"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# variable declaration\n",
"V_Z=5.1;\n",
"I_ZT=49*10**-3;\n",
"I_ZK=1*10**-3;\n",
"Z_Z=7;\n",
"R=100;\n",
"P_D_max=1;\n",
"\n",
"#calculation\n",
"V_out=V_Z-(I_ZT-I_ZK)*Z_Z; #output voltage at I_ZK\n",
"V_IN_min=I_ZK*R+V_out; #input voltage\n",
"I_ZM=P_D_max/V_Z; #current\n",
"V_out=V_Z+(I_ZM-I_ZT)*Z_Z; #output voltage at I_ZM\n",
"V_IN_max=I_ZM*R+V_out; #max input voltage\n",
"\n",
"#result\n",
"print \"maximum input voltage regulated by zener diode = %.3f volts\" %V_IN_max\n",
"print \"minimum input voltage regulated by zener diode = %.3f volts\" %V_IN_min"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"maximum input voltage regulated by zener diode = 25.737 volts\n",
"minimum input voltage regulated by zener diode = 4.864 volts"
]
}
],
"prompt_number": 6
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
Example 3.6, Page Number: 93
"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"# variable declaration\n",
"V_Z=12.0; #voltage in volt\n",
"V_IN=24.0; #ip voltage in volt\n",
"I_ZK=0.001; #current in ampere\n",
"I_ZM=0.050; #current in ampere \n",
"Z_Z=0; #impedence\n",
"R=470; #resistance in ohm\n",
"\n",
"#calculation\n",
"#when I_L=0, I_Z is max and is equal to the total circuit current I_T\n",
"I_T=(V_IN-V_Z)/R; #current\n",
"I_Z_max=I_T; #max current\n",
"if I_Z_maxExample 3.7, Page Number: 94
"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"# variable declaration\n",
"V_IN=24.0; #voltage in volt\n",
"V_Z=15.0; #voltage in volt\n",
"I_ZK=0.25*10**-3; #current in ampere\n",
"I_ZT=17*10**-3; #current in ampere\n",
"Z_ZT=14.0; #impedence\n",
"P_D_max=1.0; #max power dissipation\n",
"\n",
"#calculation\n",
"V_out_1=V_Z-(I_ZT-I_ZK)*Z_ZT; #output voltage at I_ZK\n",
"print \"output voltage at I_ZK = %.2f volt\" %V_out_1\n",
"I_ZM=P_D_max/V_Z;\n",
"\n",
"V_out_2=V_Z+(I_ZM-I_ZT)*Z_ZT; #output voltage at I_ZM\n",
"print \"output voltage a I_ZM = %.2f volt\" %V_out_2\n",
"R=(V_IN-V_out_2)/I_ZM; #resistance\n",
"print \"value of R for maximum zener current, no load = %.2f ohm\" %R\n",
"print \"closest practical value is 130 ohms\"\n",
"R=130.0;\n",
"#for minimum load resistance(max load current) zener current is minimum (I_ZK)\n",
"I_T=(V_IN-V_out_1)/R; #current\n",
"I_L=I_T-I_ZK; #current\n",
"R_L_min=V_out_1/I_L; #minimum load resistance\n",
"\n",
"#result\n",
"print \"minimum load resistance = %.2f ohm\" %R_L_min"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"output voltage at I_ZK = 14.77 volt\n",
"output voltage a I_ZM = 15.70 volt\n",
"value of R for maximum zener current, no load = 124.57 ohm\n",
"closest practical value is 130 ohms\n",
"minimum load resistance = 208.60 ohm"
]
}
],
"prompt_number": 8
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"