{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 10 : Hydroelecric power plant" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex: 10.1 Pg: 709" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " (a) the efficiency of the runner is 93.17 percent \n", " (b) the diameter of each jet is 0.1614 m\n" ] } ], "source": [ "from math import sqrt,cos,pi\n", "from __future__ import division\n", "#Input data\n", "P=4000#Power in kW\n", "N=400#Speed in r.p.m\n", "h=200#Head in m\n", "e=90#Efficiency in percent\n", "d=1.5#Diameter in m\n", "vd=10#Percentage decrease in velocity\n", "a=165#Angle with which jet is deflected in degrees\n", "\n", "#Calculations\n", "V1=sqrt(2*9.81*h*(e/100))#Velocity in m/s\n", "Vb=(3.14*d*N)/60#Velocity in m/s\n", "nn=((2*(1-((e/100)*cos(pi/180*a)))*(V1-Vb)*Vb)/V1**2)*100#Efficiency in percent\n", "p=(P/(nn/100))#Power developed in kW\n", "pj=(p/2)#Power developed per jet in kW\n", "dx=sqrt((pj*8)/(3.14*V1**3))#Diameter of each jet in m\n", "\n", "#Output\n", "print \" (a) the efficiency of the runner is %3.2f percent \\n (b) the diameter of each jet is %3.4f m\"%(nn,dx)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex: 10.2 Pg: 710" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " (a) the number of jets are 3 \n", " (b) diameter of each jet is 0.123 m \n", " (c) diameter of the wheel is 1.23 m \n", " (d) the quantity of water required is 2.4 m**3/s\n" ] } ], "source": [ "from math import sqrt\n", "#Input data\n", "P=6000#Power in kW\n", "h=300#Net head availabe in m\n", "N=550#Speed in r.p.m\n", "rd=(1/10)#Ratio of jet diameter to wheel diameter\n", "nh=0.85#Hydraulic efficiency \n", "Cv=0.98#Coefficient of velocity\n", "f=0.46#Speed ratio\n", "d=1000#Density in kg/m**3\n", "\n", "#Calculations\n", "V1=Cv*sqrt(2*9.81*h)#Velocity in m/s\n", "Vb=f*sqrt(2*9.81*h)#Velocity in m/s\n", "Q=((P*10**3)/(nh*d*9.81*h))#Discharge in m**3/s\n", "D=((Vb*60)/(3.14*N))#Diameter in m\n", "d=(D/10)#Diameter of jet in m\n", "n=(Q/((V1*(3.14/4)*d**2)))#Number of jets\n", "\n", "#Output\n", "print \" (a) the number of jets are%3.0f \\n (b) diameter of each jet is %3.3f m \\n (c) diameter of the wheel is %3.2f m \\n (d) the quantity of water required is %3.1f m**3/s\"%(n,d,D,Q)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex: 10.3 Pg: 711" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Diameter of jet is 0.183 m \n", " Diameter of bucket wheel is 3.61 m\n" ] } ], "source": [ "from math import sqrt\n", "from __future__ import division\n", "#Input data\n", "P=10#Capacity in MW\n", "h=500#Head in m\n", "Ns=10#Specific speed of the turbine\n", "on=80#Overall efficiency in percent\n", "Cv=0.98#Coefficient of velocity\n", "x=0.46#Speed of the bucket wheel to the velocity of jet\n", "da=1000#Density in kg/m**3\n", "\n", "#Calculations\n", "N=(Ns*h**(5/4))/sqrt(P*10**3)#Speed in r.p.m\n", "V=(Cv*sqrt(2*9.81*h))#Velocity in m/s\n", "Vb=(x*V)#Speed of bucket wheel in m/s\n", "D=((60*Vb)/(3.14*N))#Diameter in m\n", "d=sqrt((P*10**6)/((on/100)*(3.14/4)*da*V*9.81*h))#Diameter in m\n", "\n", "#Output\n", "print \" Diameter of jet is %3.3f m \\n Diameter of bucket wheel is %3.2f m\"%(d,D)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex: 10.4 Pg: 711" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The specific speed of a single