{ "metadata": { "name": "", "signature": "sha256:bace9e702292e3d3629b1af1b04f785ea7b14f0684491da077287b62be815475" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "

Chapter 8: FET Amplifiers

" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 8.1, Page Number: 253

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# variable declaration\n", "g_m=4.0*10**-3; #gm value\n", "R_d=1.5*10**3; #resistance\n", "\n", "#calculation\n", "A_v=g_m*R_d; #voltage gain\n", "\n", "#result\n", "print \"Voltage gain = %.2f\" %A_v" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Voltage gain = 6.00" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 8.2, Page Number: 253

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "# variable declaration\n", "r_ds=10.0*10**3;\n", "R_d=1.5*10**3; #from previous question\n", "g_m=4.0*10**-3; #from previous question\n", "\n", "#calculation\n", "A_v=g_m*((R_d*r_ds)/(R_d+r_ds)); #voltage gain\n", "\n", "#result\n", "print \"Voltage gain = %.2f\" %A_v" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Voltage gain = 5.22" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 8.3, Page Number:254

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "# variable declaration\n", "R_s=560; #resistance in ohm\n", "R_d=1.5*10**3; #resistance in ohm\n", "g_m=4*10**-3; #g_m value\n", "\n", "#calculation\n", "A_v=(g_m*R_d)/(1+(g_m*R_s)) #voltage gain\n", "\n", "#result\n", "print \"Voltage gain = %.2f\" %A_v" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Voltage gain = 1.85" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 8.4, Page Number: 257

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration\n", "vdd=12.0 #volts\n", "Id=1.96*10**-3 #Amp\n", "Rd=3.3*10**3 #ohm\n", "Idss=12.0*10**-3 #Amp\n", "Rs=910 # Ohm\n", "vgsoff= 3 #v\n", "vin=0.1 #V\n", "\n", "#calculation\n", "vd=vdd-(Id*Rd)\n", "vgs=-Id*Rs\n", "gm0=2*Idss/(abs(vgsoff))\n", "gm=0.00325 #mS\n", "vout=gm*Rd*vin\n", "vout=vout*2*1.414\n", "#Result\n", "print\"Total output ac voltage(peak-to-peak) = %f V \\nridig on DC value of %fV \"%(vout,vd)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Total output ac voltage(peak-to-peak) = 3.033030 V \n", "ridig on DC value of 5.532000V " ] } ], "prompt_number": 4 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 8.5, Page Number: 258

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# variable declaration\n", "R_D=3.3*10**3; #resistance in ohm\n", "R_L=4.7*10**3; #load resistance in ohm\n", "g_m=3.25*10**-3; #from previous question\n", "V_in=100.0*10**-3; #previous question\n", "\n", "#calculation\n", "R_d=(R_D*R_L)/(R_D+R_L); #Equivalent drain resistance\n", "V_out=g_m*R_d*V_in; #output RMS voltage in volt\n", "\n", "#result\n", "print \"Output voltage rms value = %.2f Volts\" %V_out" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Output voltage rms value = 0.63 Volts" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 8.6, Page Number: 259

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# variable declaration\n", "I_GSS=30.0*10**-9; #current in ampere\n", "V_GS=10.0; #ground-source voltage\n", "R_G=10.0*10**6; #resistance in ohm\n", "\n", "#calculation\n", "R_IN_gate=V_GS/I_GSS; #gate input resistance\n", "R_in=(R_IN_gate*R_G)/(R_IN_gate+R_G); #parallel combination\n", "\n", "#result\n", "print \"Input resistance as seen by signal source = %.2f ohm\" %R_in" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Input resistance as seen by signal source = 9708737.86 ohm" ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 8.7, Page Number: 260

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "# variable declaration\n", "I_DSS=200.0*10**-3;\n", "g_m=200.0*10**-3;\n", "V_in=500.0*10**-3;\n", "V_DD=15.0;\n", "R_D=33.0;\n", "R_L=8.2*10**3;\n", "\n", "#calculation\n", "I_D=I_DSS; #Amplifier is zero biased\n", "V_D=V_DD-I_D*R_D;\n", "R_d=(R_D*R_L)/(R_D+R_L);\n", "V_out=g_m*R_d*V_in;\n", "\n", "#result\n", "print \"DC output voltage = %.2f Volts\" %V_D\n", "print \"AC output voltage = %.2f volts\" %V_out" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "DC output voltage = 8.40 Volts\n", "AC output voltage = 3.29 volts" ] } ], "prompt_number": 7 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 8.8, Page Number: 262

