmk0GhUdHZ3jNS9cuKB2796t\nUlNT1Y0bN1SnTp3UlClT9I83aNBAtWjRQl2+fFnFx8erDh06qP/+979KKaWOHDmiatasqUJDQ1VG\nRoZavXq1srOzyzYWpZTSaDQqMjJSfzswMFBZWlqq2bNnq/T0dPXbb7+pcuXKqYSEBKWUUq+//rr6\n3//+l+u1UlNT9a/dnj17lFJKffPNN6pdu3YqNjZWpaamqvHjx6shQ4ZkG1NgYKCytbXNcv+ePXuU\nhYWFSk5OzhJ7UFCQOnnypFJKqfDwcFWrVi21detWpZRSp06dUhUqVFAHDhxQqamp6r333lNWVlb6\n2GbPnq2srKyUr6+vUkqplJQUFRYWpkJCQpRWq1XR0dHKyclJffPNN5let379+qm7d++qU6dOqWee\neUZ16dJFRUVFqdu3b6tmzZqp1atX5/A/LIoySRgi3x4kjE8++UTNmDFD+fv7q549e6r09HR9wtBq\ntaps2bIqPDzcYHnBwcFKo9Hk+AGenS1btqhWrVplisnLy0t/+7ffflONGjVSSin11ltv6T/QH2ja\ntKnat29ftmVnlzDKli2rtFqt/r6aNWuqkJAQpVTmhJHTtf744w99nA8+lJ2cnPS/K6VUXFycsrKy\nynSdR2PILmE8SLZxcXHZxv6od955R7377rtKKaXmzp2rhg4dqn8sOTlZPfPMM5kSRufOnbMt54Gv\nv/5a9e/fX39bo9GogwcP6m+7uLioL774Qn972rRpmZK8KD6kSUo8EY1Gw4gRI1i3bl22zVE3b97k\n3r17NGrUKMu5b731lr7zdt68eVSvXh2AK1eu5Hi9a9eu4enpia2tLZUqVWLEiBFZOt0fHclUv359\n4uLiAPj777/56quvqFKliv7n8uXLuV7vcdWqVcPC4uHbply5ciQmJmY5LqdrPYjlUdHR0fTv319/\nXLNmzbC0tOTatWtGxxUbG4tGo6Fy5cpZHgsJCaFLly7UrFmTypUr4+XlpX/N4uLisLW11R9btmxZ\nqlWrlun8Rx8HOHfuHC+99BJ16tShUqVKfPjhh1n+D2rVqpWpzMdvZ/eaiaJPEoZ4YvXr18fe3h5/\nf38GDBiQ6bHq1atTpkwZLly4kOW877//Xt95+8EHH9CkSRPq1avHr7/+muO1Zs6cSalSpTh58iS3\nb99mzZo1ZGRkZDrm0dFZly5dwsbGRh/nhx9+yK1bt/Q/iYmJDB48+Emefrbycq369esTEBCQ6djk\n5GTq1Klj9PW2bNmCi4sLZcuWzfLY0KFD6devH5cvXyYhIYG33npLn9Tr1q3L5cuX9cempKRk+fB/\nfADDhAkTaNasGRcuXOD27dt8+umnWf4PRMkkCUMUiBUrVrB3794sH1gWFhaMHj2aqVOncuXKFbRa\nLYcOHSI1NTVLGRqNhoULF/Lxxx+zatUq7ty5Q0ZGBsHBwYwfPx6AxMREypcvT8WKFYmNjWXBggWZ\nylBKsXTpUmJjY4mPj+fTTz/Vf0iPGzeO77//ntDQUJRSJCUl4efnl+O33Vq1ahEZGWn0a6B0Tbx5\nvtZbb73FzJkz9Ynuxo0bbNu2zajrxcbGMnfuXFasWMFnn32W7XGJiYlUqVKFZ555htDQUNavX69/\nbODAgWzfvl3/fzJnzhyDI8MSExOxtramXLlynDlzhmXLlhkVa3a/i+JFEoYoEPb29rRu3Vp/+9Fv\npV9++SUtWrSgTZs2VKtWjRkzZuT4jXTgwIFs2LCBlStXYmNjQ+3atZk1axb9+vUDYPbs2Rw5coRK\nlSrx8ssvM3DgwEzX0mg0DBs2jJ49e9KoUSMaN26snxvh4uLC8uXLmTRpElWrVqVx48aZRng9bs6c\nOYwaNYoqVarw66+/Gpw78ejjOV0ru/PfeecdXnnlFXr27EnFihVp164doaGhOV4jLi5O35TXtm1b\nTp06xb59++jevXum4x747rvvmDVrFhUrVuTjjz/OVMt59tln+fbbb/H09KRu3bpYW1tTs2ZNSpcu\nneU5PfDll1+yfv16KlasyJtvvomnp2eW/4Ps4s7udRLFi0aZMN0HBAQwZcoUtFptlmF/j3owTG/D\nhg0MHDgwT+cKIQrOg9rIhQsXaNCggbnDEUVMjjWMlJQUrl+/nuX+69evk5KSYrBgrVbLpEmTCAgI\nICIiAh8fH06fPp3tcdOnT6d37955PlcI8eS2b99OcnIySUlJvPfee7Rs2VKShchWjgnj7bffZv/+\n/VnuDw4OZurUqQYLDg0NxcHBATs7O6ysrPD09MTX1zfLcd9++y2vvvoqNWrUyPO5Qognt23bNmxs\nbLCxsSEyMpKff/7Z3CGJIirHhBEWFqZvHnrUgAED2Ldvn8GCY2NjMw1vtLW1JTY2Nssxvr6+TJgw\nAXjYzmnMuUKIgrF8+XJu3bpFQkICv//+O40bNzZ3SKKIyjFhJCcn53iSMUPojOnUmjJlCvPmzUOj\n0WQaYSIdYkIIUfRY5vRAzZo1CQkJwc3NLdP9oaGh1KxZ02DBNjY2xMTE6G/HxMRkmQAUFhaGp6cn\noJvg5e/vj5WVlVHnAjg4OORp2KMQQgho1KhRtnOjDMppCnhISIhq0KCBmj17ttq2bZvy9fVVs2bN\nUg0aNFCHDh0yOIU8LS1N2dvbq6ioKHX//n3l7OysIiIicjz+9ddfV5s2bcrTubmE/9SZPXu2uUMo\nMuS1eEhei4fktXgov5+dOdYw2rZtS0hICEuXLtWvyPnss88aXcOwtLRkyZIl9OrVC61Wy5gxY3By\ncsLLywtAPxErL+cKIYQwnxwTBuhmurq6ujJ79mxKlSqV58L79OlDnz59Mt2XU6L46aefDJ4rhBDC\nfAzO9N6wYQONGzfm//7v/zhz5kxhxCTywcPDw9whFBnyWjwkr8VD8lo8OaNmet++fRsfHx9WrVqF\nRqPhjTfeYMiQIfoNbszlwegqIYQQxsvvZ6fRS4PcvHmTNWvW8M0339CsWTPOnz/P22+/zdtvv53n\nixYUSRhCZK9q1apG79onSq4qVaoQHx+f5X6TJQxfX19WrVrF+fPnGTlyJK+//jo1a9YkOTmZZs2a\nER0dneeLFhRJGEJkT94bAnL+O8jv30eund4Amzdv5t1339XvcfxAuXLl+PHHH/N8QSGEEMWTSVer\nNTX5FiVE9uS9IaDgaxiyH4YQQgijSMIQQghhFEkYQgghjJLnhDFq1CgmTJjAyZMnTRGPEOIpERYW\nxosvvki7du1YsWIFP/74I19++SX29vZERUXlq8wPPviAXbt2AbB+/fpM++w8eCwjI4P33nuPLl26\n5KvcgvB4bKa4hikYHCX1uP/85z9cunQJb29vvvjiC1PEJIR4Cri4uGBtbc3QoUMZNmyY/v4KFSpQ\nt27dfJU5b948/e9OTk6ZZnc/+lizZs2oVKlSvsotCI/HZoprmEKeahharRZHR0deffVVSRZCiCf2\nxx9/0KtXLwDWrVsHQNeuXSlduvQTl7137166du2a7WOBgYF07tz5ia+RX7nFVpQZTBhDhgzhzp07\nJCUl0aJFC5ycnCRZCFHMaTQF8/MkTp06hZWVFb/++ivjxo3jxIkTADRp0oRz584xc+ZMdu3axSef\nfIKPjw8xMTFs3ryZIUOGAJCWlkb37t0BiI+PZ8OGDQwaNEhfflBQEF27ds32sX379nHp0iXWrVvH\nN998A8CRI0fYsGEDHh4eLFq0iNatW3Pp0iV+/vln/bm5xXDy5ElWrlzJ1KlT2bx5M5s2bWL48OHs\n3r0bf39/RowYod+D4kFs2cUeFhbGd999x3//+1+2bt3Kpk2bGD16dKbXbfr06fj5+fHRRx892X9C\nXhla/7xly5ZKKaXWrl2rpk6dqlJTU1Xz5s3ztZZ6QTMifCGeSsXhvfHtt9+qd999VymlVGRkpAoI\nCFBKKXX58mXVokUL9c8//yillOrdu7f6+++/1a5du1RMTIxyd3dXSim1f/9+NWbMGKWUUr///ru6\ndeuWcnV1VUoplZ6erhwdHbN97Ny5c8rDw0Mfh62trVJKqfDwcHX8+HHVrVs3pZRSKSkpWc7NLQZ/\nf38VFhamunTpoi/bwcFBRUZGKqWUeuutt5Sfn1+m2LKLz9/fX+3Zs0f169dPKaVURkaGsre3V0op\nde3aNdWgQQN1/fp1pZRSM2bMyPU1zunvIL9/HwZrGOnp6aSlpbF161ZefvllrKysZAtVIcQTCwoK\nokOHDoBuh85u3boRHx/P7t27ad68OVWrViU1NZXr169Tv359evTowapVqxg+fDgAe/bs0X+77969\nO6tWreL1118H4M8//6RNmzbZPhYcHMyLL74IwNmzZ6lYsSIALVq04Pfff+e1114DoEyZMlnOzS2G\n3r178/vvv+sfi4yMxN7eHnt7e/1127dvnym27OJ7UM6IESMAOHTokP74jRs30qBBA44ePcq6deuY\nPHlyQfxXGM1gwhg/fjx2dnYkJibSqVMnoqOj89RZJIQQj1NKsW/fPn3CKF26NJaWlnz11Vdcu3aN\nVq1aAbq2/vbt2+vPO3z4MB07dgRg9+7ddOnShZ07dwLg4+PD8OHD8fPzY//+/Xh4eLBly5Ysj926\ndYvmzZsDsGbNGt5//319+bt376Znz56ZYn30XEMxPHr+77//ru+fOXjwIM899xyxsbHs2rUrU2zZ\nXSMwMJBu3boB4O3tzbhx4wgICKBs2bL06dOHnj176gcKpKWl5fe/Ic8MJoy3336b2NhY/P39sbCw\noEGDBgQGBhZGbEKIEig8PJwZM2Zw7949/Pz8WLFiBYsXL6ZPnz6kpaUxYsQIYmJi8PPz44svvtB/\n6AL069ePbdu2sXHjRuzt7fntt99wdnYGwN7enh07dtC2bVuaNGnC5cuXqVq1apbHBg8eTEhICKtW\nraJOnTr6b/ZKKZKTk2nYsGGmeB89N7cYMjIySEtLw9bWFtD1ibz00ksAlCpVipo1a3Ly5EmcnZ0z\nxfboNdzc3EhOTqZy5cr6L+bly5fn+vXrVK1alSFDhpCYmMiOHTvw9fUlNDQUKysrE/wvZc/gWlL3\n7t1j06ZNREdHk56erjtJo2HWrFmFEmBuZL0cIbJXUt4bbdu2JTAwkPLly5s7lGKp0NeS6tu3L9u2\nbcPKyooKFSpQoUIF+c8TQphUUlISc+bMISYmhkOHDpk7HPEvgzWM5s2b53tWd0BAAFOmTEGr1TJ2\n7FimT5+e6XFfX19mzZqFhYUFFhYWLFiwQD/UzM7OjooVK1KqVCmsrKwIDQ3NGnwJ+RYlREGT94aA\ngq9hGEwYb775JpMmTaJly5Z5Klir1dK0aVN2796NjY0Nbdq0wcfHBycnJ/0xSUlJ+trKiRMn6N+/\nv36ccsOGDQkLC8vUzpcleHlTCJEteW8IMMMGSvv37+enn36iYcOG+tmXGo2G8PDwXM8LDQ3FwcEB\nOzs7ADw9PfH19c2UMB5t2kpMTKR69eqZypA/eCGEKDoMJgx/f38A/dwLYz/EY2NjqVevnv62ra0t\nISEhWY7bunUrM2bM4MqVK5kW3tJoNHTv3p1SpUoxfvx4xo0bZ9R1hRBCmIbBhGFnZ8exY8fYv38/\nGo0Gd3d3/TC23Bg7ua9fv37069eP/fv3M2LECM6ePQvAgQMHqFOnDjdu3KBHjx44Ojri7u5uVJlC\nCCEKnsGEsWjRIpYvX86AAQNQSjF8+HDGjRvH22+/net5NjY2xMTE6G/HxMToxydnx93dnfT0dP75\n5x+qVatGnTp1AKhRowb9+/cnNDQ024QxZ84c/e8eHh5ZVoAUQoinXVBQEEFBQU9ekKG1Q5o3b64S\nExP1txMTE41aSyotLU3Z29urqKgodf/+feXs7KwiIiIyHXPhwgWVkZGhlFIqLCxMv15KUlKSunPn\njv567du3Vzt37sxyDSPCF+KpJO8NoVTBryVl1H4YFhYW2f6eG0tLS5YsWUKvXr3QarWMGTMGJycn\nvLy8AN2SI5s2bcLb21s/x+Pnn38G4OrVqwwYMADQrWU1bNiwLNP1hRBCFC6Dw2oXLlzIqlWr9E1S\nW7du5fXXX+fdd98trBhzJEMHhcievDcEmGEeBujWZw8ODtZ3ej9YGMzc5E0hRPbkvSGgEBPGnTt3\nqFixIvHx8cDD4bQPRj/lNqGusMibQojsFZf3xtatW7l27Rp16tQhPj6ea9eu8d5771GqVKlCj+WD\nDz6ga9eu+W7+Xr9+Pe+88w43btwosDKfVKEljBdffBE/Pz/s7OyyHSKb303aC1JxeVMIUdiK+ntD\nKcWECRPo2rVrpp3wPvroI8qVK8d7771n8hi6devGzp07sbQ0qivXoKNHj/LZZ5+xcePGAimvIBTa\nTO8H67JHR0fnuVAhhMjNvHnzKF26dKZkAeDq6spHH31k8oQRGxuLUqrAkgUU332688Lgq9WtWzf2\n7Nlj8D4hRPGhmVswu2aq2Xn/lpqQkMC8efM4duxYlsdu3LhBamoqx48fJywsjLNnz9K+fXuuX79O\n6dKlGTlyJKdOncLb25tOnToRFhbGSy+9xLlz5/j+++/p378/q1evxtfXl3r16nHu3DnWrFlDu3bt\n8PHxYfDgwZQuXZrly5dTu3Zt1qxZw4svvsiuXbvYvHkzv/zyC2FhYYSEhBAXF4erqytarRY/Pz9W\nrlypj1Or1TJv3jwcHR25fv06ISEh/PPPP3z55ZeAbp/u33//nU2bNhlV5uPPqShsH5GtnMbbJicn\nq5s3b+r31n3wExUVpZo2bZqvMbwFLZfwhXiqFeX3hp+fn7Kzs8v2sVdffVVNnz5d7dy5UwUHB6tB\ngwYppXTzsRo3bqyuX7+eZU/rEydOqGPHjmXai/vBOc7OzurWrVtKKaW6dOmirl27ppRSasiQIeqv\nv/5SSuVtT+0HPvjgA7Vq1SqllFJr165VX331VaHt050XOf0d5PfvI8cahpeXF4sWLSIuLg4XFxf9\n/dbW1kyaNMnkiUwIUTKlpqZSq1atLPefPHmSgwcP8v3331OtWjVmz57Nyy+/DOj6B6pVq8bGjRup\nX78+R48e5caNG0yePJk6derw1VdfZdqLG2Dz5s20aNGCypUrc+/ePRITE6lZsyZKKY4ePar/XOve\nvTvffPNNpj21Z8yYke2e2qCbG+bl5UVcXBygm0U9cuRIjh49qj8mL2U+uk/3g+dUZBnKKIsXL85X\nJioMRoQvxFOpKL83EhISlJ2dnUpISNDfd+3aNeXu7q5CQ0P197Vv315dunRJKaXU2LFj1aZNm9SK\nFSvU559/rj8mLi5O3b9/X/Xu3VtdvHgx03UWLlyoFixYoJRSavv27Wry5MnK399fnTp1SvXv318p\npZSPj49SSqm2bduqhIQEtWPHDqWUUm5ubvr4xo8fr3bv3q38/f318T9Y7eL+/fuqbdu26osvvlAr\nVqxQmzdv1l/f2DKze06pqan5e3Efk9PfQX7/Pgz2YVSsWBFvb+8s948cObLAk5cQouSrVKkSv/zy\nC7NmzcLFxYX09HQuX77Mzz//TN26dQG4ffs28fHx7N27l9TUVNzc3BgwYAApKSl8+umn7NixA61W\nC+h2BU1KSsqyF/eQIUOYN28e/v7+3LhxAwsLCxISEnjuueeoVKkSPj4+dOnSBXi4p3avXr1y3FO7\nUaNG+vj79u3Lxo0bOXXqFE2bNqVJkyYcP35cf0xeyuzcuXO2z6koMjhxb9KkSfphtSkpKezdu5fW\nrVvz66+/FkqAuSnqQweFMJfi/t7YsmULhw8fZv78+eYOJYurV69SuXJlypQpw/z582ncuLF+KaOi\nptA3UFqyZEmm2wkJCQwePDjPFxJCCGOcOXOGhQsX4uDgoJ9AXJT897//pXXr1lSuXJlSpUoV2WRh\nCkYtDfKo1NRUmjdvzrlz50wVk9GK+7coIUxF3hsCzFDDeDBKASAjI4OIiIgsk22EEEKUfAZrGI9u\numFpaUmDBg0ybb1qTvItSojsyXtDgJlWqy2q5E0hRPbkvSGgEJukKlSokOO+3BqNhjt37uT5YkII\nIYovqWEIUQLJe0OAGTq9AY4fP84ff/yh30DJ2dk5zxcSQhSeKlWq5NhCIJ4eVapUKdDyDG7QvWjR\nIoYNG8aNGze4du0aw4cPZ/HixQUahBCiYMXHx6OUkh8z/Jw9q6hbV7F+vfljebABXoFRBjRv3lwl\nJibqbycmJurXUTHE399fNW3aVDk4OKh58+ZleXzr1q2qZcuW6rnnnlOtW7dWe/bsMfpcpVSRXi9H\nCPH0uXhRqXr1lFqxwtyR5C6/n51GJYzk5GT97eTkZKMSRnp6umrUqJGKiopSqampytnZWUVERGQ6\n5tFEFB4erho1amT0uUpJwhBCFB0xMUo1bKjUt9+aOxLD8vvZabAP44033tAv/KWUYuvWrYwePdpg\nzSU0NBQHBwfs7OwA8PT0xNfXFycnJ/0x5cuX1/+emJhI9erVjT5XCCGKimvXoHt3mDABSvLuDwYT\nxtSpU+ncuTPBwcFoNBpWrVpFq1atDBYcGxubaYKfra0tISEhWY7bunUrM2bM4MqVK+zatStP5woh\nhLn98w/06AGenvD+++aOxrQMJozIyEieffZZXFxcCAwMZP/+/TRs2JDKlSvnep6xIzT69etHv379\n2L9/PyNGjODMmTPGRf6vOXPm6H/38PDAw8MjT+cLIUR+3b4NvXpB794we7a5o8lZUFBQplU78stg\nwhgwYABhYWFcuHCB8ePH07dvX4YOHcpvv/2W63k2NjbExMTob8fExGBra5vj8e7u7qSnpxMfH4+t\nra3R5z6aMIQQorAkJsILL8Dzz8P8+VCURzE//mV67ty5+SrH4LBaCwsLLC0t2bx5M5MnT2bBggVc\nuXLFYMGurq6cP3+e6OhoUlNT2bBhA6+88kqmYyIjI9H1v8CRI0cAqFatmlHnCiGEuaSkQN++4OgI\nixcX7WRRkAzWMJ555hnWr1+Pt7c327dvByAtLc1wwZaWLFmyhF69eqHVahkzZgxOTk54eXkBMH78\neDZt2oS3tzdWVlZUqFCBn3/+OddzhRDC3O7fh4EDoVYt+OEHsDD4tbvkMLg0yKlTp/Dy8qJdu3YM\nGTKEqKgofvnlF6ZPn15YMeZIlj8QQhSm9HQYNAiUgl9+ASsrc0eUP7JarRBCmJBWCyNHQnw8bN0K\npUubO6L8M+laUkII8TTLyIDx4+HKFfDzK97J4klIwhBCiFwoBVOmQEQE7NoFZcuaOyLzybW7RqvV\n8t577xVWLEIIUaQoBR98AAcOgL8/VKhg7ojMK9caRqlSpQgODkYpJUslCyGeOh9/DL/9BkFBUKmS\nuaMxP4NNUs899xx9+/bltddeo1y5coCuw2TAgAEmD04IIczlyy9h3TrYtw+qVTN3NEWDwYRx7949\nqlatyt69ezPdLwlDCFFSffed