jet Pelton wheel is about 202 (d/D) where d and D represent the jet and bucket wheel diameters respectively\n" ] } ], "source": [ "from math import sqrt\n", "#Input data\n", "Cv=0.97#Coefficient of velocity\n", "f=0.45#Friction coefficient\n", "h=0.85#Head in m\n", "d=1000#Density in kg/m**3\n", "n=1#For a single jet turbine\n", "\n", "#Calculations\n", "Ns=((60/3.14)*(f*sqrt(2*9.8))*sqrt(n*(3.14/4)*Cv*sqrt(2*9.8)*9.8*h))#Specific speed in terms of d/D \n", "\n", "#Output\n", "print \"The specific speed of a single jet Pelton wheel is about %3.0f (d/D) where d and D represent the jet and bucket wheel diameters respectively\"%(Ns)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex: 10.5 Pg: 712" ] }, { "cell_type": "code", "execution_count": 53, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Velocity of the jet for maximum efficiency is 90 m/s \n", " Power developed is 4050 kW \n", " Hydraulic efficiency is 98.3 percent\n" ] } ], "source": [ "from math import cos,pi\n", "#Input data\n", "n=4#Number of jets\n", "d=60#Diameter of each jet in mm\n", "a=165#Angle in degrees\n", "v=45#Speed of the bucket wheel in m/s\n", "de=1000#Density in kg/m**3\n", "\n", "#Calculations\n", "v1=(2*v)#Jet velocity in m/s\n", "Q=(3.14/4)*(d/1000)**2*v1#Discharge in m**3/s\n", "P=(1-cos(pi/180*a))*(v1**2/4)*Q*de*10**-3#Power developed in kW\n", "P4=(P*4)#For four jets in kW\n", "nd=((1-cos(pi/180*a))/2)*100#Maximum efficiency in percent\n", "\n", "#Output\n", "print \" Velocity of the jet for maximum efficiency is %3.0f m/s \\n Power developed is %d kW \\n Hydraulic efficiency is %3.1f percent\"%(v1,P4,nd)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex: 10.6 Pg: 713" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Head on the wheel is 43.3 m \n", " The power generated by the turbine is 238 kW \n", " Eit angle of guide vanes is 173.29 degrees and Inlet blade angle is 33.7 degrees\n" ] } ], "source": [ "from math import atan, degrees\n", "#Input data\n", "v=20#Peripheral velocity in m/s\n", "vw=17#Velocity of whirl in m/s\n", "vr=2#Radial velocity in m/s\n", "Q=0.7#Flow in m**3/s\n", "hn=80#Hydraulic efficiency in percent\n", "d=1000#Density in kg/m**3\n", "\n", "#Calculations\n", "H=((vw*v)/(9.81*(hn/100)))#Head on the wheel in m\n", "P=(d*Q*9.81*H*(hn/100)*10**-3)#Power generated in kW\n", "al=180-degrees(atan(vr/vw))#Angle of guide vanes in degrees\n", "bl=degrees(atan(vr/(v-vw)))#Inlet blade angle in degrees\n", "\n", "#Output\n", "print \" Head on the wheel is %3.1f m \\n The power generated by the turbine is %3.0f kW \\n Eit angle of guide vanes is %3.2f degrees and Inlet blade angle is %3.1f degrees\"%(H,P,al,bl)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex: 10.7 Pg: 714" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Inlet blade angle is 35 degrees 38 minutes \n", " Outlet blade angle is 17 degrees 16 minute\n" ] } ], "source": [ "from math import atan,tan,pi,sqrt,degrees\n", "#Input data\n", "od=1.5#Outer diameter in m\n", "id=0.75#Inner diameter in m\n", "h=150#Head in m\n", "P=14000#Power in kW\n", "Ns=120#Specific speed \n", "vw2=0#Velocity in m/s\n", "a=(11+(20/60))#Angle in degrees\n", "hn=92#Hydraulic efficiency in percent\n", "\n", "#Calculations\n", "N=(Ns*h**(5/4))/sqrt(P)#Speed in rpm\n", "vb1=(3.14*od*N)/60#velocity in