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "\n", "print \"Part A:\\nQ point: V_GS=-2V I_D=2.5mA. At V_GS=-1V, I_D=3.4mA,\"\n", "print \"At V_GS=-3V, I_D=1.8mA. So peak to peak drain current is\" \n", "print \"the difference of the two drain currents=1.6mA\"\n", "print \"\\nPart B:\\nQ point: V_GS=0V I_D=4mA. At V_GS=1V, I_D=5.3mA,\"\n", "print \"At V_GS=-1V, I_D=2.5mA. So peak to peak drain current is\"\n", "print\" the difference of the two drain currents=2.8mA\"\n", "print \"\\nPart C:\\nQ point: V_GS=8V I_D=2.5mA. At V_GS=9V, I_D=3.9mA,\"\n", "print \" At V_GS=7V, I_D=1.7mA. So peak to peak drain current is\"\n", "print \" the difference of the two drain currents=2.2mA\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Part A:\n", "Q point: V_GS=-2V I_D=2.5mA. At V_GS=-1V, I_D=3.4mA,\n", "At V_GS=-3V, I_D=1.8mA. So peak to peak drain current is\n", "the difference of the two drain currents=1.6mA\n", "\n", "Part B:\n", "Q point: V_GS=0V I_D=4mA. At V_GS=1V, I_D=5.3mA,\n", "At V_GS=-1V, I_D=2.5mA. So peak to peak drain current is\n", " the difference of the two drain currents=2.8mA\n", "\n", "Part C:\n", "Q point: V_GS=8V I_D=2.5mA. At V_GS=9V, I_D=3.9mA,\n", " At V_GS=7V, I_D=1.7mA. So peak to peak drain current is\n", " the difference of the two drain currents=2.2mA" ] } ], "prompt_number": 8 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 8.9, Page Number:263

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "# variable declaration\n", "R_1=47.0*10**3;\n", "R_2=8.2*10**3;\n", "R_D=3.3*10**3;\n", "R_L=33.0*10**3;\n", "I_D_on=200.0*10**-3;\n", "V_GS=4.0;\n", "V_GS_th=2.0;\n", "g_m=23*10**-3;\n", "V_in=25*10**-3;\n", "V_DD=15.0;\n", "\n", "#calculation\n", "V_GSnew=(R_2/(R_1+R_2))*V_DD;\n", "K=I_D_on/((V_GS-V_GS_th)**2)\n", "#K=value_of_K(200*10**-3,4,2);\n", "K=K*1000;\n", "I_D=K*((V_GSnew-V_GS_th)**2);\n", "V_DS=V_DD-I_D*R_D/1000;\n", "R_d=(R_D*R_L)/(R_D+R_L);\n", "V_out=g_m*V_in*R_d;\n", "\n", "#result\n", "print \"Drain to source voltage = %.2f volts\" %V_GSnew\n", "print \"Drain current = %.2f mA\" %I_D\n", "print \"Gate to source voltage = %.2f volts\" %V_DS\n", "print \"AC output voltage = %.2f volts\" %V_out\n", "print \"Answer in textbook are approximated\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Drain to source voltage = 2.23 volts\n", "Drain current = 2.61 mA\n", "Gate to source voltage = 6.40 volts\n", "AC output voltage = 1.72 volts\n", "Answer in textbook are approximated" ] } ], "prompt_number": 9 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 8.10, Page Number: 266

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "# variable declaration\n", "V_DD=-15.0; #p=channel MOSFET\n", "g_m=2000.0*10**-6; #minimum value from datasheets\n", "R_D=10.0*10**3;\n", "R_L=10.0*10**3;\n", "R_S=4.7*10**3;\n", "\n", "#calculation\n", "R_d=(R_D*R_L)/(R_D+R_L); #effective drain resistance\n", "A_v=g_m*R_d;\n", "R_in_source=1.0/g_m;\n", "#signal souce sees R_S in parallel with ip rest at source terminal(R_in_source)\n", "R_in=(R_in_source*R_S)/(R_in_source+R_S); \n", "\n", "#result \n", "print \"minimum voltage gain = %.2f\" %A_v\n", "print \"Input resistance seen from signal source = %.2f ohms\" %R_in" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "minimum voltage gain = 10.00\n", "Input resistance seen from signal source = 451.92 ohms" ] } ], "prompt_number": 10 } ], "metadata": {} } ] }