7uePP6B2bXNHU3TIsFohhHjETz/p1oXatw8aNjR3NKaR389Og3MU\nz549S7du3Xj22WcBCA8P55NPPsl7hEIIUcT5+MCHH8Lvv5fcZPEkDCaMcePG8dlnn/HMM88A0KJF\nC3x8fEwemBBCFKYtW+Ddd2HnTmja1NzRFE0G+zCSk5Nxc3PT39ZoNFgV1/nwQgiRjYAA3cQ8f39o\n0cLc0RRdBmsYNWrU4MKFC/rbv/76K3Xq1DFpUEIIUViCgnRLfmzdCi4u5o6maDPY6R0ZGcmbb77J\nwYMHqVKlCg0bNmTdunX67VPNSTq9hRBP4tAheOUV3UKCXbqYO5rCY/LFB5OSksjIyMDa2jrPFzEV\nSRhCiPwKC4M+fWD1at2/TxOTLT547949Nm3aRHR0NFqtVj/re9asWfkKVAghzO3kSXjxRfDyevqS\nxZMwmDCNzqXNAAAgAElEQVT69u1L5cqVcXFxoUyZMoURkxBCmMy5c7p9uL/+Gvr3N3c0xYvBJqnm\nzZtz8uTJwoonT6RJSgiRF1FR0LkzzJkDo0ebOxrzMdnEvfbt2xMeHp6voIQQoqi4fBm6dYP/+7+n\nO1k8iRxrGC3+HYys1Wo5f/48DRs2pPS/u4ZoNJoikUSkhiGEMMa1a9CpE4wdC++/b+5ozK/AR0lF\nR0fnWLBGo6FBgwYGCw8ICGDKlClotVrGjh2bZR/wdevW8cUXX6CUwtrammXLltGyZUsA7OzsqFix\nIqVKlcLKyorQ0NCswUvCEEIY8M8/4OEBr76qWyNKPMFnpzJg+PDhRt33uPT0dNWoUSMVFRWlUlNT\nlbOzs4qIiMh0zMGDB1VCQoJSSil/f3/l5uamf8zOzk79888/uV7DiPCFEE+xhASlXFyU+r//Uyoj\nw9zRFB35/ew02IfxeId3eno6YWFhBhNRaGgoDg4O2NnZYWVlhaenJ76+vpmOadeuHZX+3ZXEzc2N\ny5cvP57MDF5HCCGyk5gIL7wA7drBvHkge8A9uRwTxmeffYa1tTUnTpzA2tpa/1OzZk1eeeUVgwXH\nxsZSr149/W1bW1tiY2NzPH7FihW88MIL+tsajYbu3bvj6urK8uXLjX0+QghBSopuBrejIyxaJMmi\noOQ4D2PmzJnMnDmTDz74gHnz5uW54Lxs6RoYGMjKlSs5cOCA/r4DBw5Qp04dbty4QY8ePXB0dMTd\n3T3LuXPmzNH/7uHhgYeHR55jFUKUHPfvw8CBuo2PfvgBLAy2o5R8QUFBBAUFPXE5BudhZGRksG7d\nOqKiopg1axaXLl3i6tWrtG3bNteCDx8+zJw5cwgICADg888/x8LCIkvHd3h4OAMGDCAgIAAHB4ds\ny5o7dy4VKlRg2rRpmYOXTm8hxCPS02HQIN3vGzaALKydPZPNw5g4cSKHDh1i/fr1AFSoUIGJEyca\nLNjV1ZXz588THR1NamoqGzZsyNKUdenSJQYMGMDatWszJYvk5GTu3r0L6Naw2rVrl36YrxBCZEer\nhVGjdM1RPj6SLEzB4NIgISEhHD16lFatWgFQtWpV0tLSDBdsacmSJUvo1asXWq2WMWPG4OTkhJeX\nFwDjx4/no48+4tatW0yYMAFAP3z26tWr+j3D09PTGTZsGD179sz3kxRClGwZGbr9LK5cAT8/+HfK\nmChgBpuk3NzcOHjwIK6urhw9epQbN27Qs2dPjh49Wlgx5kiapIQQSsHbb+tWn921CypUMHdERZ/J\nmqQmT55M//79uX79OjNnzqRDhw7MmDEjX0EKIURBUgo++EC3r4W/vyQLUzNqP4zTp0+zZ88eALp1\n64aTk5PJAzOG1DCEeLp99BFs3KjbNa9aNXNHU3yYfAOlokgShhBPrwUL4Mcf4Y8/oFYtc0dTvJhs\nAyUhhChqli6FZcskWRQ2SRhCiGJl5UqYPx/27QNbW3NH83SRhCGEKDZ8fOB//4PAQGjY0NzRPH0M\njpLatGkTjRs3pmLFivr1pCpWrFgYsQkhhN6WLfDuu7BzJzRpYu5onk4GO70bNWrEjh07iszIqEdJ\np7cQT4eAABg5Ujd01sXF3NEUfybr9K5du3aRTBZCiKdDYCCMGAG+vpIszM1gwnB1dWXw4MH069eP\nZ555BtBlpwdLdwghhKkcPKhbTPCXX6B9e3NHIwwmjNu3b1O2bFl27dqV6X5JGEIIUwoLg379YM0a\n6NLF3NEIkIl7Qogi6ORJ6N5dN9eif39zR1PyFHgfxvz585k+fTqTJ0/O9mKLFy/O88WEEMKQs2eh\nZ0/4+mtJFkVNjgmjWbNmALi4uGTaPU8plafd9IQQwlgXL0KPHvDJJzBkiLmjEY+TJikhRJHw228w\nejTMng3/bpEjTETWkhJCFEtpafDhh7pZ3L/8Ap06mTsikRNJGEIIs7l0CTw9oXJlOHIEatQwd0Qi\nNwaXBhFCCFPYtg3atNENnd2xQ5JFcZBjDePR0VGPt3fJKCkhRH6lpup2ydu0Sbc+lEzIKz5yrGG4\nuLjg4uLC/fv3OXLkCE2aNKFx48YcO3aM1NRUowoPCAjA0dGRxo0bM3/+/CyPr1u3DmdnZ1q2bEmH\nDh0IDw83+lwhRPETFQXu7nDhAhw9Ksmi2FEGtG3bVqWmpupvp6amqrZt2xo6TaWnp6tGjRqpqKgo\nlZqaqpydnVVERESmYw4ePKgSEhKUUkr5+/srNzc3o8/9d3SXwTiEEEXDpk1K1aih1MKFSmVkmDua\np1t+PzsN9mEkJCRw584d/e27d++SkJBgMBGFhobi4OCAnZ0dVlZWeHp64uvrm+mYdu3aUalSJQDc\n3Ny4fPmy0ecKIYqH+/dh8mSYNk3XV/HuuyBTuYong6OkPvjgA1q3bo2HhwcA+/btY86cOQYLjo2N\npV69evrbtra2hISE5Hj8ihUreOGFF/J1rhCiaLpwAQYPhgYNdE1QlSubOyLxJAwmjDfeeIPevXsT\nEhKCRqNh/vz51K5d22DBeZkNHhgYyMqVKzlw4ECez300eXl4eOgTmxDCvH75Bf7zH5g1CyZNklqF\nOQUFBREUFPTE5eSYME6fPo2TkxNhYWFoNBr9N/64uDji4uJo3bp1rgXb2NgQExOjvx0TE4NtNhvw\nhoeHM27cOAICAqhSpUqezgWMqu0IIQrPvXu6Zqfff9dtfCR7WJjf41+m586dm69yclwaZNy4cSxf\nvhwPD49sv/EHBgbmWnB6ejpNmzZlz5491K1bl7Zt2+Lj45NpM6ZLly7RtWtX1q5dy/PPP5+nc0GW\nBhGiqDl3Trd/RdOm8MMP8G8XpShi8vvZadK1pPz9/ZkyZQparZYxY8YwY8YMvLy8ABg/fjxjx45l\ny5Yt1K9fHwArKytCQ0NzPDdL8JIwhCgy1q2DKVPg449h/HhpgirKTJYwli5dytChQ/XNRbdu3cLH\nx4eJEyfmL9ICJAlDCPNLToZ33oF9+3T9Fs89Z+6IhCH5/ew0OKz2hx9+0CcLgCpVqvDDDz/k+UJC\niJLn9Glwc9MljbAwSRYlncGEkZGRQUZGhv62VqslLS3NpEEJIYq+1at1K8u+8w6sXQvW1uaOSJia\nwWG1vXr1wtPTk/Hjx6OUwsvLi969exdGbEKIIigpSTdcNiQE9u6FFi3MHZEoLAb7MLRaLT/88AN7\n9uwBoEePHowdO5ZSpUoVSoC5kT4MIQrXyZO6UVBt28LSpVC+vLkjEvlRJEdJmZokDCEKh1KwciVM\nnw5ffgmvv27uiMSTMNmOe+fOnWPmzJlERESQkpKiv9jFixfzHqUQoti5e1e3ZeqxY/DHH9Csmbkj\nEuZisNP7jTfe4K233sLS0pLAwEBGjRrFsGHDCiM2IYSZHT8Orq5QpgyEhkqyeNoZbJJq3bo1R44c\noUWLFpw4cSLTfeYmTVJCmIZS4OUF//sffPMNyHfEksVkTVJlypRBq9Xi4ODAkiVLqFu3LklJSfkK\nUghR9N25A+PGwZkzEBysW+ZDCDCiSeqbb74hOTmZxYsX89dff7F27VpWr15dGLEJIQrZkSPQujVU\nrQqHD0uyEJnJKCkhBErphsnOnQtLluj2sBAll8mapIQQJVtCAowZA9HRcOgQODiYOyJRVBlskhJC\nlFyhobomqLp14eBBSRYid1LDEOIppJRu9NPnn8OyZTBwoLkjEsWBwRrGyJEjuXXrlv52fHw8o0eP\nNmlQQgjTiY+Hfv3Ax0fXsS3JQhjLYMIIDw/PtLx51apVi8QcDCFE3h06BK1agb29bsisvb25IxLF\nicGEoZQiPj5efzs+Ph6tVmvSoIQQBSsjAxYs0NUsFi+Gr7+GZ54xd1SiuDHYhzFt2jTatWvHoEGD\nUEqxceNGPvzww8KITQhRAG7ehFGjdE1RoaHQoIG5IxLFlVHzME6dOsXevXvRaDR07dqVZkVkQRmZ\nhyFE7vbvh6FDYcgQ+PRTsLIyd0SiKCjwLVrv3LkD6Jqg6tSpw9ChQxkyZAi1a9fO1ESVm4CAABwd\nHWncuDHz58/P8viZM2do164dZcqU4auvvsr0mJ2dHS1btqRVq1a0bds2L89JiKdeRgZ89hm89hp8\n/z188YUkC/HkcmySGjJkCH5+frRu3RqNRpPl8aioqFwL1mq1TJo0id27d2NjY0ObNm145ZVXcHJy\n0h9TrVo1vv32W7Zu3ZrlfI1GQ1BQEFWrVs3L8xHiqXf9OowYodtn+6+/wNbW3BGJkiLHhOHn5wdA\ndHR0vgoODQ3FwcEBOzs7ADw9PfH19c2UMGrUqEGNGjX013qcNDcJkTdBQTB8OIwcCR99BJYy00oU\nIIOjpLp162bUfY+LjY2lXr16+tu2trbExsYaHZhGo6F79+64urqyfPlyo88T4mmk1eoSxJAhsGKF\nrjlKkoUoaDn+SaWkpJCcnMyNGzcy9VncuXPHqA/+7Jqx8uLAgQPUqVOHGzdu0KNHDxwdHXF3d89y\n3Jw5c/S/e3h44OHh8UTXFaK4uXpVt19FRgaEhemW+RDiUUFBQQQFBT1xOTkmDC8vLxYtWkRcXBwu\nLi76+62trZk0aZLBgm1sbIiJidHfjomJwTYPjal16tQBdM1W/fv3JzQ01GDCEOJps3u3rvlp3DiY\nNQtKlTJ3RKIoevzL9Ny5c/NVTo5NUlOmTCEqKooFCxYQFRWl/wkPDzcqYbi6unL+/Hmio6NJTU1l\nw4YNvPLKK9ke+3hfRXJyMnfv3gUgKSmJXbt20aJFi7w8LyFKtPR03W54I0fCmjW6ZcklWQhTMzgP\nIykpiYULF3Lp0iWWL1/O+fPnOXv2LC+99JLBwv39/ZkyZQparZYxY8YwY8YMvLy8ABg/fjxXr16l\nTZs23LlzBwsLC6ytrYmIiOD69esMGDAAgPT0dIYNG8aMGTOyBi/zMMRTKDZWN7fCygrWroXatc0d\nkShu8vvZaTBhDBo0CBcXF7y9vTl16hRJSUm0b9+e48eP5zvYgiIJQzxtAgLgjTdg4kSYOVNqFSJ/\nCnzi3gORkZFMnz6dZ/5deKZ8+fJ5j04I8UTS02HGDBg7Fn7+WdccJclCFDaDA+9Kly5NSkqK/nZk\nZCSlS5c2aVBCiIdiYnTDZStU0O25XbOmuSMSTyuDNYw5c+bQu3dvLl++zNChQ+natWu2y3wIIQre\njh3g6govvQS//SbJQpiXUYsP3rx5k8OHDwPw/PPPU716dZMHZgzpwxAlVVqargnql19g/Xro2NHc\nEYmSxGR9GJs3b8bS0pKXXnqJl156CUtLy2zXfhJCFIzoaHB3hzNndE1QkixEUWGwhuHs7JxlRNRz\nzz3HsWPHTBqYMaSGIUqarVvhzTfh//4Ppk4FC4Nf6YTIu/x+dhrs9M6uUNlxT4iClZqqSxJbt8K2\nbfD88+aOSIisDH5/cXFxYerUqURGRnLhwgXefffdTEuFCCGezMWL0KGDrinqyBFJFqLoMpgwvv32\nW6ysrBg8eDCenp6UKVOGpUuXFkZsQpR4v/6qSxDDh8OWLSDbv4iizKhRUkWV9GGI4urePZg2Dfz9\nYcMGaNPG3BGJp4nJ+jCuX7/OF198QUREhH4Cn0ajYe/evXmPUgjB+fMweDDY2+uaoCpXNndEpqOU\n4ujVo7Su09rcoYgCYLBJatiwYTg6OnLx4kXmzJmDnZ0drq6uhRGbECXOzz9D+/YwZgxs3Fhyk0Vi\naiLf//U9zt87M3TTUG6l3DJ3SKIAGGySat26NUeOHKFly5aEh4cDuqXL//rrr0IJMDfSJCWKi5QU\nmDIF9u7VNUG1LqFfuE/fOM2yv5ax7sQ6OjfozMQ2E+nWsNsTb6gmCpbJmqQeLDpYu3ZtduzYQd26\ndbl1S74tCGGsM2dg0CBo1ky3I17FiuaOqGClZ6Sz7ew2lv65lFPXTzG29ViOjT9GvUr1DJ8sihWD\nCePDDz8kISGBr776ismTJ3Pnzh2+/vrrwohNiGJNqwVvb938ik8/1e2KV5K+aF9NvMrysOV4hXnR\nsEpDJrpOZGCzgTxT6hlzhyZMREZJCVHAUlJg9WpYuBCqVIEffgBnZ3NHVTCUUgRfCmbpn0vZGbmT\nQc0GMbHNRJxrl5An+JQw2QZKRZkkDFGU/PMPLF2q+2nTBt5/Hzp1Khm1isTURNaGr+W7P78jVZvK\nxDYTGek8ksplSmivfQlnsj4MIUTuLl7U1SbWrYP+/SEwUNdfURI83om9sNdC6cR+iuU4rHbRokUA\nBAcHF1owQhQnf/6p68xu00a3udGpU7ByZfFPFukZ6WyK2EQ37250Wd2FiqUrcmz8MTYP3kx3++6S\nLJ5iOSaMlStXAjB58uR8Fx4QEICjoyONGzfOdtOlM2fO0K5dO8qUKcNXX32Vp3OFMIeMDPDzAw8P\nGDhQt6xHdDTMmwd165o7uidzNfEqH+/7GLtv7Pj68NeMbTWWS+9e4pOun8iIJwHk0iTVrFkzGjdu\nTGxsLC1atMj0mEaj0c/JyIlWq2XSpEns3r0bGxsb2rRpwyuvvIKTk5P+mGrVqvHtt99m2V/DmHOF\nKEz37+s2MvryS7Cy0vVPDBqk+704y64T22+on3Rii2zlmDB8fHy4evUqPXv2ZPv27XnuIAkNDcXB\nwQE7OzsAPD098fX1zfShX6NGDWrUqIGfn1+ezxWiMCQkgJcXLF6sa2r65hvo3r34d2Rn14n9/Uvf\nSye2yFWund61a9cmPDyc1NRUzp07B0DTpk2xMuJrVWxsLPXqPazG2traEhISYlRQT3KuEAUhJkaX\nHH76CV54QdcM9dxz5o7qyT3oxF4bvpbOdtKJLfLG4CipoKAgRo0aRYMGDQC4dOkSq1evpnPnzrme\n9yR/gHk5d86cOfrfPTw88PDwyPd1hQgPhwULdAni9dfh2DGoX9/cUT2Z9Ix0fM/48t1f3+lnYh9/\n67j0SzxFgoKCCAoKeuJyDCaMqVOnsmvXLpo2bQrAuXPn8PT05MiRI7meZ2NjQ0xMjP52TEwMtra2\nRgWVl3MfTRhC5IdSsGePLlGcOAFvv61rgqpSxdyRPZm4u3GsOLICrzAv7Crb8Z82/5GZ2E+px79M\nz507N1/lGEwY6enp+mQB0KRJE9LT0w0W7Orqyvnz54mOjqZu3bps2LABHx+fbI99vH8kL+cKkV/p\n6fDLL7qO7Hv34L33dNujli5t7sjyLyk1iS1ntrAmfA1/xv7Ja81ek05sUWAMJgwXFxfGjh3L8OHD\nUUqxbt06o5Y3t7S0ZMmSJfTq1QutVsuYMWNwcnLCy8sLgPHjx3P16lXatGnDnTt3sLCwYNGiRURE\nRFChQoVszxWiICQmwo8/6vooGjSAjz7S9VNYGFzsv2jKUBkERQfhfdwb37O+tK/Xnjeee4Otg7dS\n1qqsucMTJYjBpUHu3bvH0qVLOXDgAADu7u5MnDiR0kXga5gsDSLy4upVXVPTDz9Aly66obFt25o7\nqvw7feM0a8LXsDZ8LdXKVWNky5EMaTGE2hVqmzs0UcTJWlJC5ODMGV2z06ZNMHQoTJ0KjRqZO6r8\nuZF0g59P/ox3uDexd2IZ1mIYI5xH0LJWS3OHJooRWUtKiEcoBcHBuo7skBCYOFG3NWr16uaOLO/u\np99nx7kdeId7sy96Hy82eZFPunxCN/tuWFrIW1gUHqlhiBJFq4WtW3WJ4uZNmDYNRo2CcuXMHVne\nKKU4dPkQ3se92RixEedazox0HskApwFULF3CdmAShU5qGOKplpICq1bpVo2tVk3XP9GvH5QqZe7I\n8ubirYusDV+L93FvLC0sGek8kiNvHqFB5QbmDk0Iwwnj7NmzfPnll0RHR+uH02o0Gvbu3Wvy4IQw\n5OZN3f4T330Hbm661WI7dixeS3fcvnebjREb8T7uzembp/F81hOfgT641nWVGdiiSDHYJNWyZUsm\nTJhA69atKfXv1zWNRoOLi0uhBJgbaZJ6ekVG6moT69frVo2dNg2K08jrNG0auyJ34R3uTcCFALrb\nd2dky5H0adxHJtYJkzNZk5SVlRUTJkzIV1BCFLTQUF3/RGAgvPkmRERAnTrmjso4SimOXT2G93Fv\n1p9cj30Ve0a2HMl3L3xHtXLVzB2eEAYZrGHMmTOHGjVqMGDAgExzL6pWrWry4AyRGsbTISMDfvtN\nlyiio+Hdd2HMGLC2Nndkxom9E8v6E+vxDvcmMTWRES1HMLzlcJpUa2Lu0MRTymTzMOzs7LK0o2o0\nGi5evJjnixU0SRgl2/37um1Pv/xSt1zH++/Da68Vjz0oHizR4X3cmz/j/mSg00BGOo+kY/2OWGiK\n6ZRyUWLIxD1RYiQkwPff62Zlt2ihSxTduhX9juzktGT8z/uzMWIjARcCaF+vPSOdR9K3aV9ZokMU\nKSbrw0hNTWXZsmX88ccfaDQaOnfuzFtvvWXUnhhC5MWlS7r1nVatgpdeAn9/cC7ia+Y9niRc67ry\nWrPXWNxnMTXL1zR3eEIUKIM1jDFjxpCens6oUaNQSrFmzRosLS358ccfCyvGHEkNo2Q4flzXP+Hv\nD2+8Ae+8A/WK8FYNOSWJ/k79JUmIYsFkTVItW7bMsn93dveZgySM4ksp2L1blyhOndIliTffhMpF\ndIdQSRKiJDFZk5SlpSUXLlzAwcEBgMjISCwtZYK4yJ+0tId7UKSl6fagGDoUnimCUw+kuUmIzAx+\n8i9YsICuXbvSsGFDAKKjo/npp59MHpgoWe7efbgHhb09fPop9OlT9DqyJUkIkTOjRkndu3ePs2fP\notFoaNq0aZHYCwOkSao4uHJFN9pp+XLdSKf33wcj9t8qVClpKfhf8OeXU7/ok8SgZwfR37E/NcrX\nMHd4QhS4Au/D2LNnD926dWPTpk2ZCn8wJ2PAgAFPEG7BkIRRdJ0+rWt22rIFhg3TTbaztzd3VA9J\nkhBPswLvw/jjjz/o1q0b27dvz3YBtKKQMETRohTs36/ryP7zT/jPf3R7UFQrIqte5JQkvu3