m/s\n", "vw1=(((hn/100)*9.81*h)/vb1)#velocity in m/s\n", "vf1=(tan(pi/180*a)*vw1)#Velocity in m/s\n", "vf2=vf1#Velocity in m/s\n", "b1=degrees(atan(vf1/(vb1-vw1)))#Angle in degrees\n", "b1x=(b1-int(b1))*60#For output\n", "vb2=(vb1/2)#Velocity in m/s\n", "b2=degrees(atan(vf1/(vb2-vw2)))#Angle in degrees\n", "b2x=(b2-int(b2))*60#For output\n", "\n", "#Output\n", "print \" Inlet blade angle is %3.0f degrees %3.0f minutes \\n Outlet blade angle is %3.0f degrees %3.0f minute\"%(b1,b1x,b2,b2x)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex: 10.8 Pg: 715" ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " (a)the guide vane angle is 13.3 degrees \n", " (b)the runner vane angle at inlet is 26.6 degrees and outlet is 41.72 degrees \n", " (c)the diametres of the runner at inlet is 0.5 metre and outlet is 0.25 metre\n", " (d)the width of the wheel at inlet is 0.05 metre\n" ] } ], "source": [ "from math import sqrt,pi,atan,degrees\n", "#Input data\n", "h=70#net head in m\n", "N=700#speed in rpm\n", "o=85#over all efficiency in %\n", "P=350#shaft power in kW\n", "he=92#hydraulic efficiency in %\n", "fr=.22#flow ratio\n", "b=.1#breadth ratio\n", "s=2#outer diameter in terms of inner diametre\n", "#Calculations\n", "vf1=fr*sqrt(2*9.81*h)#velocity in m/s\n", "q=(P/(9.81*h*(o/100)))#discharge in m**3/s\n", "d1=sqrt(q/(.94*b*vf1*3.14))#diameter in metre\n", "b1=d1*b#breadth in metre\n", "d2=d1/2#diametre in metre\n", "vb1=(3.14*d1*N)/60#velocity in m/s\n", "vw1=((he/100)*9.81*h)/vb1#velcity in m/s\n", "a=degrees(atan(vf1/vw1))#angle in degrees\n", "bet=degrees(atan(vf1/(vw1-vb1)))#angle in degrees\n", "vb2=(d2/d1)*vb1#velocity in m/s\n", "bet2=degrees(atan(vf1/vb2))#angle in degrees\n", "\n", "#Output\n", "print \" (a)the guide vane angle is %3.1f degrees \\n (b)the runner vane angle at inlet is %3.1f degrees and outlet is %3.2f degrees \\n (c)the diametres of the runner at inlet is %3.1f metre and outlet is %3.2f metre\\n (d)the width of the wheel at inlet is %3.2f metre\"%(a,bet,bet2,d1,d2,b1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex: 10.9 Pg: 717" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " (a) the discharge of the turbine is 15.34 m**3/s \n", " (b) the jet diameter is 0.227 m \n", " (c) the nozzle tip diameter is 0.284 m \n", " (d) the pitch circle diameter of the wheel is 2.89 m \n", " (e) the specific speed is 69.04 \n", " (f) the number of buckets on the wheel are 22 \n", " (g) the workdone per kg of water on the wheel is 443.02 kg.m/kg \n", " (h) the hydraulic efficiency is 93 percent\n" ] } ], "source": [ "from math import ceil,sqrt,cos,pi\n", "#Input data\n", "n=4#Number of units\n", "P=70000#Power in kVA\n", "f=50#Frequency in Hz\n", "p=10#No.of pair of poles\n", "h=505#Gross head in m\n", "tn=94#Transmission efficiency in percent\n", "po=260#Power in MW\n", "e=91#Efficiency in percent\n", "nn=0.98#Nozzle efficiency\n", "Cv=0.98#Coefficient of velocity\n", "x=0.48#Vb=0.48 V\n", "dd=25#Nozzle diameter is 25% bigger than jet diameter\n", "a=165#Angle of buckets in degrees\n", "de=99.75#Discharge efficiency in percent\n", "\n", "#Calculations\n", "N=(120*f)/(p*2)#Synchronous speed in r.p.m\n", "nh=((tn/100)*h)#Net head in m\n", "pt=(po*10**3)/n#Power developed per turbine in kW\n", "ip=(pt/(e/100))#Input water power in