{ "metadata": { "name": "", "signature": "sha256:7d54e3690fc412ff890e6ea2f39f46cb8c03d3ea660ea034447f2497647b95ed" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "

Chapter 3: Special-purpose Diodes

" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 3.1, Page Number:88

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%pylab inline" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n", "For more information, type 'help(pylab)'." ] } ], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "# variable declaration\n", "delVZ=50*10**-3; #voltage in volts, from graph\n", "delIZ=5*10**-3; #current in amperes, from rgraph\n", "\n", "#calculation\n", "ZZ=delVZ/delIZ; #zener impedence\n", "\n", "# result\n", "print \"zener impedance = %d ohm \" %ZZ" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "zener impedance = 10 ohm " ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 3.2, Page Number:89

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# variable declaration\n", "I_ZT=37*10**-3; #IN AMPERES\n", "V_ZT=6.80; #IN VOLTS\n", "Z_ZT=3.50; #IN OHMS\n", "I_Z=50*10**-3; #IN AMPERES\n", "\n", "#calculation\n", "DEL_I_Z=I_Z-I_ZT; #change current\n", "DEL_V_Z=DEL_I_Z*Z_ZT; #change voltage\n", "V_Z=V_ZT+DEL_V_Z; #voltage across zener terminals\n", "print \"voltage across zener terminals when current is 50 mA = %.3f volts\" %V_Z\n", "I_Z=25*10**-3; #IN AMPERES\n", "DEL_I_Z=I_Z-I_ZT; #change current\n", "DEL_V_Z=DEL_I_Z*Z_ZT; #change voltage\n", "V_Z=V_ZT+DEL_V_Z; #voltage across zener terminals\n", "\n", "#result\n", "print \"voltage across zener terminals when current is 25 mA = %.3f volts\" %V_Z" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "voltage across zener terminals when current is 50 mA = 6.845 volts\n", "voltage across zener terminals when current is 25 mA = 6.758 volts" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 3.3, Page Number:90

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "# variable declaration\n", "V_Z=8.2; #8.2 volt zener diode\n", "TC=0.0005; #Temperature coefficient (per degree celsius)\n", "T1=60; #Temperature 1 in celsius\n", "T2=25; #Temperature 2 in celsius\n", "\n", "#calculation\n", "DEL_T=T1-T2; #change in temp\n", "del_V_Z=V_Z*TC*DEL_T; #change in voltage\n", "voltage=V_Z+del_V_Z; #zener voltage\n", "\n", "#result\n", "print \"zener voltage at 60 degree celsius = %.3f volt\" %voltage" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "zener voltage at 60 degree celsius = 8.343 volt" ] } ], "prompt_number": 4 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 3.4, Page Number:90

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "# variable declaration\n", "P_D_max=400*10**-3; #power in watts\n", "df=3.2*10**-3 #derating factor in watts per celsius\n", "del_T=(90-50); #in celsius, temperature difference\n", "\n", "#calculation\n", "P_D_deru=P_D_max-df*del_T; #power dissipated\n", "P_D_der=P_D_deru*1000;\n", "\n", "#result\n", "print \"maximum power dissipated at 90 degree celsius = %d mW\" %P_D_der" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "maximum power dissipated at 90 degree celsius = 272 mW" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 3.5, Page Number: 92

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# variable declaration\n", "V_Z=5.1;\n", "I_ZT=49*10**-3;\n", "I_ZK=1*10**-3;\n", "Z_Z=7;\n", "R=100;\n", "P_D_max=1;\n", "\n", "#calculation\n", "V_out=V_Z-(I_ZT-I_ZK)*Z_Z; #output voltage at I_ZK\n", "V_IN_min=I_ZK*R+V_out; #input voltage\n", "I_ZM=P_D_max/V_Z; #current\n", "V_out=V_Z+(I_ZM-I_ZT)*Z_Z; #output voltage at I_ZM\n", "V_IN_max=I_ZM*R+V_out; #max input voltage\n", "\n", "#result\n", "print \"maximum input voltage regulated by zener diode = %.3f volts\" %V_IN_max\n", "print \"minimum input voltage regulated by zener diode = %.3f volts\" %V_IN_min" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "maximum input voltage regulated by zener diode = 25.737 volts\n", "minimum input voltage regulated by zener diode = 4.864 volts" ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 3.6, Page Number: 93

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "# variable declaration\n", "V_Z=12.0; #voltage in volt\n", "V_IN=24.0; #ip voltage in volt\n", "I_ZK=0.001; #current in ampere\n", "I_ZM=0.050; #current in ampere \n", "Z_Z=0; #impedence\n", "R=470; #resistance in ohm\n", "\n", "#calculation\n", "#when I_L=0, I_Z is max and is equal to the total circuit current I_T\n", "I_T=(V_IN-V_Z)/R; #current\n", "I_Z_max=I_T; #max current\n", "if I_Z_maxExample 3.7, Page Number: 94

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "# variable declaration\n", "V_IN=24.0; #voltage in volt\n", "V_Z=15.0; #voltage in volt\n", "I_ZK=0.25*10**-3; #current in ampere\n", "I_ZT=17*10**-3; #current in ampere\n", "Z_ZT=14.0; #impedence\n", "P_D_max=1.0; #max power dissipation\n", "\n", "#calculation\n", "V_out_1=V_Z-(I_ZT-I_ZK)*Z_ZT; #output voltage at I_ZK\n", "print \"output voltage at I_ZK = %.2f volt\" %V_out_1\n", "I_ZM=P_D_max/V_Z;\n", "\n", "V_out_2=V_Z+(I_ZM-I_ZT)*Z_ZT; #output voltage at I_ZM\n", "print \"output voltage a I_ZM = %.2f volt\" %V_out_2\n", "R=(V_IN-V_out_2)/I_ZM; #resistance\n", "print \"value of R for maximum zener current, no load = %.2f ohm\" %R\n", "print \"closest practical value is 130 ohms\"\n", "R=130.0;\n", "#for minimum load resistance(max load current) zener current is minimum (I_ZK)\n", "I_T=(V_IN-V_out_1)/R; #current\n", "I_L=I_T-I_ZK; #current\n", "R_L_min=V_out_1/I_L; #minimum load resistance\n", "\n", "#result\n", "print \"minimum load resistance = %.2f ohm\" %R_L_min" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "output voltage at I_ZK = 14.77 volt\n", "output voltage a I_ZM = 15.70 volt\n", "value of R for maximum zener current, no load = 124.57 ohm\n", "closest practical value is 130 ohms\n", "minimum load resistance = 208.60 ohm" ] } ], "prompt_number": 8 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 3.8, Page Number: 96

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#variable declaration\n", "V_p_in=10.0; #Peak input voltage\n", "V_th=0.7; #forward biased zener\n", "V_Z1=5.1;\n", "V_Z2=3.3;\n", "\n", "V_p_in=20.0;\n", "V_Z1=6.2;\n", "V_Z2=15.0;\n", "\n", "#result\n", "print('max voltage = %.1f V'%(V_Z1+V_th))\n", "print('min voltage = %.1f V'%(-(V_Z2+V_th)))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "max voltage = 6.9 V\n", "min voltage = -15.7 V" ] } ], "prompt_number": 9 } ], "metadata": {} } ] }