zrSQJ\nIYxgsEnq4sWL2D/21TC7+7ITEBDAlClT0Gq1jB07lunTp2c55u2338bf359y5cqxatUqWrVqBehm\nmFesWJFSpUphZWVFaGho1uClhlEkaLW6msSCBXDrlm4hwJEjoWwRmKsmNQkhssr3Z6cyoFWrVlnu\na926taHTVHp6umrUqJGKiopSqampytnZWUVERGQ6xs/PT/Xp00cppdThw4eVm5ub/jE7Ozv1zz//\n5HoNI8IXJpSUpNTSpUo1aqRUu3ZKbd6sVHq6uaNSKjk1WW2K2KQGbxysKn1eSXVb3U15/eWlride\nN3doQhQJ+f3szLFJ6vTp00RERJCQkMDmzZtRSqHRaLhz5w737t0zmIhCQ0NxcHDAzs4OAE9PT3x9\nfXF6ZA3qbdu2MWrUKADc3NxISEjg2rVr1KpV60Eyy3sGFCZ34wYsWQLLlkH79rB6NXToYN6YYm7H\nEHAhgIDIAPZc3CPNTUKYQI4J49y5c2zfvp3bt2+zfft2/f3W1tYsX77cYMGxsbHUe2S6rq2tLSEh\nIQaPiY2NpVatWmg0Grp3706pUqUYP34848aNy9MTEwXvwgXdHhQ//wyvvqrrr2ja1Dyx3E+/T/Cl\nYPwv+BNwIYBrSdfo2agn/R378/2L30uSEMIEckwYffv2pW/fvhw6dIh27drluWBjdwrLqRYRHBxM\n3bp1uXHjBj169MDR0RF3d/c8xyGeXEiIrn9i3z4YP143AurfSmChiroVpU8Q+/7eR7Mazejj0IeV\nfVfiUseFUhbFbD9WIYoZgxP3li1bhpOTE5X/XbPh1q1bTJs2jZUrV+Z6no2NDTExMfrbMTEx2Nra\n5nrM5cuXsbGxAaBu3boA1KhRg/79+xMaGpptwpgzZ47+dw8PDzw8PAw9JWGEu3dh61bd/ImYGN2w\n2FWroEKFwoshJS2FfX/vI+BCAP4X/Ll97za9HHoxtMVQfur7k2w6JISRgoKCCAoKevKCDHVyODs7\nG3Xf49LS0pS9vb2KiopS9+/fN9jpfejQIX2nd1JSkrpz545SSqnExETVvn17tXPnzizXMCJ8kQf3\n7im1ZYtSr72mVMWKSr38slK//KJUWlrhXD8jI0OdvXlWLTq8SPVe21tV+KyC6riyo/r0j09VWFyY\n0mZoCycQIUq4/H52GqxhKKWIj4/X77AXHx+PVqs1mIgsLS1ZsmQJvXr1QqvVMmbMGJycnPDy8gJg\n/PjxvPDCC/z22284ODhQvnx5/ZIjV69e1c/zSE9PZ9iwYfTs2TOfKVHkRquFoCDd3thbtuiWEx86\nVLcfRWFsqpiUmkRgdKC+FnEv/R59HPowptUYfAb6ULlMEV2NUIinkMF5GN7e3nz66acMGjQIpRQb\nN27kww8/ZOTIkYUVY45kHkb+KKXbG9vHBzZsABsbXZIYPFj3u2mvrTh987Q+QRy+fJg2ddvQ26E3\nfRz60Lxmc6P7v4QQ+WPSHfdOnTrF3r170Wg0dO3alWbNmuUryIImCSNvIiJ0SWL9erC01CWJIUOg\niYm3lr5z/w57o/bif96fgMgAAPo49KGPQx+6NuyKdelisjm3ECWEybdovXbtGvfu3dN/+6tfv36e\nL1bQJGEY9vffumGwPj5w8yZ4euoSRatWplspVinFiesn9Anir7i/aGfbTl+LcKzuKLUIIczIZAlj\n27ZtTJs2jbi4OGrWrMnff/+Nk5MTp06dynewBUUSRvZu3ICNG3VJ4vRpGDhQlyTc3cHCwjTXjLsb\nR/ClYHZe2ElAZABlLMvoaxEedh6Uf6a8aS4shMgzk+64t3fvXnr06MHRo0cJDAxkzZo1BofVFgZJ\nGA89GAa7fj0cOgQvvKBLEj17FvzmRBkqgzM3zxB8KZjgS8EciDlAwr0E2tdrT0/7nvR26E3jao0L\n9qJCiAJjsh33rKysqF69OhkZGWi1Wrp06cI777yTryBFwbp/X7cP9vr1sHMndO6sW/Tv11+hfAF+\nobLpIKYAABXSSURBVL+ffp+/4v7SJYiYYA7GHKRymcp0rN+RjvU78kHHD3Cs7oiFxkTVFyFEkWAw\nYVSpUoW7d+/i7u7OsGHDqFmzJhUKc/aWyESrhcBAXXPTg2GwQ4bo1nUqqGXE41PiORhzUF+DOHb1\nGI7VHelYvyMjW47E6yUv6lrXLZiLCSGKDYNNUklJSZQpU4aMjAzWrVvHnTt3GDZsGNWKwCYHT0uT\nVHbDYIcM0Q2DfWzyfD7KVkQlRHHg0gF9DSLmdgxutm50rNeRDvU74GbjJiOZhChBTNKHkZ6eTo8e\nPQgMDHyi4EylpCeMiAhdc5OPT8ENg03PSOf41eMciDmgr0EA+ualDvU64FzbGUsLg5VPIUQxZZI+\nDEtLSywsLEhISNCvJSVMK7thsBs35n8YbGJqIocvH9bVIGKCCbkcQr1K9ehYryMvN3mZ+d3nY1fZ\nToa5CiEMMvg1snz58rRo0YKePXtSrlw5QJedFi9ebPLgnhYPhsGuXw9nzuiGwS5alL9hsHF34/TN\nSwdiDnD65mla1W5Fx/odecftHdq/2p6qZQthzQ8hRIljsA9j9erV+qrLg2qMRqPRb3xkTsW5Saog\nhsHmNrz1Qf+Da11XyliWMe2TEUIUKwXeJNWtWzf27NnDqVOn+OKLL54oOKHz+DDYTp3yNgw2p+Gt\nHep1kOGtQgiTy7GG0axZM3788UdGjx7N+vXrszzeunVrkwdnSHGoYdy5oxsGu22bbhhsy5a6msTA\ngYaHweY0vPVBguhQv4MMbxVC5FmBj5LauHEjK1as4MCBA7i6umZ5vCiMnCqKCSMtTTcE9vffdT/h\n4fD889CnDwwalPMwWKUU0QnR+uTw6PDWBwlChrcKIQqCyZYG+eijj5g1a1a+AzOlopAwlIKzZx8m\niH37wN4eevTQ/XTsCGXLZj0vPSOd8GvhDxOEDG8VQhQSk69WWxSZK2HcuAG7d+sSxO7duqTxIEF0\n6wY1a2Y9JzE1kZDLIfraw6PDWx80LzWs3FCGtwohTE4ShgmlpEBw8MNaRFSUbt2mB0miSZOscySu\n3L2SaXLco8NbO9bvSDvbdrIntRDCLCRhFKCMDDh27GGCCAnRdVY/SBBt24KV1SPHqwzO3jyrrz0E\nXwrmVsotOtTvIMNbhRBFjskSxogRI1izZo3B+8yhIBPGpUsPE8SePboRTD16QPfu4OEBlSo9PFab\noSX8WjhB0UEE/R1E8KVgKpWulKn/wamGkwxvFUIUSSZLGK1ateLo0aP62+np6bRs2ZKIiAiDhQcE\nBDBlyhS0Wi1jx45l+vTpWY55++238ff3p1y5cqxatYpWrVoZfW5+n3RGhm5jof37dU1N+/frmp26\ndXuYJB7dUPDxBPHH339Qp0IdPOw86NygM+4N3GV4qxCi2Mj3l22Vg08//VRVqFBBlSpVSlWoUEH/\nU6VKFTV9+vScTtNLT09XjRo1UlFRUSo1NVU5OzuriIiITMf4+fmpPn36KKWUOnz4sHJzczP63H8T\nncE4lFLq/n2lDh5Uav58pV5+WamqVZWyt1dq1CilfvxRqTNnlMrIeCR2bbo6EndELTy4UL3i84qq\nPK+yclripCbsmKA2nNygrty9YtR1C1NgYKC5Qygy5LV4SF6Lh+S1eMjYz87H5Thmc+bMmcycOZMZ\nM2bw+eef5zkRhYaG4uDggJ2dHQCenp74+vri5OSkP2bbtm36JUbc3NxISEjg6tWrREVFGTw3N9eu\nweHDuiU3Dh2CsDBo3Fi3NtPw4fD991D3kQqBNkPLsavZ1yCGtRiG10te1K5QO8+vQWEKCgrCw8PD\n3GEUCfJaPCSvxUPyWjw5g4P8Y2JiWL58Oe7u7jg6OhpdcGxsLPXq1dPftrW1JSQkxOAxsbGxxMXF\nGTw3Ox9/DCtXQkKCbrLc88/DzJm6fx/vgzh6pXgnCCGEKGwGE8bo0aPZv38/kydP5sKFC7Ru3Rp3\nd3emTJmS63nGzidQBTjKqU8feO013TDX7FZ5VUrhucmTXZG7JEEIIUReGdNulZaWpg79f3vnHtTE\n1YbxJwIqShUvWEerCF4ASTYkUGmACIp3xaFakI5FrOJ1FO2oWMd2QNs6VLEVxaplFNSxFi+19CI6\nraBjEdRgp9ShqCggFqEiaEDl/n5/8LENkMuiJlA8v5mdZJNz3vOe55zsu5vdc056On322Wc0ZMgQ\nGjVqlME86enpNHnyZH5/y5YtFBUV1SzNkiVL6OjRo/y+g4MDFRcXC8pLRDR8+HACwDa2sY1tbGvD\nNnz4cCGH/lYYvMLw9fXFkydPoFAo4OXlBZVKhQHahjK3wM3NDbdu3UJ+fj4GDRqExMREHD16tFma\nmTNnIjY2FkFBQcjIyIC1tTVef/119OvXz2BeAMjNzTXoB4PBYDBeDgYDBsdxUKlUuH79Onr16oU+\nffpAoVDAUtsESZqGzc0RGxuLyZMno76+HgsXLoSTkxP27dsHAFiyZAmmTZuG06dPY8SIEejZsyfi\n4+P15mUwGAxG+yF4pHdFRQUSEhIQHR2N4uJiVFdXG9s3BoPBYHQgDA5F3rVrFwIDA+Hi4oKkpCQs\nWLAAycnJpvCN58yZM3B0dMTIkSPx+eefa00TFhaGkSNHQiqVNhto2NkwpEVOTg4UCgW6d++O7du3\nt4OHpsOQFkeOHIFUKgXHcfD09ERWVlY7eGkaDGmRlJQEqVQKmUwGV1dXpKSktIOXpkHI8QIArl69\nCnNzc3z33Xcm9M60GNLi/Pnz6N27N2QyGWQyGT799FP9Bg3d5Ni6dStlZGRQTU3Nc90keVFeZABg\nZ0OIFv/88w9dvXqVNm7cSNHR0e3kqfERosWlS5fo0aNHRESUnJz8SveLyspK/n1WVtZz3/Ts6Agd\n9FtXV0fjxo2j6dOn04kTJ9rBU+MjRIvU1FTy8/MTbNPgFca6devg7u4OC83Z9kyI5gBACwsLfhCf\nJtoGAJaUlLSHu0ZFiBY2NjZwc3Nrt/YyFUK0UCgU6P3/ATju7u64d+9ee7hqdIRo0VNjDeDKykr0\n79/f1G6aBCFaAI3/nLzzzjuwsbFpBy9Ng1AtqA1DGzr87Hi6BvcZStMZDw5CtHhVaKsW+/fvx7Rp\n00zhmskRqsX3338PJycnTJ06FTt37jSliyZD6PEiKSkJy5YtAyB8zNh/DSFaiEQiXLp0CVKpFNOm\nTTM4R2CHX87teQcAdsZO0Bnr9Ly0RYvU1FQcOHAAaWlpRvSo/RCqhb+/P/z9/XHx4kUEBwfjxo0b\nRvbM9AjRYvXq1YiKiuIn4GvLGfZ/CSFayOVyFBYWokePHkhOToa/vz9u3rypM32HDxiDBw9GYWEh\nv19YWIg3WiyM3TLNvXv3MHjwYJP5aCqEaPGqIFSLrKwsLFq0CGfOnEGfPn1M6aLJaGu/UCqVqKur\nw8OHD9GvX+daxEuIFpmZmQgKCgIAlJaWIjk5GRYWFpg5c6ZJfTU2QrR47bXX+PdTp07F8uXLUVZW\nhr59+2o3+jJvshiD2tpasre3p7y8PKqurjZ40zs9Pb3T3twUokUTERERnfqmtxAtCgoKaPjw4ZSe\nnt5OXpoGIVrk5uZSw/+nZM7MzCR7e/v2cNXotOU3QkQ0f/58OnnypAk9NB1CtCguLub7xeXLl8nW\n1lavzQ5/hfEiAwA7G0K0KC4uxptvvgm1Wo0uXbogJiYG2dnZsLKyamfvXy5CtNi8eTPKy8v5/6ot\nLCxw5cqV9nTbKAjR4uTJkzh06BAsLCxgZWWFb7/9tp29Ng5CtHhVEKLFiRMnsGfPHpibm6NHjx4G\n+8V/eolWBoPBYJiODv+UFIPBYDA6BixgMBgMBkMQLGAwGAwGQxAsYDAYDAZDECxgMBgMBkMQLGAw\nGAwGQxAsYPyH2LJli87vjh8/jtGjR8PX1/eFy0lKSsJff/3F70dERODcuXMvbFcf7777LqRSKWJi\nYoxif8eOHXj27Bm/P336dKjVaqOUtWjRomb6NZGQkICVK1e2+vzHH3/UOw33y6SlDsbm/Pnz8PPz\n05vm8ePH2LNnD79fVFSEgIAAY7tmkEOHDkEikYDjOMjl8k6/XIAgjDPGkGEMrKysdH43efJkSktL\na/V5bW1tm8sJCQkx6ZTP9+/fpxEjRhi1jGHDhlFpaalRyzBEfHw8rVixol19eB4d6uvrn7u81NRU\nmjFjht40eXl5JBaLn7sMY3D69GmSy+V0//59IiKqrq6muLi4dvaq/WEBo4OwdetW2rlzJxERrV69\nmsaPH09EROfOnaO5c+fShx9+SGZmZuTi4kLvvfdes7ybNm0iKysrcnBwoHXr1lFCQgL5+fnR+PHj\nycfHhyorK8nX15fkcjlJJBJKSkri8x48eJA4jiOpVErBwcF06dIl6tu3L9nZ2ZFMJqPbt283CyC/\n/voryWQykkgktGDBAqquriYiIltbW4qIiODLyMnJaVXHZ8+e0fz580kikZBMJqPU1FQiIpJIJGRp\naUkuLi508eLFZnl++OEHcnd3J5lMRhMmTKCSkhIiIqqoqOBtcRzHT+9w9uxZUigUJJfLKSAggCor\nKykmJoa6du1KEomE19XW1pYePnyoVYOWXL58mRQKBclkMvLw8KAbN24QUeN6A2vWrCGxWEwcx1Fs\nbCwREXl7e5NKpSIiogMHDtCoUaNozJgxtGjRIq0BQzOQhISEUFhYGHl4eJC9vb3WwG2orxARLV26\nlNzc3MjZ2ZkiIiKIiLTqoE2vJn3Wr19PcrmcEhMTm5V/7NgxEovFJJVKaezYsXrbVjNgtJyuRiwW\nU35+Ps2ZM4dv//DwcMrPzydnZ2e9duPj4+ntt9+mKVOm0MiRIyk8PJxvk5CQEBKLxSSRSOjLL79s\npZ8mq1atos2bNxMR0ZkzZ2js2LHU0NBASqWSL4vxLyxgdBAyMjIoICCAiIi8vLzI3d2damtrKTIy\nkr7++msi0n+F4ePjQ5mZmUTU+GN64403qLy8nIgaf0RqtZqIiB48eMCfzV+/fp1GjRrFHzib0rec\nX6dp/9mzZzRkyBC6desWERHNmzePduzYQUSNZ65NB8yvvvqKQkNDW/kYHR1NCxcuJCKinJwcGjp0\nKFVXV1N+fr7OM8wmn4iI4uLiaM2aNUREFB4eTh988EGzdA8ePKCxY8fS06dPiYgoKiqKPxgMGzaM\nr6fmfksNysrKWvmgVquprq6OiIh++eUXmj17Nl/PgIAA/gy8KW9TWxQVFdHQoUOptLSUampqyNPT\nk1auXNnKfkJCQrOAERgYSERE2dnZWq+8hPSVJl/q6urIx8eH/vzzz1Y6GNJr27ZtrcomagzwRUVF\nRET0+PFjItLetlVVVc0CRmRkZKuAUVBQ0Kr9Na84dNmNj48ne3t7UqvVVFVVRba2tlRYWEgqlYom\nTpzI22paQEsXT58+JWdnZ0pJSSEHBwe6c+cOERH17duX/80w/qXDzyX1qiCXy5GZmYmKigp0794d\nbm5uUKlU+O2337Br164225s0aRKsra0BAA0NDdiwYQMuXryILl26oKioCCUlJUhJSUFgYCA/M2VT\neqD1dPFEhBs3bsDOzg4jRowAAISEhGD37t1YtWoVAGDWrFl8XbQte5mWloawsDAAgIODA2xtbXHz\n5k2981wVFhYiMDAQxcXFqKmpgb29PQDg3LlzSExM5NNZW1vjp59+QnZ2Njw8PAAANTU1/HttEFEr\nDbTNaPvo0SPMmzcPubm5EIlEqKur431YtmwZunTp0iovEeHy5cvw8fHhZ4SdM2eO3qmjgcYpqf39\n/QEATk5OWhcCE9JXEhMTERcXh7q6Oty/fx/Z2dkQi8XN7GRkZOjVa86cOVp99PT0REhICAIDA/k2\n19W2QmjZ1zTRZVckEsHX15efbXX06NG4e/cuRo8ejTt37iAsLAzTp0/HpEmT9JZtaWmJuLg4KJVK\nxMTEwM7OTpDPryosYHQQLCwsYGdnh4SEBHh4eIDjOKSkpCA3NxeOjo5tsiUSidCjRw9+/8iRIygt\nLcW1a9dgZmYGOzs7VFVV8esB6LJh6DMiavZZt27dAABmZmb8QbUl+g4O2li5ciXWrl2LGTNm4MKF\nC4iMjNRra+LEifjmm28E29enQRMff/wxfH19cerUKeTn52PcuHF6fdC0rYnQunft2lVvHkN9JS8v\nD9u3b4dKpULv3r3x/vvvo6qqSmtZ+vTSXKVPkz179uDKlSv4+eef4erqiszMTK2+tqy/ubk5Ghoa\n+H1dPrVEl25N/Q34t89ZW1vjjz/+wNmzZ7F3714cO3YM+/fv12s/KysLNjY2zRYXcnZ2hkqlatbW\nDPaUVIdCqVQiOjoa3t7eUCqV2Lt3L+RyOf+9hYWFzgOxJi1/YGq1GgMGDICZmRlSU1NRUFAAkUiE\n8ePH4/jx4ygrKwMAlJeXA2icI7/lE0QikQgODg7Iz8/H7du3AQCHDx+Gt7d3m+p35MgRAMDNmzdx\n9+5dODg46M2jVqsxaNAgAI1PGTUxceJE7N69m99/9OgR3nrrLaSlpfH+PXnyBLdu3dJbp5YaNL0K\n9WHfvn2or68H8K9+Tbbd3d1x4cIFlJWVoba2FsePH9dax7YGUUB/X1Gr1ejZsyd69eqFkpISJCcn\n8/k0dXB3d9eplz5u376NMWPGYNOmTbCxsUFhYaGgth02bBiuXbsGALh27Rry8vJ4nyoqKnTWs6Vd\nR0dHrZoRER4+fIj6+nrMmjULn3zyCV9ebGxss/7SREFBAb744gv8/vvvSE5O5mcz3rBhA9atW8df\n4dXU1BgMPK8CLGB0IJRKJYqLi6FQKDBgwABYWlpCqVTy3y9evBgcxyE4OFivHZFI1Ozsbu7cuVCp\nVOA4DocPH4aTkxOAxsv4jRs3wtvbGy4uLlizZg0AICgoCNu2bYOrqyvu3LnD2+nWrRvi4+MREBAA\njuNgbm6OpUuX8mXqKr+J5cuXo6GhARzHISgoCAcPHuTXHte1OlhkZCQCAgLg5uYGGxsbPt1HH32E\n8vJySCQSuLi44Pz58+jfvz8SEhL4R3Q9PDz4VeUWL16MKVOmtHrsuKUGa9eubeVDeHg4NmzYALlc\njvr6et6H0NBQDB06FBzHwcXFBUePHm2Wb+DAgYiMjIRCoYCXlxecnZ11Xrm11E/be0309RWpVAqZ\nTAZHR0fMnTsXXl5efD5NHWxsbHTqpY/w8HBwHAeJRAJPT09IpVKdbatZt9mzZ6OsrAxisRi7d+/m\nA0q/fv3g6ekJiUSC9evXN8sjxK6mVn///TfGjRsHmUyG4OBgREVFAQBycnJarWNORAgNDcX27dsx\ncOBA7N+/H6GhoaipqcHUqVOxYsUKTJgwAWKxGK6urjqD2qsEm96cwWB0evz8/HDq1CmYm7N/4V8E\nFjAYDAaDIQj2lxSDwWAwBMECBoPBYDAEwQIGg8FgMATBAgaDwWAwBMECBoPBYDAEwQIGg8FgMATB\nAgaDwWAwBPE/TB4aqVW+sZ0AAAAASUVORK5CYII=\n", "text": [ "" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The number of theoretical stages if the solvent rate used is 60 percent above the minimum is 8\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.5,Page number:444" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "\n", "\t# C-nicotine A-water B-kerosene\n", "\t# F-feed R-raffinate S-solvent\n", "F = 1000 \t\t\t\t\t# [feed rate, kg/h]\n", "xAF = 0.99 \t\t\t\t\t# [fraction of water in feed]\n", "\t# Because the solutions are dilute therefore\n", "xCF = 0.01 \t\t\t\t\t# [fraction of nicotene in feed, kg nicotene/kg \t\t\t\t\t\twater]\n", "xCR = 0.001 \t\t\t\t\t# [fraction of nicotene in raffinate, kg \t\t\t\t\t\tnicotene/kg water ]\n", "m = 0.926 \t\t\t\t\t# [kg water/kg kerosene]\n", "import math\n", "\n", "print \"Solution 7.5(a) \" \n", "# Solution(a)\n", "\n", "yCS = 0 \t\t\t\t\t# [kg nicotene/kg water]\n", "\n", "\t# Because, in this case, both the equilibrium and operating lines are # straight,if \tthe minimum solvent flow rate Bmin is used, the concentration # of the exiting extract, \tyCmax, will be in equilibrium with xCF. Therefore\n", "yCmax = m*xCF # [kg nicotene/kg kerosene]\n", "\n", "A = F*xAF \t\t\t\t\t# [kg water/h]\n", "\t# From equation 7.17\n", "Bmin = A*(xCF-xCR)/(yCmax-yCS) \t\t# [kg kerosene/h]\n", "\n", "#Result\n", "print\"The minimum amount of solvent which can be used is\",round(Bmin),\"kerosene/h\"\n", "\n", "print\"\\nSolution 7.5(b)\" \n", "\t# Solution(b)\n", "\n", "B = 1.2*Bmin \t\t\t\t\t# [kg kerosene/h]\n", "EF = m*B/A \n", "Nt = math.log((xCF-yCS/m)/(xCR-yCS/m)*(1-1/EF)+1/EF)/math.log(EF) \n", "\n", "#Result\n", "\n", "print\"The number of theoretical stages if the solvent rate used is 20 percent above the minimum is\",round(Nt,2)\n", "\n", "print \"Solution7.5(c)\" \n", "\t# Solution(c)\n", "\n", "Eme = 0.6 \t\t\t\t\t# [Murphree stage efficiency]\n", "\t# from equation 7.20\n", "Eo = math.log(1+Eme*(EF-1))/math.log(EF) \t# [overall efficiency]\n", "Nr = Nt/Eo \t\t\t\t\t# [number of real stages]\n", "\n", "#Result\n", "print\"The number of real stages required is\",round(Nr)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Solution 7.5(a) \n", "The minimum amount of solvent which can be used is 962.0 kerosene/h\n", "\n", "Solution 7.5(b)\n", "The number of theoretical stages if the solvent rate used is 20 percent above the minimum is 6.64\n", "Solution7.5(c)\n", "The number of real stages required is 11.0\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.6,Page number:449" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# C-styrene A-ethylbenzene B-diethylene glycol\n", "F = 1000 # [kg/h]\n", "XF = 0.6 # [wt fraction of styrene]\n", "XPE = 0.9 \n", "XN = 0.1 \n", "# All above fractions are on solvent basis\n", "# Equilibrium Data for Ethylbenzene (A)-Diethylene Glycol (B)-Styrene (C) at 298 K\n", "# Data_eqm = [X Y] \n", "# X - kg C/kg (A+C) in raffinate solution\n", "# Y - kg C/kg (A+C) in extract solution\n", "import math\n", "from scipy.optimize import fsolve\n", "from pylab import*\n", "from numpy import*\n", "\n", "\n", "Data_eqm=matrix([[0,0],[0.087,0.1429],[0.1883,0.273],[0.288,0.386],[0.384,0.48],[0.458,0.557],[0.464,0.565],[0.561,0.655],[0.573,0.674],[0.781,0.863],[0.9,0.95],[1,1]])\n", "\n", "\n", "\n", "#Illustration 7.6(a)\n", "# Solution(a)\n", "\n", "# Minimum theoretical stages are determined on the XY equilibrium distribution diagram, stepping them off from the diagonal line to the equilibrium curve, beginning at XPE = 0.9 and ending at XN = 0.1\n", "\n", "Data_opl=matrix([[0,0],[0.09,0.09],[0.18,0.18],[0.27,0.27],[0.36,0.36],[0.45,0.45],[0.54,0.54],[0.63,0.63],[0.72,0.72],[0.81,0.81],[0.90,0.90],[1,1]]) \n", "\n", "\n", "a1=plot(Data_eqm[:,0],Data_eqm[:,1],label='$Equilibrium line$')\n", "a2=plot(Data_opl[:,0],Data_opl[:,1],label='$Operating line$') \n", "\n", "legend(loc='upper left') \n", "title('Equilibrium-distribution diagram and minimum number of stages')\n", "xlabel(\"$X,kg C/kg (A+C) in raffinate solution$\") \n", "ylabel(\"$Y,kg C/kg (A+C) in extract solution$\") \n", "\n", "show(a1)\n", "show(a2)\n", "# Figure 7.20\n", "Nmin = 9 # [number of ideal stages]\n", "\n", "print\"Ans.(a)The minimum number of theoretical stages are \",Nmin\n", "\n", "#Illustration 7.6(b) \n", "# Solution(b)\n", "\n", "\t# Since the equilibrium-distribution curve is everywhere concave downward# ,the tie line \twhich when extended passes through F provides the minimum\n", "\t# reflux ratio\n", "\t# From figure 7.19\n", "NdeltaEm = 11.04 \n", "NE1 = 3.1 \n", "\t# From equation 7.30\t\n", "\t# Y = R_O/P_E, external reflux ratio\n", "Ymin = (NdeltaEm-NE1)/NE1 # [kg reflux/kg extract product]\n", "\n", "print\"Ans.(b)The minimum extract reflux ratio is\",round(Ymin,3),\"kg reflux/kg extract product\"\n", "\n", "#Illustration 7.6(c) \n", "# Solution(c)\n", "\n", "Y = 1.5*Ymin # [kg reflux/kg extract product]\n", "# From equation 7.30\n", "NdeltaE = Y*NE1+NE1 \n", "# From figure 7.19\n", "NdeltaR = -24.90 \n", "# From figure 7.21\n", "N = 17.5 # [number of equilibrium stages]\n", "\n", "# From figure 7.19\n", "# For XN = 0.1 NRN = 0.0083\n", "NRN = 0.0083 \n", "# Basis: 1 hour\n", "\n", "# e = [P_E R_N] \n", "# Solution of simultaneous equation\n", "def G(e):\n", " f1 = F-e[0]-e[1] \n", " f2 = F*XF-e[0]*XPE-e[1]*XN \n", " return(f1,f2)\n", "\n", "# Initial guess:\n", "e = [600,300] \n", "y = fsolve(G,e) \n", "P_E = y[0] # [kg/h]\n", "R_N = y[1] # [kg/h]\n", "\n", "R_O = Y*P_E # [kg/h]\n", "E_1 = R_O+P_E # [kg/h]\n", "\n", "B_E = E_1*NE1 # [kg/h]\n", "E1 = B_E+E_1 # [kg/h]\n", "RN = R_N*(1+NRN) # [kg/h]\n", "S = B_E+R_N*NRN # [kg/h]\n", "\n", "print\"Ans(c.)The number of theoretical stages are\",N\n", "print\"The important flow quantities at an extract reflux ratio of 1.5 times the minimum value are\\n\\n\"\n", "print\"PE =\",round(P_E),\"kg/h\\n\",\"RN =\",round(R_N),\"kg/h\\n\",\"RO =\",round(R_O),\"kg/h\\n\",\"E1 =\",round(E_1),\"kg/h\\n\",\"BE =\",round(B_E),\" kg/h\\n\",\"E1 =\",round(E1),\"kg/h\\n\",\"RN =\",round(RN),\"kg/h\\n\",\"S =\",round(S),\"kg/h\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAEfCAYAAADoaHnHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYVGX7wPEvAioqm7gCLiFupJm5Qiqg5pJkLimYomap\nmVZWWlqppGZZ2ltmmbnkvi+5IKYY+GpuuOeSJrkgKmi4ocj6/P44P+cFWZzBmWGA+3NdXgJzznnu\nOTNz7rnP85znWCmlFEIIIUQBKFHQAQghhCi+JAkJIYQoMJKEhBBCFBhJQkIIIQqMJCEhhBAFRpKQ\nEEKIAlMoktClS5ewt7fn4WhyPz8/5s2bB8DSpUvp2LGjbtkSJUrwzz//6L3tR9c3t8zxDhs2jMmT\nJxtlu3ntM2N48cUXWbx4sdG2l5sFCxbQunVr3e/29vZcuHDB5O1aOkPf53kxZJ/K/oeBAwcybty4\nAmv/tddeo3z58rRs2bLAYjAmG2NurGbNmsTHx2Ntba3722uvvcaMGTOeaLvVq1fn7t27ut+trKyw\nsrICoG/fvvTt2zff237S9Y1p1qxZei1Xs2ZN5s+fT9u2bXNdJq99ZqiQkBCio6OzJJ0tW7bka1tP\nKvNzEsZhyD6V/f9kn6UntWvXLsLDw7ly5QqlS5c2aN0SJUpw7tw5PDw8TBRd/hg1CVlZWbF58+Y8\nD46WJD09PUvCLCysrKzI6xrjtLQ0bGyM+tIWeYX1vSAKhrGu8c/IyKBECf1PSF28eJGaNWsanIAe\nssS5Ccx2Oi4jI4NRo0ZRsWJFatWqxQ8//ECJEiXIyMgAtG/3O3bs0C0fEhJCcHAwABcuXMiybGaP\nnq4BCA0NpVatWlSsWJEPP/xQt+MXLFjA888/z/vvv0+FChUICQnJsn5O7WQ+jZV5fWdnZzw9Pdmz\nZw+//PIL1atXp3LlyixatCjP/fD111/j6uqKu7s78+fPz/JY5jL/xo0bBAQE4OzsjIuLC23atEEp\nRXBwMJcuXeKll17C3t6eadOm6eKeP38+NWrUoH379ly8eDHbczl37hwtWrTA0dGRbt26cfPmTQAi\nIyOpVq1allgevh5bt27liy++YOXKldjb29O4ceNs+0UpxeTJk6lZsyaVK1dmwIAB3LlzJ8s+XbRo\nETVq1KBixYpMmTIl1/3z77//0rVrVxwdHWnRogXR0dFZHs98Gio0NJTGjRvj6OhI9erV+eyzz7Is\n+7DNChUq6OL7/fffAe399corrxAcHIyjoyMLFy4kKioKb29vnJ2dcXV15e233yY1NTVL27NmzaJ2\n7do4ODgwfvx4oqOj8fb2xsnJiaCgoCzLZxYdHU3btm2pUKECFStWpF+/fty+fTvL/p4+fTqNGjXS\nbSs5OVn3eF7vm0f5+fkxbtw4nn/+eezt7enatSs3btygb9++ODo60rx5cy5evJjjPh04cCDDhw8n\nICAABwcHWrZsmeW036PLvvXWW7z44ovY29vTunVrrl27xrvvvouzszP169fn6NGjOa77cP2H7/fI\nyEjc3d35+uuvqVSpEq6urvz6669s2bKFOnXq4OLiwpdffpnrc84rblN8rm/cuEGHDh1wcHDAz8+P\nS5cu6R7766+/eOGFF3BxcaFevXqsXr06S5zDhg3jxRdfpFy5ckRGRmZ7LleuXKFr1664uLhQu3Zt\n5s6dC8C8efMYPHgwe/fuxd7ePtv7HbTPuK+vL05OTlSsWJE+ffoA0KZNGwAaNWqEvb09q1ev5tat\nWwQEBFCpUiXKly/PSy+9RGxsrG5b58+fp02bNjg4OPDCCy8wfPhw3TEZYN++ffj4+ODs7Myzzz7L\nzp07dY8tWLCAWrVq4eDggIeHB8uWLcv1tUMZUc2aNVV4eHiOj82aNUvVq1dPXb58WSUkJCg/Pz9V\nokQJlZ6erlt3x44duuVDQkJUv379lFJKnT9/XllZWemW9fPzU/PmzVNKKfXLL7+oVq1a6dazsrJS\nbdu2VTdv3lSXLl1SderUUXPnztUta2Njo2bOnKnS09NVUlJSlvUfbSentmxsbNSCBQtURkaG+vTT\nT5Wbm5saMWKESklJUdu2bVP29vbq3r17Oe6DsLAwVblyZXXy5El179491adPH2VlZaWio6OVUkoN\nHDhQjRs3Timl1JgxY9Sbb76p0tLSVFpamtq9e3eW/Zx5Xz2Me8CAAer+/fvqwYMH2Z6Lr6+vcnNz\n07Xds2dP3f6NiIhQ7u7u2V7Lh22EhISo4ODgLI9n3i/z5s1Tnp6e6vz58yoxMVH16NFDt/zDOIYM\nGaIePHigjh07pkqVKqVOnz6d4z4KDAxUgYGB6v79++rEiRPKzc1NtW7dOsvr+3B/RUZGqhMnTiil\nlDp+/LiqXLmy+vXXX5VSSp08eVKVK1dO/fHHHyolJUWNGjVK2dra6p7ThAkTlK2trdqwYYNSSqmk\npCR16NAhtX//fpWenq4uXLig6tevr7799tssbXfr1k3dvXtXnTx5UpUsWVL5+/ur8+fPq9u3bysv\nLy+1cOHCHJ/XuXPnVHh4uEpJSVHXr19Xbdq0USNHjsyyv1u0aKGuXr2qEhISVP369dVPP/2klHr8\n++ZRvr6+qnbt2uqff/7RxeXp6al27Nih0tLSVP/+/dVrr72W4z4dMGCAcnFxUVFRUSotLU317dtX\nBQUF5bpshQoV1OHDh9WDBw9U27ZtVY0aNdTixYt1nw9/f/8c11Uq6/s9IiJC2djYqEmTJqm0tDQ1\nZ84c5eLiol599VWVmJioTp48qezs7NSFCxdyfM55xW3sz/WAAQOUvb292rVrl0pOTlbvvvuu7hiS\nmJio3N3d1YIFC1R6ero6cuSIqlChgjp16pRuXUdHR7Vnzx6llFIPHjzI9lxat26thg8frpKTk9XR\no0dVxYoV1e+//66UUmrBggVZjnePCgoKUlOmTFFKKZWcnKz++OOPXPf/v//+q9atW6eSkpLU3bt3\nVa9evVS3bt10j7ds2VKNHj1apaamqt27dysHBwfd5/ry5cvKxcVFhYWFKaWU2r59u3JxcVE3btxQ\niYmJysHBQZ09e1YppdS1a9fUyZMnc43ZqJWQUopu3brh7Oys+/fw28aqVat47733cHNzw9nZmY8/\n/jjP0jCvxx7no48+wsnJiWrVqjFy5EiWL1+ue8zV1ZXhw4dTokSJfJW0Tz31FAMGDMDKyorevXtz\n5coVxo8fj62tLS+88AIlS5bk3LlzOa67atUqBg0ahJeXF2XKlMnxm8xDJUuW5OrVq1y4cAFra2ue\nf/75x8YWEhKCnZ0dpUqVyvaYlZUV/fv317U9adIkVq1apdd+VkrludzSpUv54IMPqFmzJmXLluWL\nL75gxYoVWb55TpgwgVKlSvHMM8/QqFEjjh07lm076