kW\n", "Q=(ip/(9.81*nh))#Discharge in m**3/s\n", "Qj=(Q/n)#Discharge per jet in m**3/s\n", "V1=Cv*sqrt(2*9.81*nh)#Velocity in m/s\n", "d=sqrt((4/3.14)*(Qj/V1))#Diameter of jet in m\n", "nd=(1+(dd/100))*d#Nozzle tip diameter in m\n", "Vb=(x*V1)#Velocity in m/s\n", "D=((Vb*60)/(3.14*N))#Pitch circle diameter of the wheel in m\n", "Ns=((N*sqrt(po*10**3))/nh**(5/4))#Specific speed\n", "jr=(D/d)#Jet ratio\n", "nob=(jr/2)+15#Number of buckets\n", "nobb=ceil(nob)#Rounding off to next integer\n", "W=((V1-Vb)*(1-(nn*cos(pi/180*a)))*Vb)/9.81#Workdone per kg in kg.m/kg\n", "nth=((W/nh)*de)#Hydraulic efficiency in percent\n", "\n", "#Output\n", "print \" (a) the discharge of the turbine is %3.2f m**3/s \\n (b) the jet diameter is %3.3f m \\n (c) the nozzle tip diameter is %3.3f m \\n (d) the pitch circle diameter of the wheel is %3.2f m \\n (e) the specific speed is %3.2f \\n (f) the number of buckets on the wheel are %3.0f \\n (g) the workdone per kg of water on the wheel is %3.2f kg.m/kg \\n (h) the hydraulic efficiency is %3.0f percent\"%(Q,d,nd,D,Ns,nobb,W,nth)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex: 10.10 Pg: 718" ] }, { "cell_type": "code", "execution_count": 56, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Blade angle at inlet is 62 degrees \n", " Hydraulic efficiency is 81 percent\n" ] } ], "source": [ "from math import sin,cos,degrees,atan,sqrt,pi\n", "#Input data\n", "gh=35#Gross head in m\n", "md=2#Mean diameter in m\n", "N=145#Speed in rpm\n", "a=30#Angle in degrees\n", "oa=28#Outlet angle in degrees\n", "x=7#Percentage of gross head lost\n", "y=8#Reduction in relative velocity in percent\n", "\n", "#Calculations\n", "H=((100-x)/100)*gh#Net haed in m\n", "V1=sqrt(2*9.81*H)#Velocity in m/s\n", "Vb=(3.14*md*N)/60#Velocity in m/s\n", "b1=degrees(atan((V1*sin(pi/180*a))/((V1*cos(pi/180*a))-Vb)))#Angle in degrees\n", "Vr1=((V1*sin(pi/180*a))/sin(pi/180*b1))#Velocity in m/s\n", "Vr2=((100-y)/100)*Vr1#Velocity in m/s\n", "Vw1=(V1*cos(pi/180*a))#Velocity in m/s\n", "Vw2=(Vb-(Vr2*cos(pi/180*oa)))#Velocity in m/s\n", "E=((Vb*(Vw1-Vw2))/9.81)#Workdone in kg.m/kg\n", "nb=(E/gh)*100#Hydraulic efficiency in percent\n", "\n", "#Output\n", "print \" Blade angle at inlet is %3.0f degrees \\n Hydraulic efficiency is %3.0f percent\"%(b1,nb)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex: 10.11 Pg: 719" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " (a) the speed is 166.7 rpm \n", " (b) the diameter of the runner is 3.56 m \n", " (c) the specific speed is 746\n" ] } ], "source": [ "from math import sqrt\n", "#Input data\n", "P=10000#Power in kW\n", "h=12#Head in m\n", "Nr=2#Speed ratio\n", "Fr=0.65#Flow ratio\n", "x=0.3#Diameter of hub is 0.3 times the eternal diameter of the vane \n", "on=94#Overall efficiency in percent\n", "\n", "#Calculations\n", "Q=(P/(9.81*h*(on/100)))#Discharge in m**3/s\n", "Vr1=(Fr*sqrt(2*9.81*h))#Velocity in m/s\n", "Ab=(Q/Vr1)#Area of flow in m**2\n", "D=sqrt(((Ab*4)/3.14)/(1-x**2))#Diameter of runner in m\n", "Vb=(Nr*sqrt(2*9.81*h))#Velocity in m/s\n", "N=((Vb*60)/(3.14*D))#Speed in rpm\n", "f=50#Taking frequency as 50 Hz\n", "p=(120*50)/N#Number of poles\n", "N1=(120*f)/int(p)#Speed in rpm\n", "Ns=(N1*sqrt(P))/h**(5/4)#Specific speed\n", "\n", "#Output\n", "print \" (a) the speed is %3.1f rpm \\n (b) the diameter of the runner