enprFu3jokTJ2JnZ8fTTz/NgAEDcm3b19eX\np59+GoCGDRsSFBSk+za2Zs0aunbtio+PD7a2tkycODHbeXwfHx+6du0KQOnSpXnuuedo3rw5JUqU\noEaNGgwZMiTLtzuADz/8kHLlyuHl5UXDhg3p3LkzNWvWxMHBgc6dO3PkyJEcY61Vqxbt2rXD1taW\nChUq8N5772Xb9jvvvEOVKlVwdnbmpZde0lURhrxvQHutX3vtNZ566ildXHXq1KFt27ZYW1vTq1ev\nXOO0srKiR48eNG3aFGtra/r27Zulmslp2caNG1OqVCm6d+9O2bJl6devn+7zkVs7D2V+bW1tbfnk\nk0+wtrYmMDCQhIQERo4cSdmyZfHy8sLLy+uxsegTd04M/VwHBATQqlUrSpYsyeeff87evXu5fPky\nmzdv1m2rRIkSPPvss/To0SNLNdStWze8vb0Bsn1WY2Ji2LNnD1OnTqVkyZI0atSIN954Q1eJPe7z\nWrJkSS5cuEBsbCwlS5bEx8cn12XLly9P9+7dKV26NOXKlePjjz/WvScvXbrEwYMHmThxIjY2Njz/\n/PO6zwrAkiVLePHFF+nUqRMA7du3p2nTpoSGhmJlZUWJEiX4888/SUpKonLlynh5eeUah1GTkJWV\nFRs2bODmzZu6f6+//joAV69ezXLKp3r16sZsOotH27ly5UqOj+VH5cqVdT/b2dkBULFixSx/S0xM\n1I1Os7e3x8HBAdBvHzx8k40ePRpPT086dOhArVq1mDp16mNje9xze7Tt1NRUbty48djtPs7Vq1ep\nUaNGlm2npaURFxen+1uVKlV0P5cpU4Z79+5l287169dJS0vT+32yf/9+/P39qVSpEk5OTsyePZt/\n//0X0E5puLu765a1s7PDxcUly/qZHwc4e/YsAQEBVK1aFUdHRz755BPd9h569PV/9PfExMQcY42L\niyMoKAh3d3ccHR0JDg7Otu3M+8jOzk63j/Lz2ckcV+nSpalUqVKW33OL89F183pOQLbtZv79ces+\nysXFRfdF4eFn69FYcnrf5Cfux60LOX+uQTvOZX7vlC1blvLly3PlyhUuXrzI/v37s3wRX7Zsme6z\nYGVllefn9MqVK5QvX56yZcvq/la9evUsp8ny8tVXX6GUonnz5jRo0IBffvkl12Xv37/P0KFDqVmz\nJo6Ojvj6+nL79m2UUro4Mn9Rd3d31x2fLl68yOrVq7M8zz/++INr165RpkwZVq5cyU8//YSrqysB\nAQGcOXMm1zjM1idUtWrVLOdNM/8M2guZ+Q127dq1fLf1aDtubm663/Ma1fLwhb9///4Tx/FwdNrd\nu3d1/SOP2weZlStXjmnTphEdHc3GjRv55ptviIiIyPM5PG7EzqNtP/xWXrZs2SzPOT09nevXr+u9\nXVdX1yzDdi9duoSNjU2WD7Y+KlasiI2Njd776NVXX6Vbt25cvnyZW7du8eabb+o+JK6urly+fFm3\nbFJSUraD/qPPa9iwYXh5eXHu3Dlu377N559/nmM/ZH58/PHHWFtbc+LECW7fvs3ixYv13rYh75uc\nFNRIrkeVKVMmy/vs6tWrZonNmJ9r0L4oxsTE6H5PTEwkISEBNzc3qlevjq+vb5Yv4nfv3uWHH37Q\na9uurq4kJCRkSaCXLl3K9oUpN5UrV+bnn38mNjaW2bNn89Zbb+U6lH/69OmcPXuWAwcOcPv2bXbu\n3Kk761G1alUSEhJISkrSLR8TE6N7vapXr05wcHC25/nhhx8C0KFDB7Zt28a1a9eoV68egwcPzjVm\noyeh3MrF3r17M2PGDGJjY7l58yZffvllljfgs88+y4oVK0hLS+PgwYOsXbs232/QadOmcevWLWJi\nYpgxYwaBgYF6rVexYkXc3NxYvHgx6enpzJ8/P1vH+JPo3bs3CxYs4PTp09y/fz/baZXM+27z5s2c\nO3cOpRQODg5YW1vrRtFUrlzZ4LiUUixZskTX9vjx4+nVqxdWVlbUqVOHBw8esGXLFlJTU5k8eXKW\nTvEqVapw4cKFXF/bPn368J///IcLFy6QmJjIxx9/TFBQUJ6jfnLalrW1NT169CAkJISkpCROnTrF\nwoULc91GYmIizs7OlCxZkgMHDmTp/OzZsyebNm1i7969pKSkEBIS8thTGYmJidjb21OmTBn++usv\nvYbMZ95mXttPTEykbNmyODg4EBsby9dff633th/3vnmSuPJaz5jLgvYZX7p0Kenp6WzdupX//ve/\nBq2f31hM8bnesmULf/zxBykpKYwbNw5vb2/c3Nzo0qULZ8+eZcmSJaSmppKamkpUVBR//fXXY+ME\n7WyFj48PY8eOJTk5mePHjzN//nz69eunV1yrV6/WfflycnLSnRqD7MeNxMRE7OzscHR0JCEhIcv7\nqkaNGjRt2pSQkBBSU1PZu3cvmzdv1j3er18/Nm3axLZt20hPT+fBgwdERkYSGxtLfHw8GzZs4N69\ne9ja2lK2bNk8R54aPQk9HLX18F/Pnj0BGDx4MB07dqRRo0Y0bdqUnj17ZnlBJk2aRHR0NM7OzoSE\nhGS7dievb/+PPvbyyy/TpEkTGjduTEBAgO6UYE7LPvq3OXPm8PXXX1OhQgVOnTqVpS8mt/X11alT\nJ0aOHEnbtm2pU6cO7dq1y7J+5u2fO3eOF154AXt7e3x8fBg+fDi+vr4AjB07lsmTJ+Ps7Mw333yT\naxyPbrt///4MHDiQqlWrkpKSort+y9HRkR9//JE33ngDd3d3ypUrl+WUQa9evQDtdEnTpk2ztTNo\n0CCCg4Np06YNHh4elClThu+//z7PfZTbfps5cyaJiYlUqVKFQYMGMWjQoGzP46Eff/yR8ePH4+Dg\nwKRJk7J82Xj66af5/vvvCQoKwtXVFXt7eypVqqQ7B5/Tazlt2jSWLVuGg4MDQ4YMISgoKNe2c/pb\nXtePTJgwgcOHD+Po6MhLL71Ez54983zvZN7W4943ua2fV1y5Pa8nWfZx63733Xds2rRJd4qqe/fu\nuS6b0+95eVzbxvxcW1lZ0bdvXz777DNcXFw4cuQIS5YsAbSLebdt28aKFStwc3OjatWqjB07lpSU\nlFzbetTy5cu5cOECrq6u9OjRg4kTJ+oue3nc+gcPHqRly5bY29vz8ssvM2PGDGrWrAlofcYDBgzA\n2dmZNWvWMHLkSJKSkqhQoQI+Pj507tw5y7aXLl3K3r17cXFxYdy4cQQGBlKyZElAOzW3YcMGpkyZ\nQqVKlahevTrTp09HKUVGRgb/+c9/cHNzw8XFhV27duX5hc5KPckIgHwaNGgQGzdu5N9//yU9PT3H\nb8zvvPMOYWFhlClThgULFuiGBguRHw+rpnPnzmXpvxJC6CcwMBAvLy8mTJhg1O0WyLQ9r732Wp6n\nWbZs2cK5c+f4+++/+fnnnxk2bJgZoxNFxaZNm7h//z737t1j1KhRPPPMM5KAhNDTwYMHiY6OJiMj\ng7CwMDZu3Ei3bt2M3k6BJKHWrVvj6OiY6+MbN25kwIABALRo0YJbt25lGWklhD42btyIm5sbbm5u\nREdHs2LFioIOSYhC49q1a/j7+2Nvb897773HTz/9RKNGjYzeToHN7eLu7k6DBg1yPBUXGxubpU/C\n3d2dy5cvGzzaShRvc+bMYc6cOQUdhhCFUkBAAAEBASZvx2Jn0X60q8pShpkKIYQwHouc5dLNzS3L\nOPzLly9nudbnIU9PT6MOoRZCiOKgVq1auc7sYm4WWQl17dpVN03Fvn37cHJyyvFUXHR0tO7iquL+\nb8KECQUeg6X8k30h+6K47ouMDMWxY4pPP1XUqaOoUUMR/OFhPKc/Q5elXYi9E4tSyqK+vBdIJdSn\nTx927tzJjRs3qFatGp999plu9uGhQ4fy4osvsmXLFjw9PSlbtmyeU08IIURxphT8+SesXg2rVkFy\nMvTqBfMXpvBb0uf8dHAW09pNI/iZYIvs1iiQJJR5QtHczJw50wyRCCFE4ZNb4lm8GJo1g6PXjjBw\nw0CqOVTj6JtHcbV3LeiQc2WRfULCcH5+fgUdgsWQffE/si/+p7Dvi8clHisrSElPISTyc2YdnMW0\nDpZb/WRWIDMmGMvj7jAqhBCFWW6Jp1ev/yWeh45c/V/18/NLP+dZ/VjSsbNIJqHy5cvr7hoqii9n\nZ2cSEhIKOgwhDGJI4gGt+vn8v4ZVP5aUhIrk6bibN29azA4WBcfST0MI8ZA+p9pykrn6sfS+n9wU\nySQkhBCWLr+JB/JX/VgqSUJCCGEmT5J4HioK1U9mkoSEEMLEkpJg7lz44Qd48MDwxANFq/rJTJKQ\nEEKYSGIi/PQTTJ8OLVrA/Png7a1/4nmoqFU/mUkSEkIII7t9W6t6vvsOfH1h61bIz10Qimr1k5lF\nzh1XHBw6dIguXbrg7e3NvHnzmDt3LtOmTcPDw4Pz58/na5tjxoxh27ZtACxbtoyKFStmeywjI4NR\no0bh7++fr+0aw6OxmaINIQpCQgJMmAC1asGpUxARofX95CcBHbl6hGZzmnHo6iGOvnmU/o36F7kE\nBFIJFZgmTZpgb2/Pq6++St++fXV/L1euHK6u+Su1v/zyS93P9evXz3KFeObHvLy88rypYF7bNYZH\nYzNFG0KY0/Xr8M038PPP0K0b7NsHnp7521ZxqH4yk0qoAP33v/+lY8eOACxduhSAtm3bUqpUqSfe\n9u+//07btm1zfCwiIgJfX98nbiO/8opNiMLk6lX44AOoWxdu3YJDh2DevPwnoOJS/WRWLJOQlZVx\n/j2JkydPYmtry5o1axg8eDB//vknAHXq1OHs2bN8/PHHbNu2jcmTJ7N8+XJiYmJYt24dffr0ASA1\nNZX27dsDkJCQwMqVK+ndu7du+5GRkbRt2zbHx3bu3MmlS5dYunQp3377LQCHDx9m5cqV+Pn58d13\n3/Hcc89x6dIlVqxYoVs3rxhOnDjB/Pnzef/991m3bh1r166lX79+hIeHExYWRnBwsO7+JQ9jyyn2\nQ4cO8eOPP/Lpp5/y66+/snbtWgYNGpRlv3300UeEhoYyceLEJ3sRhMinmBgYMQKefhrS07Vh17Nm\nQc2a+dteSnoKEyIm0HFJRz7w/oBNfTYVqcEHeVKFWG7hF4an9f3336v33ntPKaVUdHS02rp1q1JK\nqcuXL6uGDRuqf//9VymlVKdOndTFixfVtm3bVExMjGrdurVSSqldu3ap119/XSml1Pbt29XNmzdV\n06ZNlVJKpaWlqXr16uX42NmzZ5Wfn58uDnd3d6WUUsePH1fHjh1T7dq1U0oplZSUlG3dvGIICwtT\nhw4dUv7+/rpte3p6qujoaKWUUm+++aYKDQ3NEltO8YWFhakdO3aobt26KaWUysjIUB4eHkoppeLi\n4lSNGjVUfHy8UkqpsWPH5rmPC8P7QBQu0dFKDR6slLOzUqNHK3Xt2pNv8/CVw+qZWc+oLku7qNg7\nsU++QT1Y0mejWFZCliAyMpLnn38e0O4k265dOxISEggPD6dBgwaUL1+elJQU4uPjqV69Oi+88AIL\nFiygX79+AOzYsUNXhbRv354FCxYwcOBAAKKiomjWrFmOj+3evZsuXboAcObMGRwcHABo2LAh27dv\np1evXgCULl0627p5xdCpUye2b9+ueyw6OhoPDw88PDx07fr4+GSJLaf4Hm4nODgYgL179+qWX716\nNTVq1ODIkSMsXbqUt99+2xgvhRCPdeYMDBwIzZtD5cpw9ix89ZX2c34V6+onE0lCBUApxc6dO3VJ\nqFSpUtjY2DB9+nTi4uJo3LgxoPWd+Pj46Nbbt28frVq1AiA8PBx/f39+++03QLtHU79+/QgNDWXX\nrl34+fmxfv36bI/dvHmTBg0aALB48WJGjx6t2354eDgdOnTIEmvmdR8XQ+b1t2/fruvv2rNnD88+\n+yyxsbFs27YtS2w5tREREUG7du0AWLRoEYMHD2br1q3Y2dnRuXNnOnTooBvM8fBmiEKYwokT0KcP\ntGqljXg7dw4mTYIKFZ5su8Wx7yc3koTM7Pjx44wdO5YHDx4QGhrKvHnzmDFjBp07dyY1NZXg4GBi\nYmIIDQ3lq6++0h3IAbp168bGjRtZvXo1Hh4ebNmyhUb/P/bTw8ODzZs307x5c+rUqcPly5cpX758\ntscCAwPZv38/CxYsoGrVqroKRCnF/fv3eeqpp7LEm3ndvGLIyMggNTUVd3d3QOtjCggIAMDa2ppK\nlSpx4sQJGjVqlCW2zG20aNGC+/fv4+TkpBu9V7ZsWeLj4ylfvjx9+vQhMTGRzZs3s2HDBg4cOICt\nra0JXiVR3B05Aj16QPv20Lgx/PMPjBsHTk5Ptl2pfrIrkrdysKRpyp9E8+bNiYiIoGzZsgUdSqFU\nVN4Hwnz279cqnSNHYPRoGDIEypQxzrYNud+PqVnSZ0MqIQt07949QkJCiImJYe/evQUdjhBF3q5d\n0KED9O4NXbpAdDSMHGmcBCTVT96kEhJFlrwPRF6Ugh07tMonNhbGjoXgYChZ0nhtWFL1k5klfTZk\nxgQhRLGiFISFacnn5k345BNt8IGNEY+GxW3WgychSUgIUSxkZMCGDTB5MqSmwqefQs+eYG1t3HaK\n8ozXpiBJSAhRpKWnw5o1WvIpVUob5da1K5Qwco+4VD/5I0lICFEkpaXBsmUwZQqUL69dXNqp05NP\nuZUTqX7yT5KQEKJISUmBRYvgiy+gWjXtvj5t25om+Uj18+QkCQkhioTUVJgzB6ZOhXr1YMECaN3a\ndO1J9WMckoSEEIXezp3w1lvg5qbdRK5FC9O1JdWPcUkSEkIUWteuaTMb7NwJ//mPNtWOKfOBVD/G\nJzMmCCEKnbQ0+P57aNgQXF21W2n37Gm6BCSzHpiOVEIF6NdffyUuLo6qVauSkJBAXFwco0aNwtrY\nFy7oYcyYMbRt2zbbLNr6WrZsGe+++y7Xr1832jaFyMnevdqpNycnrQLy8jJte1L9mJZM21MAlFIM\nGzaMtm3bZrnj6cSJEylTpgyjRo0yeQzt2rXjt99+w8ZIl4kfOXKEKVOmsHr1aqNszxgs/X0gDHPj\nBowZo8128PXX2iwHpjz1VpT7fizpsyGn4wrAl19+SalSpbIkIICmTZuyZs0ak7cfGxuLUspoCQi0\nex89vGW3EMaUkQE//6xVPOXKaafeXn3V9H0/cr8f8yiWp+OsPjPOm0lNMPybxK1bt/jyyy85evRo\ntseuX79OSkoKx44d49ChQ5w5cwYfHx/i4+MpVaoU/fv35+TJkyxatIg2bdpw6NAhAgICOHv2LD/9\n9BPdu3dn4cKFbNiwgWrVqnH27FkWL16Mt7c3y5cvJzAwkFKlSjFnzhyqVKnC4sWL6dKlC9u2bWPd\nunWsWrWKQ4cOsX//fq5cuULTpk1JT08nNDSU+fPn6+JMT0/nyy+/pF69esTHx7N//37+/fdfpk2b\nBkBCQgLbt29n7dq1em3z0ec0fvz4fL4ioqg5dEg79WZtDdu2wbPPmra9olz9WCxz3kvc2HIL35Kf\nVmhoqKpZs2aOj73yyivqo48+Ur/99pvavXu36t27t1JKqcTERFW7dm0VHx+vatSooeLj45VSSo0d\nO1b9+eef6ujRo6pdu3ZKKaWSkpJ06zRq1EjdvHlTKaWUv7+/iouLU0op1adPH3Xw4EGllFLbt29X\nN2/eVE07tQKVAAAgAElEQVSbNlVKKRUWFqZ27NihunXrppRSKiMjQ3l4eGSJc8yYMWrBggVKKaWW\nLFmipk+frurVq6d73JBtxsXFZXtOxmLJ7wORt4QEpd56S6nKlZWaN0+p9HTTt3n4ymH1zKxnVJel\nXVTsnVjTN1iALOmz8USn4/bu3UtMTIwxcmGxkZKSQuUcbkx/4sQJ9uzZw+jRo+nQoQPbtm3jpZde\nArT+FhcXF1avXk316tU5cuQIS5cu5e2336ZBgwaEh4fTq1cvAEqXLg3AunXraNiwIU5OTjx48IDE\nxEQqVaqEUoojR47QpEkTANq3b8+CBQt0d1jt1KkT27dvJzg4GNBe42bNmuniTEtLY/bs2QQGBgIQ\nGRlJs2bNaNq0qW4ZQ7a5evVqatSokeU5ieJLKVi4UDv1lp6unXobNMj487xlJiPfCpbBL+3kyZMZ\nMGAAr7/+OhcvXmTdunWmiKvI8vf3Jy4ujtu3b+v+Fh8fz1tvvcWvv/6Ki4sLAOHh4fj6+gKwcOFC\nRo8eTenSpXnxxRfp0KEDffv2BbSkFh4enm0E2o0bN3S3/g4PD6dly5Zs3bqV06dPU79+fQBWrFgB\nwPLly+nXrx+hoaEARERE0K5dOwAWLVrE4MGD2bp1K6DdcM/NzY3SpUuTkpLC8ePH2bdvH/7+/qxf\nv17Xvr7btLOzo3PnzlmeU2pqqlH2tShc/vwT2rTRhl5v3Ag//aTN+WZK0vdT8AxOQk8//TQLFy7k\nm2++QSlFrVq1DG5069at1KtXj9q1azN16tRsj9+4cYNOnTrx7LPP0qBBAxYsWGBwG5bK0dGRVatW\nMX78eBYtWsT8+fP56aefWLFiha46uH37NgkJCfz+++/MmTOHFi1a0KNHD/r06UNiYiKbN29mw4YN\nHDhwgJIlS3Lv3j2eeuqpLO306dOHy5cvExYWxvXr1ylRogS3bt2ifPnyODo6snz5cvz8/ADw8PBg\n8+bNtGjRgvv37+Pk5ISjoyMAZcuWJT4+nvL/fzRwdHTk5ZdfZvXq1UyZMoW6detSp04dLl++rFvG\nkG3m9JxsbW1N/TIIC3L3LnzwAbRrpw042L8fMhXfJiHVj+UweIj2+vXrcXd3z3KKxhDp6enUrVuX\n8PBw3NzcaNasGcuXL9d9OwcICQkhOTmZL774ghs3blC3bl3i4uKyjeYqrEO0H2f9+vXs27cvxwRd\n0K5du4aTkxOlS5dm6tSp1K5dmx49ehR0WDkq7O+Dok4pbYqdDz6AF17Q5nyrVMn07Vrq3U7NyZI+\nGwaPjtu5cyegXdNSunRpfH19GTFihN7rHzhwAE9PT2rWrAlAUFAQGzZsyJKEqlatyvHjxwG4c+cO\nLi4uRh1ObMn++usvvvnmGzw9Pblz5w4ODg4FHVIWn376Kc899xxOTk5YW1tbbAISlu3MGRgxAuLi\nYMUKaNXK9G3KyDfLZPCRvXv37kyaNAlvb2969epFSkqKQevHxsZSrVo13e/u7u7s378/yzKDBw+m\nbdu2uLq6cvfuXVatWmVomIVWvXr12LVrV0GHkau5c+cWdAiiELt3Dz7/XLvu55NP4O23jXtb7dwc\nvXaUgb8OxN3BXWY9sDAGv/xRUVHMmDGDixcv8t133/HKK68YtL4+3zymTJnCs88+S2RkJNHR0bzw\nwgscO3YMe3v7bMuGhITofvbz89P1cwghLIdS2q21R44Eb284flyb883UpPrRREZGEhkZWdBh5Mjg\nJFSxYkW8vLzw8vKic+fOLFy40KD13dzcsgzrjomJwd3dPcsye/bs4ZNPPgGgVq1aPPXUU5w5cybL\nMOCHMichIYTl+ecfreL55x+YN08bgGAOUv38z6Nf0D/77LOCC+YRBo+Oc3FxISgoiE2bNnHs2DHi\n4+MNWr9p06b8/fffXLhwgZSUFFauXEnXrl2zLFOvXj3Cw8MBiIuL48yZM3h4eBgaqhCiAD14ABMn\nQvPm2s3ljh0zTwJ6OPKtw+IOvO/9vox8s3AGV0IBAQHUrl2bhQsXsnPnTgYPHmxYgzY2zJw5k44d\nO5Kens7rr79O/fr1mT17NgBDhw7l448/5rXXXqNRo0ZkZGTw1VdfZRn+K4SwbFu3atVPw4Zw+DBU\nr26edqX6KXxkFm1RZMn7wPwuXYL33tOqnu+/h86dzdOu9P0YxpI+G3pVQn369GH58uUArFmzhpSU\nFLp27crx48dJTk7G39/fpEEaytnZWd6AAmdn54IOodhISdHubPrVV/DOO7B0Kfz/DFImJ9VP4aZX\nElq0aJHu5ytXruDi4sKgQYOwsrKiUqVKFpeEEhISCjoEIYqNiAgYPhxq1oQDByAfk6jki1Q/RYNe\nSSjzNCoPR6itWrWKO3fukJ6ebprIhBAW7epVbbaDP/6A776Dl1827T1+MpPqp+jQe3TclClTCAsL\n4+TJk/j4+ABw5syZHO+LI4QoutLS4NtvtUEHNWpoM11362aeBCQj34oevUfHde/enYiICObNm8fG\njRupUqUKzZs3JzY21uJOxwkhTOOPP7SbzFWoALt3Q7165mtbqp+iyeDRcWFhYXTu3Jlr164RFRWF\nq6ur7t405mZJIzyEKMquX4cPP9Tubjp9OgQGmu/Um/T9GJ8lHTsNvk6o8/+PuaxSpQqVKlWibt26\nRg9KCGEZ0tNhzhwYPx769YPTp8Gcc+pK9VP0GVwJBQcHU65cOXx8fHjuuefYsWMH77zzjqniy5Ml\nZXMhipqDB2HYMChVCn78EZ55xnxtS/VjWpZ07DS4Elq8eDHnz59nz549zJo1q9jcYkGI4iIhQZvh\nev16+PJL6N/ftLfXfpRUP8WLwW+tffv2ce3aNfr27cvMmTNp3bq1KeISQphZRgb88gt4eWlJ5/Rp\nGDjQfAlIRr4VTwaXMeHh4dja2vLtt99iZ2dHtWrV6NmzpyliE0KYybFj2qi31FTYvBlymLDepKT6\nKb4M7hM6fvw4iYmJumuFCpIlndcUojC6c0cbdLBsGUyaBG+8AdbW5mtf+n4KhiUdO/WqhMaNG0fL\nli1p0aIFz2TqnYyIiKBRo0Yyw7UQhYxSsHw5jB4NnTrByZNQsaJ5Y5DqR4CeSSgpKYlLly6xZs0a\n4uPjcXZ2pnnz5jRt2pS5c+fy4YcfmjpOIYSRnD6tzfWWkACrV4O5T2pI9SMyy9etHO7cuUNUVBQH\nDx6kVq1aBt/i21gsqaQUwtIlJmqn3ObPh3HjtD4gcw9uzVz9/PzSz1L9FBBLOnYa/BY8ffo0P/74\nI05OTgQHB1OnTh1TxCWEMBKltOHWI0dCmzZw/DhUrWreGKT6EbkxOAmFhoYybNgwLl68yNSpU3nl\nlVd0sygIISzLuXPaHU4vXoSFC6EgpnmUvh+RF4OvAKhYsSJeXl507tyZefPmER8fb4q4hBBPICkJ\nJkyAli21xHP0qPkTkFz3I/RhcCXk4uJCUFAQffv2pXr16pKEhLAwoaHa3U0bN4YjR6BaNfPHINWP\n0Fe+BiacOXOGhQsXkpKSwuDBgwtsElNL6lwToqBdvAjvvqsNt545Ezp2NH8M0vdTOFjSsdPgJHTv\n3j0SExOpXLmyqWLSmyXtSCEKSnKydnuF6dO1wQejR0Pp0uaPQ0a+FR6WdOw0+HTckiVLKFWqFOvW\nraNChQr07t2bTp06mSI2IcRjhIfDiBFQuzZERYGHh/ljkOpHPAmDBybY2dnh5eVFQkIC8+fP586d\nO6aISwiRhytXIChIm2bnq69g06aCSUBHrx2l+ZzmHLp6iKNvHqV/o/6SgIRBDE5Czz33HCtWrGDG\njBksWLCAtLQ0U8QlhMhFdDQ0b64lnVOnoGtX88cgI9+EsRh8Oq5ChQp88803AFy+fJkaNWoYPSgh\nRM4uX4b27bUZD4YOLZgYZOSbMCa9K6EpU6YQFhbGpk2bdH+rWrUq//77r0kCE0JkFR+vJaDhwwsm\nAUn1I0xB70qoe/fuREREMG/ePDZu3EiVKlVo3rw5sbGxtG3b1pQxClHs3bwJHTpA794wapT525fq\nR5iKwUO0w8LC6Ny5M9euXSMqKgpXV1eaNGliqvjyZEnDDIUwlQMHtAEIbdvCf/4D5uz3l5FvRZMl\nHTsN7hN6+umnAahSpQpNmjTB1VW+EQlhCrdvwyefwNq1MG0avPqqeROQVD/CHAweHffRRx+RnJwM\nQHp6OmFhYUYPSojiTClYsQK8vCAtTRsB17ev+RKQ9P0IczK4EurQoQOlSpUCoFq1ahw9etToQQlR\nXJ07pw08uHYN1qwBb2/zti/VjzA3gyuhSpUqERgYyKZNmzh27BgnTpwwRVxCFCvJydoN51q21AYg\nHDpk3gQk1Y8oKPmawPTs2bO6C1XffPNNPAriUm0sq3NNiPyKiIBhw6BePZgxA6pXN2/7Mudb8WNJ\nx06Dk9DcuXNp0KABjRs35uDBg1y9elVu7y1EPsTHa8Otd+7Uks/LL5u3/cwj375+4WuZcqcYsaRj\np8F9QvHx8ezcuZMZM2Zw9+5datWqVWBJSIjCKCMD5s3TRr4NGKDdeqFcOfPGIH0/wlIYnITc3d3p\n378/ACkpKWzYsMHgRrdu3crIkSNJT0/njTfe4KOPPsq2TGRkJO+99x6pqalUqFCByMhIg9sRwtIc\nPw5vvqn9HB4Ozzxj3vbluh9haQxOQra2tgwcOJCuXbtSt25dLl++bND66enpjBgxgvDwcNzc3GjW\nrBldu3alfv36umVu3brF8OHD+e2333B3d+fGjRuGhimERbl3D0JCYOFCmDxZu/i0hMHDgp6MVD/C\nEhn8MXB3d2fs2LEcOXKEn376iVatWhm0/oEDB/D09KRmzZrY2toSFBSUrZpatmwZPXv2xN3dHdAm\nTRWisNq4Ubvm59o1OHEChgwxbwKSkW/CkhlcCf3www8sXLiQSZMm5avB2NhYqmW66b27uzv79+/P\nsszff/9Namoq/v7+3L17l3fffZfg4OB8tSdEQYmJgXfe0S42/eUXbdodc5PqR1g6g7+POTk5sXPn\nTlJTU/PVoD7nn1NTUzl8+DBbtmzht99+Y9KkSfz999/5ak8Ic0tLg2++gcaNtX/Hj5s/AUn1IwoL\ngyshJycnoqKimDVrFsnJyTRp0sSgqsjNzY2YmBjd7zExMbrTbg9Vq1aNChUqYGdnh52dHW3atOHY\nsWPUrl072/ZCQkJ0P/v5+eHn52foUxLCaPbt0wYeVKwIe/dqt902N6l+xKMiIyMtd3CXMtCuXbvU\nX3/9pZRSKiMjQ124cMGg9VNTU5WHh4c6f/68Sk5OVo0aNVKnTp3Ksszp06dVu3btVFpamrp3755q\n0KCBOnnyZLZt5SN8IUwiIUGpoUOVqlpVqWXLlMrIMH8MyWnJavzv41XFryqqhUcXqoyCCEIUCpZ0\n7DS4EvL09KRKlSoAJCUlGXxnVRsbG2bOnEnHjh1JT0/n9ddfp379+syePRuAoUOHUq9ePTp16sQz\nzzxDiRIlGDx4MF5eXoaGKoTJKQXLlmkXnfboofX/ODmZP44jV48wcMNAqjlUk+pHFCp6z5gwZcoU\nGjduzOXLlxk8eDAAUVFRJCYm4u/vb9Igc2NJV/2K4ufsWXjrLfj3X/jpJ2jRwvwxyHU/Ij8s6dhp\nlDurFlQSEqIgPHgAX34JM2dqsx68/TbYGHxO4clJ9SOKAr0/OvXr16d+/fo89dRTWe6s+txzz5ky\nPiEsSni4Vv00bAhHjkCmqw3MRqofUZQYPIHpP//8Q9WqVbGzszNVTHqzpJJSFG3XrsEHH8Aff2gV\nUEBAwcSRufqRGa9FflnSsdPg64SmT5+uu7h0165d7Nq1y+hBCWFJtmzR5nirVk2bbLQgEtDD6346\nLunIB94fyHU/osgw+Ex28+bNOX/+PDVq1KB169asX7/eFHEJYREezna9YYP573L6kPT9iKLM4Eoo\nJiaGUqVK8c033+Dv78+hQ4dMEZcQBerePe1Gc1OmwH//WzAJSKofURwYXAl5eHjQs2dPXn31VW7c\nuMG6detMEZcQBWb/fggO1hLP4cPg6Gj+GKT6EcWFwZXQwyl0QBukEBcXZ/SghCgIqakwfjx07apV\nQAsXmj8BSfUjihuDK6ENGzZQv359IiIiaN26tUwsKoqEv/6Cfv2gUiU4ehSqVjV/DFL9iOLI4Eoo\nJSWFtm3bcu/ePWxsbHAqiDlKhDCSjAz4/nto3Vq70VxoqPkTkFQ/ojgzuBKqV68erVu3pnbt2qSl\npXH8+HG6dOliitiEMKnYWHjtNbhzB/bsKZgZr6X6EcWdwRerAly8eJFff/0VOzs7AgMDcSyInlss\n64IrUbisWKHdcO7tt2HsWPNPuyOzHoiCZEnHznwloYf27t2Lu7t7ljulmpMl7UhRONy8qU27c/Qo\nLF4MTZuaPwaZ9UAUNEs6dhrcJzR58mQGDBjA66+/zsWLF2WItig0tm/XZj6oVEkbem3uBCR9P0Jk\nZ/BJiKeffppPP/2U27dvs2XLFmrVqmWKuIQwmvv3YcwYWL8e5s+HF14wfwzS9yNEzvJ1JjwqKopm\nzZrRp08fY8cjhFEdPKhdeNq4MRw/Ds7O5m1f+n6EyJvBfUIjR44EIDo6mtKlS+Pr68uIESNMEtzj\nWNJ5TWFZ0tLgiy+0Ga+/+w6Cgswfg/T9CEtlScdOgyuhnj17YmVlRatWrUhKSuLkyZOmiEuIfPv7\nb636cXDQ+n7c3MzbvlQ/QujviUbHFTRLyuai4CkFs2fDuHEwYYI2Cq6EwUNvnoxUP6IwsKRjp16V\nUJ8+fVi+fDkAa9asISUlha5du3L8+HGSk5Pl9t6iwF29Cq+/Dtevw65dUK+eeduX6keI/NErCS1a\ntEj385UrV3BxcWHQoEFYWVlRqVIlSUKiQK1dC8OHw9Ch8OmnYGtr3vZl5JsQ+Wfw6bjo6Gji4uLw\n8fHhzp07pKen42zuIUf/z5JKSmF+t29rMx7s26ddeNqihXnbl+pHFFaWdOyUPiFRKP32GwwZAl26\nwNdfQ9my5m1f+n5EYWZJx069R8clJSWxfPly/vzzT9LS0rh//z4lSpTA3t6eFi1a0KtXL0qYuxdY\nFDsJCfD++xAZCXPmQIcO5m1fqh8hjEuvSig8PJxTp07RpUuXbDMkKKU4fvw4O3bsoF27djRq1Mhk\nwT7KkrK5ML3162HECOjRQ7sGqFw587Yv1Y8oKizp2PnYSujBgwdcuHABLy8vKlSokO1xKysrGjVq\nRKNGjeSaIWEScXFa38+xY7ByJbRqZd72pfoRwnQee/6sdOnSuLi4sH79elavXk1iYiIA27dvJy0t\nLcuyTz/9tGmiFMWSUrBkiTbpqIeHNvO1uRPQkatHaDanGYeuHuLom0fp36i/JCAhjEivPqE7d+7w\nww8/ZPmbr68vy5cvp3PnzjlWSEI8iZgYGDZM+z80tGBmvJbqRwjT02skwe3bt7P9rWTJkgQHBxMW\nFmb0oETxlZGhzXrw3HPakOuoKPMnIKl+hDAfvSqh69evk5CQQPny5bM9lpycbPSgRPEUHQ1vvKHd\neiEiAho0MG/7Uv0IYX56VUJvvfUWgYGB7NixI8vflVKcPn3aJIGJ4iM9Hf7zH63yCQiAPXvMn4Ck\n+hGiYOh9seo///xDv379uHv3Ln5+ftjZ2bFv3z7ef/99unXrZuo4c2RJwwxF/pw6pc35VqoUzJ0L\nnp7mbV+qH1EcWdKx0+AZE/bs2cPevXuxsbGhS5cueJr7qJGJJe1IYZjUVJg6VbvXz6RJ2uwHMuO1\nEOZhScfOfE/bc+PGjQIfFWdJO1Lo7/BhGDQIqlbVBiFUr27e9qX6EcWdJR078/3dc+nSpcaMQxQD\nDx7A2LHQuTN88AFs2WL+BCR9P0JYFoPvrCpEfvzxh9b306CBNvNBlSrmbV+qHyEsk96VUFJSEhcv\nXtT9S0hI0P18+fJlgxrdunUr9erVo3bt2kydOjXX5aKiorCxsWHdunUGbV9YjsREePdd6NULPv8c\n1qwxfwKS6kcIy6V3JXT37l0uXLig+z0hIUH3u7W1Ne7u7nptJz09nREjRhAeHo6bmxvNmjWja9eu\n1K9fP9tyH330EZ06dbKYc5fCMOHh2oCD1q3hxAnI4TIzk5LqRwjLp3cSqlSpEpUqVdL9fvToUXx9\nfQ1u8MCBA3h6elKzZk0AgoKC2LBhQ7Yk9P333/PKK68QFRVlcBuiYN26BaNGwbZt2sCDzp3NH4Pc\n7VSIwsHsNwCKjY2lWrVqut/d3d2JjY3NtsyGDRsYNmwYgHx7LUQ2btT6fWxtterH3AkoJT2FCRET\n6LikI6O8R7GpzyZJQEJYsHwPTAgICMjXevoklJEjR/Lll1/qhhHK6TjLd/06vPOONtfbkiXg52f+\nGB5WP9Udq0v1I0Qhke8k9OjN7fTl5uZGTEyM7veYmJhs/UmHDh0iKCgI0K5HCgsLw9bWlq5du2bb\nXkhIiO5nPz8//Ari6FeMKaXd42fkSOjXD+bNgzJlzBtD5r6f6R2m0++ZflI9C5FJZGQkkZGRBR1G\njvJ9sWp+paWlUbduXXbs2IGrqyvNmzdn+fLl2fqEHnrttdd46aWX6NGjR7bHLOmCq+IoNhbeekub\neHT+fGje3PwxZK5+ZgfMlupHCD1Y0rHzifuErl+/btDyNjY2zJw5k44dO+Ll5UVgYCD169dn9uzZ\nzJ49+0nDEWayZg00bgzPPguHDpk/AT3a97MxaKMkICEKIYMroQcPHhAXF8f169eJi4tj5cqVLFq0\nyFTx5cmSsnlxkZysjXwLDYVVq8x/rx+Q6keIJ2VJx069+oT69evHvn37SExMxM7OjgoVKvDgwQOa\nNWvG33//beoYhYU4fx569wZ3d23+Nycn87YvfT9CFD16VUIpKSmsXLmSjIwMevfujZ2dHbNnz2bo\n0KEcPXqUZ5991hyxZmNJ2byo27BBu/B07FhtBgRzH/ul+hHCeCzp2GnQ6bh79+6xdOlSSpYsye3b\nt3n33XdNGdtjWdKOLKpSU2HMGK0PaOVKaNnSvO1L9SOE8VnSsTNfo+Nu3LjBzz//TJ06dXBxccHf\n398UsT2WJe3IoigmBgIDtel2Fi4EFxfzti/VjxCmYUnHzicaon3p0iUCAgI4fvy4MWPSmyXtyKJm\nyxbtnj/vv68NRDDnDeek+hHCtCzp2PnYgQnJycncvXs3xxvYVa9enW+//Vb3+6VLl6hu7hvECKNK\nS4Nx47RZD9asgVatzNu+zHogRPGiVyW0efNm7ty5Q/fu3bGzs8v2+M2bN1m9ejX169endevWJgk0\nJ5aUzYuCK1egTx8oXVpLQhUrmq9tqX6EMB9LOnbqfTru6tWr/PLLL8THx/PgwQNSU1OxtramTJky\nuLu7M3jwYBwdHU0dbxaWtCMLu+3boX9/GD4cPv7YvKffpO9HCPOypGOn2aftMSZL2pGFVXo6TJwI\nc+dq1Y85x5hI9SNEwbCkY6fBE5gOHTqUsmXL4uPjg4+PD66u8q21sLp2Dfr21SYhPXTIvHc8lb4f\nIQTkY+44Hx8fRo0ahbW1NV999RXe3t4MGTKEK1eumCI+YSKRkdCkCTz/vHYqzlwJSOZ8E0JkZnAl\nFBMTg4ODA927d6d79+6sXbuW9u3b8/PPPzN69GhTxCiMKCMDvvgCZs7Urv3p0MF8bUv1I4R4lMFJ\naNCgQfTt2xelFHXr1sXa2pqePXtSu3ZtU8QnjOj6dQgOhnv34OBBcHMzT7uZ+36mdZhG8DPB0vcj\nhACeYGDChQsXuHXrFg0bNuTGjRuMGTOGX375xdjx5cmSOtcs3e7d2vDrvn1h8mSwyfftDA3zsPqp\n5lCNn1/6WaofISyAJR07DU5CTZo0Yffu3djZ2bFlyxYcHR15/vnnTRVfnixpR1qqjAyYNg2mT9du\nPNeli3nalepHCMtlScdOg78Pf/LJJ9jZ2bF+/XoOHz5MUlJSgSUhkbeEBBgwAG7cgKgoMNdkFpmr\nH+n7EULkRa8k1KZNG7y9vfHx8aFp06asXbuW9evX8+GHH+Lu7m7qGEU+7N+vTT7asyesXQslS5q+\nTal+hBCG0ut03MaNG6lduzZ79+7lwIEDnDp1CoCAgAD8/f1p1qyZyQPNiSWVlJZCKfjuO5gyBX7+\nGbp1M0+70vcjROFhScfOfA9MSExMJCoqir/++othw4YZOy69WNKOtAS3bmkzX1+6pN1628PD9G1K\n9SNE4WNJx87HJqEzZ85QokQJixyCbUk7sqAdOqTdevvFF7WBCKVKmb7No9eOMvDXgbg7uEv1I0Qh\nYknHzscmobS0NCIjI3XJqFmzZjRt2tRc8eXJknZkQVEKZs2CCRPgxx+hVy/TtynVjxCFmyUdOw0+\nHXfgwAEOHTpERkYGdevWxc/PDxtzXXTyCEvakQXhzh0YMgTOnNFOv5mjWJXqR4jCz5KOnU80i/aZ\nM2eIjIwkJSUFNzc3OnbsSNmyZY0ZX54saUea27FjWtXj7w/ffgs53ObJqKT6EaLosKRjp9Fu5XDl\nyhV27dpFYGCgMTanF0vakea0cKF2y+1vv9VmQDA1qX6EKFos6dipVxJauHAh7u7uNG3a1Ow3rsuL\nJe1Ic8jI0G69vWIFbNoEXl6mbU+qHyGKJks6dup1KwcHBwfWrVvH6tWrSUxMBGD79u2kpaWZNDjx\nP0lJ8OqrEBEB+/aZPgEdvXaU5nOac+jqIY6+eZT+jfpLAhJCGJ1eIwru3LnDDz/8kOVvvr6+LF++\nnM6dO1OhQgWTBCc016/Dyy9r0+78/juULm26tqT6EUKYk16V0O3bt7P9rWTJkgQHBxMWFmb0oMT/\nnD4NLVtC27awbJlpE5BUP0IIc9OrErp+/ToJCQmUL18+22PJyclGD0pofv9du/3C1KkwcKDp2pHq\nRwhRUPSqhN566y0CAwPZsWNHlr8rpTh9+rRJAivu5s/XEtDKlaZNQFL9CCEKkt5DtP/55x/69etH\nYhXf9UoAABdDSURBVGIivr6+2NnZsW/fPt5//326mWuWzEdY0ggPY8nIgE8/1S4+DQ2FunVN045U\nP0IUX5Z07DT4OqEOHToQHh7O1KlT8fb2plWrVqaK7bEsaUcaQ1KSdv+f2Fj49VeoWNE07ch1P0IU\nb5Z07NTrdFxmffv2JSYmBk9PT9asWYO3tzdDhgzhypUrpoiv2IiP1wYf2NjAjh2mSUAp6SlMiJhA\nh8UdeN/7fTb12SQJSAhRoAxOQjExMTg6OtK9e3e+/fZbRo0axddff83SpUtNEV+xcOqUNgLuhRdg\n6VLTjICTvh8hhCUyeObRQYMG0bdvX5RS1K1bF2tra3r27GmRt3ooDMLDtYtQp02D/v2Nv33p+xFC\nWLJ8zx134cIFbt26RcOGDblx4wZjxozhl19+MXZ8ebKk85r5MXcufPKJNgjB19f425e7nQohcmJJ\nx06jTWBqqK1btzJy5EjS09N54403+Oijj7I8vnTpUr766iuUUtjb2zNr1iyeeeaZLMtY0o40REYG\nfPwxrFljmhFwUv0IIfJiScdOg0/HNWnShN27d2NnZ8eWLVtwdHTk+eefN2gb6enpjBgxgvDwcNzc\n3GjWrBldu3alfv36umU8PDz473//i6OjI1u3bmXIkCHs27fP0HAtTlKSdtrt2jVtDjhjz3iUufo5\n+uZRqX6EEBbN4IEJn3zyCXZ2dqxfv569e/eyfv16gxs9cOAAnp6e1KxZE1tbW4KCgtiwYUOWZby9\nvXUzdrdo0YLLly8b3I6liYsDPz8oWVLrCzJmAno48q3jko584P2BjHwTQhQKelVCbdq0wdvbGx8f\nH5o2bcratWtZv349H374Ie7u7gY3GhsbS7Vq1XS/u7u7s3///lyXnzdvHi+++KLB7ViSkychIEC7\nDmjCBDDm2TGpfoQQhZVeSWjUqFHUrl2bvXv3MmXKFE6dOgVo/Tr+/v45zimXF0P6JyIiIpg/fz5/\n/PFHjo+HhITofvbz88PPz8+gWMxh+3bt5nPTp0NwsPG2K30/Qgh9REZGEhkZWdBh5CjfAxMSExOJ\niorir7/+YtiwYQatu2/fPkJCQti6dSsAX3zxBSVKlMg2OOH48eP06NGDrVu34unpmT14C+pcy82c\nOdqN6FatgjZtjLddGfkmhMgvizp2Kj3s3LlTn8X0lpqaqjw8PNT58+dVcnKyatSokTp16lSWZS5e\nvKhq1aql9u7dm+t29Ay/QKSnKzV6tFKenkqdPWu87SanJavxv49XFb+qqBYeXagyMjKMt3EhRLFg\nScdOvU7HjRkzhsjISEqWLJnl7+fPn6d9+/bMmzeP5ORkOnbsqFfis7GxYebMmXTs2JH09HRef/11\n6tevz+zZswEYOnQoEydO5ObNm7oqy9bWlgMHDuifXQvQ/fvaabfr17URcC4uxtmu9P0IIYoavU7H\nrVu3jtu3b+Pr64uHh0eWx2JjY3FzczNZgHmxqJLy/127Bl27atf+zJ0LpUo9+Tal70cIYUyWdOw0\nqE9ox44dpKam0qlTJ1PGpDdL2pEAJ05oI+Beew3GjzfOCDjp+xFCGJslHTv1uk4oPT0dgHbt2mFn\nZ8fw4cPZvXs39+/fJzQ01KQBFhbbtmmzYH/+uXGGYMt1P0KI4kCvSmjIkCFUrVqVX3/9laSkJAIC\nArh37x6HDx/m0qVLxMXFmSPWbCwlm8+erSWe1auhdesn355UP0IIU7KUYyfoeZ3Q77//zhtvvMGK\nFSuyTK0D8N1335kksMIgIwM+/BA2bYLduyGHUeQGkb4fIURxo1clFB4eTvv27XN8LDk5mVLG6H3P\nh4LM5vfvQ79+8O+/sG7dk4+Ak+pHCGEullQJFdgs2sZQUDvy6lVtBFz9+trFqE+Sg6X6EUKYmyUl\nIYNn0S7u/vxTGwH3xhvw6adPNgBBrvsRQhR3koQMEBEBgYHw3XfQp0/+tyPVjxBCaCQJ6engQejd\nW5sDzt8//9uR6kcIIf5HkpAezp6Fl17S+n/ym4Ck+hFCiOwkCT3GlSvQsSNMngzduuVvG1L9CCFE\nziQJ5eHmTS0BDR0Kr79u+PpS/QghRN4kCeXi/n3tFFz79vDIbY70ItWPEEI8nlwnlIPUVOjRAxwd\nYdEiKKHXDHsaqX6EEJZOrhOyYErB4MGQng6//GJYApLqRwghDCNJ6BEffQRnzkB4ONja6reOVD9C\nCJE/koQy+fpr2LwZdu2CsmX1W0eqHyGEyD9JQv9vwQKYOVObDVufyUil+hFCiCcnSQjtVgxjxkBk\nJFSr9vjlpfoRQgjjKPZJaPduGDQIQkOhXr28l5XqRwghjKtYJ6E//4SePWHpUmjePO9lpfoRQgjj\nK7ZJ6MIF6NwZvv0WOnTIfTmpfoQQwnSKZRKKj9cSz4cf5n1LBql+hBDCtIrdjAl372ozYXfuDJMm\n5byMVD9CiKJMZkwoIMnJ0L07NGkCEyfmvIxUP0IIYT7FphJKT4egIMjI0G5MZ22d9XGpfoQQxYVU\nQmb2f+3da0xU1xYH8D/yUFQuKhTpAK11QNGCIxaqqFiJeJHHxaLE4q1KtU6V+rbGGKvRmkhsm37A\nEhNtxVKgFAMiXh5WVPBRBhhAJQ6ISFB5CIiKKK8ZdN8PhCMjrzNW5ozj+iXzYc7ss/c6Szxr9nkN\nY8CGDUBDA5Ce3rMA0eyHEEKE8VYUoX37gJyczptRhw17sZxmP4QQIiy9L0KHDgExMZ03pf7rXy+W\n0+yHEEKEp9dF6PhxICwMuHgRGDu2cxnNfgghRHfobRE6exZYvx7IyADGj+9cRrMfQgjRLXpZhPLz\ngf/+F0hIACQSmv0QQoiu0rsidPMm8J//AL/8AsyZQ7MfQgjRZXpVhKqrAW9vYP9+wMdfiT2ZNPsh\nhBBdpjdF6OHDzgK0di3g4nMFbr/Q7IcQQnTdECEGPX36NBwdHeHg4IDvv/++1zYbN26Eg4MDJBIJ\nrly50m9/LS2dh+Dm/VuJ5o/3wDvGG9+4f4P/Lf0fFSBCCNFhWi9Cz549w/r163H69GkUFxcjLi4O\nJSUlam3S0tJw69YtlJWV4ciRIwgNDe2zP5UKWLIEGOV4BVkObii8V4Cra69ihWTFW3X4LSsrS+gQ\ndAbl4gXKxQuUC92k9SKUl5cHe3t7jBs3DsbGxggODkZycrJam1OnTiEkJAQAMH36dDQ2NqKurq7X\n/lauVqL03T2QO3rjm5lv7+yH/oO9QLl4gXLxAuVCN2n9nFB1dTXs7Oy497a2tsjNzR2wTVVVFcZ2\n3XHaTdI7bpgjscPRT+ncDyGEvGm0XoT4HiJ7+Qmvfa33Y+A3CJ1JV74RQsgbiWmZTCZj3t7e3Puw\nsDB24MABtTZr1qxhcXFx3PuJEyey2traHn2JxWIGgF70ohe96KXBSywWD95OXkNanwm5urqirKwM\nt2/fhkgkQnx8POLi4tTaBAQEICIiAsHBwcjJycGoUaN6PRR369YtbYVNCCFkEGi9CBkZGSEiIgLe\n3t549uwZvvzyS0yaNAmHDx8GAKxZswa+vr5IS0uDvb09RowYgWPHjmk7TEIIIVrwRv+yKiGEkDeb\nIDeraup139z6JhsoF7GxsZBIJJgyZQpmzZqFoqIiAaLUDj5/FwAgl8thZGSEEydOaDE67eGTh6ys\nLLi4uMDJyQlz587VboBaNFAuGhoasGDBAkydOhVOTk747bfftB+klqxatQpjx46Fs7Nzn210Yr8p\n9EmpgXR0dDCxWMwqKiqYUqlkEomEFRcXq7VJTU1lPj4+jDHGcnJy2PTp04UIddDxyUV2djZrbGxk\njDGWnp7+Vueiq52npyfz8/NjCQkJAkQ6uPjk4dGjR2zy5MmssrKSMcbY/fv3hQh10PHJxZ49e9iO\nHTsYY515GDNmDFOpVEKEO+guXrzICgsLmZOTU6+f68p+U+dnQq/75tY3GZ9cuLu7w9zcHEBnLqqq\nqoQIddDxyQUA/PzzzwgKCsI777wjQJSDj08e/vjjDyxevBi2trYAAEtLSyFCHXR8cvHuu++iqakJ\nANDU1AQLCwsYGenNIzTVeHh4YPTo0X1+riv7TZ0vQr3duFpdXT1gG33c+fLJRXdHjx6Fr6+vNkLT\nOr5/F8nJydxjn/TxXjI+eSgrK8PDhw/h6ekJV1dXREdHaztMreCTC6lUCoVCAZFIBIlEgvDwcG2H\nqTN0Zb+p818BXvfNrW8yTbYpMzMTkZGR+PvvvwcxIuHwycXmzZtx4MABGBgYgDHW429EH/DJg0ql\nQmFhIc6dO4eWlha4u7tjxowZcHBw0EKE2sMnF2FhYZg6dSqysrJQXl6O+fPn49q1azAzM9NChLpH\nF/abOl+EbGxsUFlZyb2vrKzkDiv01aaqqgo2NjZai1Fb+OQCAIqKiiCVSnH69Ol+p+NvMj65KCgo\nQHBwMIDOE9Lp6ekwNjZGQECAVmMdTHzyYGdnB0tLS5iamsLU1BRz5szBtWvX9K4I8clFdnY2vv32\nWwCAWCzGBx98gNLSUri6umo1Vl2gM/tNQc5EaUClUrHx48eziooK1t7ePuCFCTKZTG9PxvPJxZ07\nd5hYLGYymUygKLWDTy66++KLL1hiYqIWI9QOPnkoKSlh8+bNYx0dHay5uZk5OTkxhUIhUMSDh08u\ntmzZwvbu3csYY6y2tpbZ2NiwBw8eCBGuVlRUVPC6MEHI/abOz4To5tYX+ORi3759ePToEXcexNjY\nGHl5eUKGPSj45OJtwCcPjo6OWLBgAaZMmYIhQ4ZAKpVi8uTJAkf++vHJxc6dO7Fy5UpIJBI8f/4c\nP/zwA8aMGSNw5INj6dKluHDhAhoaGmBnZ4fvvvsOKpUKgG7tN+lmVUIIIYLR+avjCCGE6C8qQoQQ\nQgRDRYgQQohgqAgRQggRDBUhQgghgqEiRAghRDBUhAghhAiGihAhhBDBUBEiOqOjowOlpaWvtG57\ne/trjqZ3bW1tWhmHkLcFFSHSq4MHD8LExAQxMTEAgJCQECxatAgFBQVq7U6dOoU5c+bw6vPevXvY\nvXs3Dh48iKioKCQlJSEqKor7PCsrC0OGDNG435SUFDx58qTHcqVSiWXLlvHqg2+8MTExOHv2rFo7\nlUqFpUuXvvI4vTl//jy2bNmCkydP9rqso6PjtY+piW3btmH37t282w9GjoieEOSJdeSN4Ovry86f\nP8+am5vZkSNHem1TXFzMtm/fPmBf5eXlzMvLS+1hkV9//TU7e/Ys9z4iIkLjfmtqalhsbGyvn/3+\n++9MLBb3uW5dXR1raWnRKN6MjAwWHh7e53qvy6effsrkcjmrqKjod5mmiouL2f79+/9xfIcOHWIp\nKSlaGYvoN5oJkT4tW7YM0dHRiIqKwsqVK3ttI5PJMHPmTF597dixQ+1hkS4uLmqP0O+aBWnS77Fj\nxxAYGNhjeXNzM54/f46nT5/2uW5JSQnq6+s1itfNzQ1+fn6Ii4sbMLZ/oq2tDa6urhg3bly/yzSV\nmZkJFxeXfxxfXl4epk+frpWxiH7T+adoE+EEBAQgNDQUe/bs6fMnkPPy8rBz506cOHEC+/fvR0FB\nAWpqahAZGQk7OztkZ2cjJCQET548wbx589TWDQ4OxsiRI7l+3NzcNOr38OHDqK+vh6mpaY+4YmNj\nsXz5cuzduxdtbW0YNmwY7+3Ozs7uN15zc3NEREQAAMrLy5GamgqRSARra2skJCTgk08+AQAoFArs\n2rULly5dQmpqKhobG9HY2Ih169bBw8MDcXFxUKlUqKqqgpWVFVavXg0A+Omnn9Da2ork5GQsXLiw\nxzJnZ2ekpKT0OyaAHv3b2tri6NGjWLt2LWpra2FtbY309HTcuHEDJiYmWLx4MaytrXH9+nUUFhai\ntbUVy5YtQ2ZmJh48eID79+/Dz88PkyZNQn19PSwtLVFUVIRTp07By8sLM2bMwPLlyxEdHY309HRu\nrOzsbOTn50MkEiEoKAhA5yHU7n02NDQgMTGx1+0g+o1mQqRPN27cgJOTE/Lz8/tsU1xcDLlcjkWL\nFuHy5csAgNDQUGzevBnz58/HiBEjkJOTg7lz5/ZYt6sAAZ0/QNd9VsSnX6D3CwUaGhpgYmICU1NT\nWFpaoq6uTqPtlslkA8bb0dEBAKirq4OFhYXahRG2trYIDAxEWVkZAMDKygpmZmZYtGgRoqKi4OHh\ngdLSUvz1119YsWIFDA0N4eTkxK3v6uoKPz8/rgB1LfP398fChQtRW1s74Ji99b9gwQKIRCJIpVJY\nW1vjzp07CAsLw5YtWzBp0iRu1hgZGQlHR0cMHToU+fn5iImJQUhICHx9fXHo0CE0NTVxP5b49OlT\nGBsbgzGGiooKLkc+Pj7cWABgYWEBpVLJxfZyn12/6PnydhD9R0WI9Kq+vh53797Frl27EBsb22ub\nrp1WUlISkpKSYGpqitu3b4MxhpEjRyI3Nxfu7u4wNDTsMVtRKpXIyMjg3j9//lyjfrsO1XX9Pkp3\nR44cwePHj3H48GG0tbXh/v373Gfl5eUIDw9HeHg4EhISEBkZyb1vaGgA0Pm7NAPF29LSAgCYOXMm\nN2OZPXs2ysvL4ebmhsePH3Ozx4kTJyI/Px+enp4YOnQoACAmJob7hddr166pHbZSKBRwdnZWG1+h\nUHCFis+YL/c/bdo0bvbT5eTJk3BwcEBKSgoMDAxgb28PoPNQ5NatW3HixAmcOXMGn3/+OQDgzp07\nGDVqFORyOT7++GMulsLCQri7uyM7O5v7d+k+Vle8XfFERUWp9Tl69Og+t4PoPypCpIe2tjYkJycj\nMDAQXl5eKCgowOPHj7nPKyoqAAByuRz+/v7Yvn07CgsLkZaWhsbGRkycOBEAcOHCBcyaNQt+fn7I\nyclR+z37+Ph4eHp6Auj8Zty1Dt9+u3Z2hoaGarHfvXsXEyZMwKZNm7BmzRq4ubmpzYTEYjE2bdqE\nTZs2ISgoCKtWreLeW1paAsCA8QIvzl81NTXBwMAARUVFaG1t5Q77paWlYf78+ZDJZGCMob29HcbG\nxtz6XdujVCrx5MkTtdnm9evXexSh7sv4jPly/3K5nCsecrkcLS0tMDU1RUBAAPz9/eHh4YH6+npk\nZGSgqKgIly9fhqWlJZRKJd577z0AQEJCApYvX478/Hy4uroiMzMTALiCLZPJMG3aNOTm5qqN1T1e\nAL322dd2EP1HRYioSU5OhoeHB7cDvnnzJoYNG4aNGzeiuroa1dXV8PLyAtB5uM7T0xO2trZobW2F\nubk5nJ2dYWhoiMTEROTm5kIkEsHe3h5bt27Ftm3b8OuvvyI6Oho+Pj7ct92srCy1w198+wWA4cOH\nc+udP38e/v7+sLCwAABcvXoVJSUliI+PV5sNDWSgeBljMDMzAwA8e/YMVlZWaG9vh0Kh4M5pmJmZ\noa6uDra2trh79y4++ugjtTFWrFiBM2fOIDk5GWKxGPfu3eM+q6mpgY2NjVr77sv4jPly/zU1NRCJ\nRKiursbTp08xfPhwfPbZZygqKkJqairi4+Nhbm4OKysrmJiY4Pjx41iyZAlWr16NM2fOICoqCkFB\nQZgwYQLEYjEuX74MiUQCALCzs0NiYiKMjIxw7tw5fPjhh2pjdY8XAKRSqVqfDg4OfW4HeQsId2Ee\neVNlZmb2+VltbS1jjLHGxkYmlUp59Xfw4MEB2/TV748//sgePnzIa5yXXbp0iVVWVmq83tWrV9mf\nf/75SmP2JzExkcXFxbF169b1u4wQfUIHXonG+ns6wY4dO7Bw4UKUlZVh7969A/bV27d+TfqVSqWI\nj4/HV199xSd0NbNnz9Z4HQA4d+4cNm/e/Err9sfY2Bjl5eXYsGFDv8sI0ScGjHU78E2IlsXHx8Pf\n35+72u1VXLp0Ce+//z53nmEwKRQKdHR0cIeiCCH/DBUhQgghgqELEwghhAiGihAhhBDBUBEihBAi\nGCpChBBCBENFiBBCiGCoCBFCCBEMFSFCCCGCoSJECCFEMP8HZQKL7wuujS8AAAAASUVORK5CYII=\n", "text": [ "" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "Ans.(a)The minimum number of theoretical stages are 9\n", "Ans.(b)The minimum extract reflux ratio is 2.561 kg reflux/kg extract product\n", "Ans(c.)The number of theoretical stages are 17.5\n", "The important flow quantities at an extract reflux ratio of 1.5 times the minimum value are\n", "\n", "\n", "PE = 625.0 kg/h\n", "RN = 375.0 kg/h\n", "RO = 2401.0 kg/h\n", "E1 = 3026.0 kg/h\n", "BE = 9381.0 kg/h\n", "E1 = 12407.0 kg/h\n", "RN = 378.0 kg/h\n", "S = 9384.0 kg/h\n", "\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.7,Page number:454" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "\n", "Ff = 1.89 \t\t\t\t\t\t# [cubic m/min]\n", "Fs = 2.84 \t\t\t\t\t\t# [cubic m/min]\n", "t = 2 \t\t\t\t\t\t\t# [min]\n", "\n", "\n", "print \"Solution 7.7(a)\\n\"\n", "\t# Solution(a)\n", "import math\n", "Q = Ff+Fs \t\t\t\t\t# [total flow rate, cubic m/min]\n", "Vt = Q*t \t\t\t\t\t# [cubic m]\n", "\t# For a cylindrical vessel H = Dt\n", "Dt = (4*Vt/math.pi)**(1.0/3.0) \t\t# [m]\n", "H = Dt \t\t\t\t\t# [m]\n", "\n", "#Result\n", "print\"The diameter and height of each mixing vessel is\",round(Dt,1),\" m and\",round(H,1),\" m respectively\"\n", "\n", "print\"Solution 7.7(b) \"\n", "\t# Solution(b)\n", "\t# Based on a recommendation of Flynn and Treybal (1955),\n", "P = 0.788*Vt \t\t\t\t\t# [mixer power, kW]\n", "\n", "#Result\n", "\n", "print\"The agitator power for each mixer is\",round(P,2),\"kW\"\n", "\n", "print\"\\nSolution 7.7(c)\"\n", "\t# Solution(c)\n", "\n", "\t# Based on the recommendation by Ryan et al. (1959), the disengaging area # in the \t\tsettler is\n", "\t# Dt1*L1 = Q/a = Y\n", "a = 0.2 \t\t\t\t\t# [cubic m/min-square m]\n", "Y = Q/a \t\t\t\t\t# [square m]\n", "\t\t\t# For L/Dt = 4\n", "Dt1 = (Y/4)**0.5 \t\t\t\t# [m]\n", "L1 = 4*Dt1 \t\t\t\t\t# [m]\n", "\n", "#Result\n", "print\"The diameter and length of a settling vessel is\",round(Dt1,2),\" m and\",round(L1,2),\" m respectively\"\n", "\n", "print\"Solution 7.7(d)\"\n", "\t# Solution(d)\n", "\t# Total volume of settler\n", "Vt1 = math.pi*Dt1**2*L1/4 \t\t\t# [cubic m]\n", "tres1 = Vt1/Q \t\t\t\t\t# [min]\n", "\n", "#Result\n", "\n", "print\"The residence time in the settling vessel is\",round(tres1,1),\"min\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Solution 7.7(a)\n", "\n", "The diameter and height of each mixing vessel is 2.3 m and 2.3 m respectively\n", "Solution 7.7(b) \n", "The agitator power for each mixer is 7.45 kW\n", "\n", "Solution 7.7(c)\n", "The diameter and length of a settling vessel is 2.43 m and 9.73 m respectively\n", "Solution 7.7(d)\n", "The residence time in the settling vessel is 9.5 min\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.8,Page number:456" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "\n", "Ff = 1.61 \t\t\t\t\t# [flow rate of feed, kg/s]\n", "Fs = 2.24 \t\t\t\t\t# [flow rate of solvent, kg/s]\n", "t = 2*60 \t\t\t\t\t# [residence time in each mixer, s]\n", "df = 998 \t\t\t\t\t# [density of feed, kg/cubic m]\n", "uf = 0.89*10**-3 \t\t\t\t# [viscosity of feed, kg/m.s]\n", "ds = 868 \t\t\t\t\t# [density of solvent, kg/cubic m]\n", "us = 0.59*10**-3 \t\t\t\t# [viscosity of solvent, kg/m.s]\n", "sigma = 0.025 \t\t\t\t\t# [interfacial tension, N/m]\n", "g = 9.8 \t\t\t\t\t# [square m/s]\n", "import math\n", "\n", "Qf = Ff/df \t\t\t\t\t# [volumetric flow rate of feed, cubic m/s]\n", "Qs = Fs/ds \t\t\t\t\t# [volumetric flow rate of solvent, cubic m/s]\n", "\t# Volume fractions in the combined feed and solvent entering the mixer \n", "phiE = Qs/(Qs+Qf) \n", "phiR = 1-phiE \n", "\n", "print\"\\nSolution7.8(a)\\n\" \n", "\t# Solution(a)\n", "import math\n", "Q = Qf+Qs \t\t\t\t\t# [total flow rate, cubic m/s]\n", "Vt = Q*t \t\t\t\t\t# [vessel volume, cubic m]\n", "\t# For a cylindrical vessel, H = Dt\n", "\t# Therefore,Vt = math.pi*Dt**3/4\n", "Dt = (4*Vt/math.pi)**(1.0/3.0) \t\t# [ diameter, m]\n", "H = Dt \t\t\t\t\t# [height, m]\n", "Di = Dt/3 \t\t\t\t\t# [m]\n", "\n", "#Result\n", "print\"The height and diameter of the mixing vessel are\",round(Dt,3),\" m and\",round(H,3),\" m respectively.\\n\"\n", "print\"The diameter of the flat-blade impeller is\",round(Di,3),\" m\"\n", "\n", "print\"\\nSolution (b)\\n\" \n", "\t# Solution(b)\n", "\n", "\t# For the raffinate phase dispersed:\n", "phiD = phiR \n", "phiC = phiE \n", "deltad = df-ds \t\t\t\t# [kg/cubic m]\n", "rowM = phiD*df+phiC*ds \t\t\t# [kg/cubic m]\n", "uM = us/phiC*(1 + 1.5*uf*phiD/(us+uf)) \t# [kg/m.s]\n", "\t# Substituting in equation 7.34\n", "ohm_min=math.sqrt(1.03*phiD**0.106*g*deltad*(Dt/Di)**2.76*(uM**2*sigma/(Di**5*rowM*g**2*deltad**2))**0.084/(Di*rowM))*60 \t\t\t# [rpm]\n", "\n", "#Result\n", "\n", "print\"The minimum rate of rotation of the impeller for complete and uniform dispersion.is\",round(ohm_min),\"rpm.\"\n", "\n", "print\"\\nSolution 7.8(c)\"\n", "\t# Solution(c)\n", "\n", "ohm = 1.2*ohm_min \t\t\t\t# [rpm]\n", "\n", "\t# From equation 7.37\n", "Re = ohm/60*Di**2*rowM/uM \t\t\t# [Renoylds number]\n", "\t# Then according to Laity and Treybal (1957), the power number, Po = 5.7\n", "Po = 5.7\n", "\t# From equation 7.37\n", "P = Po*(ohm/60)**3*Di**5*rowM/1000 \t\t# [kW]\n", "\t# Power density\n", "Pd = P/Vt \t\t\t\t\t# [kW/cubic m]\n", "\n", "#Result\n", "print\"The power requirement of the agitator at 1.20 times the minimum rotation rate is\",round(P,3),\" kW.\"\n", "print\"Power density is\",round(Pd,3),\"kW/m^3\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Solution7.8(a)\n", "\n", "The height and diameter of the mixing vessel are 0.862 m and 0.862 m respectively.\n", "\n", "The diameter of the flat-blade impeller is 0.287 m\n", "\n", "Solution (b)\n", "\n", "The minimum rate of rotation of the impeller for complete and uniform dispersion.is 152.0 rpm.\n", "\n", "Solution 7.8(c)\n", "The power requirement of the agitator at 1.20 times the minimum rotation rate is 0.287 kW.\n", "Power density is 0.571 kW/m^3\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.9,Page number:460" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "\t# From example 7.8\n", "Di = 0.288 \t\t\t\t\t# [m]\n", "sigma = 0.025 \t\t\t\t\t# [N/m]\n", "ohm = 152.0*1.2/60.0 \t\t\t\t# [rps]\n", "ds = 868.0 \t\t\t\t\t# [kg/cubic m]\n", "phiD = 0.385 \n", "\n", "#Calculation\n", "\n", "import math \n", "\t# Therefore from equation 7.49\n", "We = Di**3*ohm**2.0*ds/sigma \t\t\t# [Weber number]\n", "\n", "\t# From equation 7.50\n", "dvs = Di*0.052*(We)**-0.6*math.exp(4*phiD) \t# [m]\n", "\t# Substituting in equation 7.48\n", "a = 6*phiD/dvs \t\t\t\t# [square m/cubic m]\n", "dvs=dvs*1000\t\t\t\t\t#[mm]\n", "#Result\n", "print\"The Sauter mean drop diameter and the interfacial area is\",round(dvs,3),\" mm and\",round(a),\" square m/cubic m respectively.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Sauter mean drop diameter and the interfacial area is 0.326 mm and 7081.0 square m/cubic m respectively.\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.10,Page number:461" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "\n", "Dd = 1.15*10**-9 \t\t\t# [molecular diffusivity of furfural in water, square \t\t\t\t\tm/s]\n", "Dc = 2.15*10**-9 \t\t\t# [molecular diffusivity of furfural in toluene, square \t\t\t\t\tm/s]\n", "m = 10.15 \t\t\t\t# [equilibrium distribution coefficient, cubic m \t\t\t\t\traffinate/cubic m extract]\n", "\n", "print\"Solution7.10(a)\\n\" \n", "\t# Solution(a)\n", "\t# From example 7.8 and 7.9\n", "dvs = 3.26*10**-4 \t\t\t# [m]\n", "Shd = 6.6 \t\t\t\t# [sherwood number for dispersed phase]\n", "\t# From equation 7.52\n", "kd = Shd*Dd/dvs \t\t\t# [dispersed phase mass transfer coefficient, m/s]\n", "\n", "#Result\n", "print\"The dispersed-phase mass-transfer coefficient is\",round(kd,7),\" m/s\"\n", "\n", "print\"\\n Solution 7.10(b) \"\n", "\t# Solution(b)\n", "\n", "dd = 998 \n", "dc = 868 \t\t\t\t# [density of continuous phase, kg/cubic m]\n", "uc = 0.59*10**-3 \t\t\t# [viscosity of continuous phase, kg/m.s]\n", "ohm = 182.2 \t\t\t\t# [rpm]\n", "g = 9.8 \t\t\t\t# [square m/s]\n", "Di = 0.288 \t\t\t\t# [m]\n", "sigma = 0.025 \t\t\t\t# [N/m]\n", "phiD = 0.385 \n", "Dt = 0.863 \t\t\t\t# [m] \n", "Scc = uc/(dc*Dc) \n", "Rec = Di**2*ohm/60*dc/uc \n", "Fr = Di*(ohm/60)**2/g \n", "Eo = dd*dvs**2*g/sigma \n", "\n", "\t# From equation 7.53\n", "Shc=1.237*10**-5*Rec**(2.0/3.0)*Scc**(1.0/3.0)*Fr**(5.0/12.0)*Eo**(5.0/4.0)*phiD**(-1.0/2.0)*(Di/dvs)**2*(dvs/Dt)**(1.0/2.0) \n", "\t# Therefore \n", "kc = Shc*Dc/dvs \t\t\t# [continuous phase mass transfer coefficient, m/s]\n", "\n", "#Result\n", "\n", "print\"The continuous-phase mass-transfer coefficient is\",round(kc,5),\"m/s\"\n", "\n", "print\"Solution 7.10(c)\"\n", "\t# Solution(c)\n", "\n", "a = 7065 \t\t\t\t\t# [square m/cubic m]\n", "Vt = 0.504 \t\t\t\t\t# []\n", "Qd = 0.097/60 \t\t\t\t\t# [cubic m/s]\n", "Qc = 0.155/60 \t\t\t\t\t# [cubic m/s]\n", "\n", "\t# From equation 7.40\n", "Kod = kd*kc*m/(m*kc+kd) \t\t\t# [m/s]\n", "\t# From equation 7.45\n", "N_tod = Kod*a*Vt/Qd \n", "\t# From equation 7.46\n", "Emd = N_tod/(1+N_tod) \n", "\n", "#Result\n", "\n", "print\"The Murphree dispersed phase efficiency is \",round(Emd,3)\n", "\n", "\n", "print\"Solution 7.10(d)\" \n", "\t# Solution(d)\n", "\t# From equation 7.57\n", "fext = Emd/(1+Emd*Qd/(m*Qc)) \n", "\n", "#Result\n", "\n", "print\"The fractional extraction of furfural is\",round(fext,3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Solution7.10(a)\n", "\n", "The dispersed-phase mass-transfer coefficient is 2.33e-05 m/s\n", "\n", " Solution 7.10(b) \n", "The continuous-phase mass-transfer coefficient is 0.00076 m/s\n", "Solution 7.10(c)\n", "The Murphree dispersed phase efficiency is 0.981\n", "Solution 7.10(d)\n", "The fractional extraction of furfural is 0.925\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.11,Page number:466" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "\t# Preliminary Design of an RDC\n", "T = 293 \t\t\t\t\t# [K]\n", "F1 = 12250 \t\t\t\t\t# [flow rate for dispersed organic phase, kg/h]\n", "F2 = 11340 \t\t\t\t\t# [flow rate for continuous aqueous phase, kg/h]\n", "d1 = 858 \t\t\t\t\t# [kg/cubic m]\n", "d2 = 998 \t\t\t\t\t# [kg/cubic m]\n", "n = 12 \t\t\t\t\t# [Equilibrium stages]\n", "\n", "#Calculation\n", "\n", "import math\n", "Qd = F1/d1 \t\t\t\t\t# [cubic m/h]\n", "Qc = F2/d2 \t\t\t\t\t# [cubic m/h]\n", "\n", "\t# Assume that based on information in Table 7.5\n", "\t# Vd+Vc = V = 22 m/h\t\n", "V = 22 \t\t\t\t\t# [m/h]\n", "\t# Therefore column cross sectional area \n", "Ac = (Qd+Qc)/V \t\t\t\t# [square m]\n", "\t# Column diameter\n", "Dt = math.sqrt(4*Ac/math.pi) \t\t\t# [m]\n", "\n", "\t# Assume that based on information in Table 7.5\n", "\t# 1/HETS = 2.5 to 3.5 m^-1\n", "\t# Therefore\n", "HETS = 1.0/3.0 \t\t\t\t# [m/theoritical stages]\n", "\t# Column height\n", "Z = n*HETS \t\t\t\t\t# [m]\n", "\n", "#Result\n", "print\"The height and diameter of an RDC to extract acetone from a dilute toluene-acetone solution is\",Z,\" m and\",round(Dt,2),\"square m respectively\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The height and diameter of an RDC to extract acetone from a dilute toluene-acetone solution is 4.0 m and 1.13 square m respectively\n" ] } ], "prompt_number": 9 } ], "metadata": {} } ] }