is %3.2f m \\n (c) the specific speed is %3.0f\"%(N1,D,Ns)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex: 10.12 Pg: 721" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Specific speed is 241.5 \n", " Normal speed is 120.7 rpm \n", " Output under a head of 20 m is 7155 kW\n" ] } ], "source": [ "from math import sqrt\n", "#Input data\n", "P=10000#Power in kW\n", "h=25#Head in m. In textbook it is given wrong as 2 m\n", "N=135#Speed in rpm\n", "h1=20#Head in m\n", "\n", "#Calculations\n", "Ns=((N*sqrt(P))/h**(5/4))#Specific speed\n", "N1=sqrt(h1/h)*N#Speed in rpm\n", "P2=P/(h/h1)**(3/2)#Power in kW\n", "\n", "#Output\n", "print \" Specific speed is %3.1f \\n Normal speed is %3.1f rpm \\n Output under a head of %d m is %3.0f kW\"%(Ns,N1,h1,P2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex: 10.13 Pg: 721" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The number of turbines in \n", " (a) Francis turbine are 2 \n", " (b) Kaplan turbine are 4\n" ] } ], "source": [ "from math import ceil\n", "#Input data\n", "Q=175#Discharge in m**3/s\n", "h=18#Head in meter\n", "N=150#Speed in rpm\n", "oe=82#Overall efficiency in percent\n", "Ns1=460#Maximum specific speed\n", "Ns2=350#Maximum specific speed\n", "d=1000#Density in kg/m**3\n", "\n", "#Calculations\n", "P=(d*Q*9.81*h*(oe/100)*10**-3)#power in kW\n", "P1=((Ns1*h**(5/4))/N)**2#Power in kW\n", "n1=P/P1#No.of turbains\n", "P2=((Ns2*h**(5/4))/N)**2#Power in kW\n", "n2=ceil(P/P2)#No.of turbains\n", "\n", "#Output\n", "print \"The number of turbines in \\n (a) Francis turbine are%3.0f \\n (b) Kaplan turbine are %d\"%(n1,n2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex: 10.14 Pg: 722" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Speed is 285 rpm \n", " Power is 23.309 kW \n", " Scale ratio is 5.518 \n", " Flow through the turbine is 63.6 m**3/s\n" ] } ], "source": [ "from math import sqrt\n", "#Input data\n", "Ns=210#Specific speed \n", "P=30#Power in MW\n", "N=180#Speed in rpm\n", "Q=0.6#Discharge in m**3/s\n", "h=4.5#Head in m\n", "e=88#Efficiency in percent\n", "d=1000#Density in kg/m**3\n", "\n", "#Calculations\n", "Pm=(d*Q*9.81*h*(e/100)*10**-3)#Power in kW\n", "Nm=(Ns*h**(5/4))/sqrt(Pm)#Speed in rpm\n", "Hp=((N*sqrt(P*1000))/Ns)**(4/5)#Head in m\n", "Dpm=(Nm/N)*sqrt(Hp/h)#Scale ratio\n", "Qp=(P*10**6)/(d*9.81*Hp*(e/100))#Discharge in m**3/s\n", "\n", "#Output\n", "print \" Speed is %3.0f rpm \\n Power is %3.3f kW \\n Scale ratio is %3.3f \\n Flow through the turbine is %3.1f m**3/s\"%(Nm,Pm,Dpm,Qp)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex: 10.15 Pg: 723" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Speed is 402 rpm \n", " Power is 11180 kW\n" ] } ], "source": [ "from math import sqrt\n", "#Input data\n", "x=1/5#Scale model\n", "h=1.5#Head in m\n", "P=5#Power in kW\n", "N=450#Speed in rpm\n", "h1=30#Head in m\n", "\n", "#Calculations\n", "N1=(x*N)/sqrt(h/h1)#Speed in rpm\n", "Ns=(N*sqrt(P))/h**(5/4)#Specific speed\n", "P1=((Ns*h1**(5/4))/N1)**2#Power in kW\n", "\n", "#Output\n", "print \" Speed is %3.0f rpm \\n Power is %3.0f kW\"%(N1,P1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex: 10.16 Pg: 723" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Speed of the turbine is 307.8 rpm \n", " Maximum flow rate is 1.5 m**3/s\n" ] } ], "source": [ "from math import sqrt\n", "#Input data\n", "h=19#Head in m\n", "Q=3#Flow rate in m**3/s\n", "N=600#Speed in rpm\n", "h1=5#Head in m\n", "\n", "#Calculations\n", "N1=N/sqrt(h/h1)#Speed in rpm\n", "Q1=Q/sqrt(h/h1)#Discharge in m**3/s\n", "\n", "#Output\n", "print \" Speed of the turbine is %3.1f rpm \\n Maximum flow rate is %3.1f m**3/s\"%(N1,Q1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex: 10.17 Pg: 724" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Least number of machines required if using \n", " (a) Francis turbines are 13 \n", " (b) Kaplan turbines are 2\n" ] } ], "source": [ "from math import ceil\n", "#Input data\n", "Q=350#Discharge in m**3/s\n", "h=30#Head in m\n", "e=87#Turbine efficiency in percent\n", "f=50#Frequency in Hz\n", "p=24#Number of poles\n", "Ns1=300#Specific speed\n", "Ns2=820#Specific speed\n", "d=1000#Dnsity of water in kg/m**3\n", "\n", "#Calculations\n", "N=(120*f)/p#Speed in rpm\n", "P=d*Q*9.81*h*(e/100)*10**-3#Power in kW\n", "P1=((Ns1*h**(5/4))/N)**2#Power in kW\n", "n1=P/P1#No.of turbines\n", "P2=((Ns2*h**(5/4))/N)**2#Power in kW\n", "n2=ceil(P/P2)#No.of turbines\n", "\n", "#Output\n", "print \"Least number of machines required if using \\n (a) Francis turbines are %3.0f \\n (b) Kaplan turbines are %3.0f\"%(n1,n2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex: 10.18 Pg: 725" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " (a) Power developed is 2302 kW \n", " (b) As the available head is low, Kaplan turbines are suggested.\n", " Two turbines each of 3000kW capacity may be installed.\n" ] } ], "source": [ "#Input data\n", "h=27#Head in m\n", "A=430#Area in sq.km\n", "R=150#Rainfall in cm/year\n", "pr=65#Percentage of rainfall utilised\n", "pe=95#Penstock efficiency in percent\n", "te=80#Turbine efficiency in percent\n", "ge=86#Generator efficiency in percent\n", "lf=0.45#Load factor\n", "d=1000#Density of water in kg/m**3\n", "\n", "#Calculations\n", "Q=A*10**6*(R/100)*(pr/100)#Discharge in m**3 per year\n", "Qs=(Q/(365*24*3600))#Quantity of water per second in m**3\n", "P=(pe/100)*(te/100)*(ge/100)*d*Qs*9.81*h*10**-3#Power in kW\n", "plc=(P/lf)#Peak load capacity in kW\n", "C=(plc/(2*(ge/100)))#Capacity of each unit in kW\n", "\n", "#Output\n", "print \" (a) Power developed is %3.0f kW \\n (b) As the available head is low, Kaplan turbines are suggested.\\n Two turbines each of 3000kW capacity may be installed.\"%(P)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex: 10.19 Pg: 725" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYJWV99vHvDYjs0CM6wz6AQQQRIUpQNDYqCQREsggS\nRUSTEI2i4AIT3zdMTPRFjDsSXyMgoCCIiqIgINKCgoLsgoCIoywyLDNssjN3/qinZ85puntOnz5b\n19yf65prTu2/Oqe6fvU8T9VTsk1ERMSolfodQEREDJYkhoiIaJLEEBERTZIYIiKiSRJDREQ0SWKI\niIgmSQwDQtJ/S/o/01j+bZIu7mRM0yFpG0mXt7nsppIekqQyPCLpHeVz036W+eZ2IuZ4puUdV5LO\nkLR7L2PqJUlLJG3R7zh6LYmhByQtkPSIpAclLZb0U0kHj574AGy/0/Z/9jPODvsP4BPtLGj797bX\n9rKHbFz+jTfv2rYXtBdiZ0k6oZXxknaVdG05FhZJOk/SNmPmWVXSPZLW6GbMY7Y5t5wIp3Je+DjQ\n9eO2/A09Luk5Y8ZfVWLetAPbWHoBsqJLYugNA3vZXgfYFDgKOBw4rq9RTUDSKtNcfgNgGDizIwEN\nOElHS3pR+byGpE+VUs9/j56wJD1H0v+XtDpwPbCH7SFgNnAVcPyY1f45cJXtR3q4K6O0/Fkqti8H\n1pH0p12MB6q/oVuB/UdHSNoOWJ0JLhra3EaQxNBzth+yfRawH3Dg6JWipK9I+o/yeX1J3ytXlPdJ\nuqihWmUTSd+SdLekeyV9vnH9kj5RrkJvbSziSzpI0g2l1PIbSf/UMG1Y0u2SPiTpD8BxklaTdGJZ\n1w1l2m0Ny2wo6ZsljlslvachjN2AK2w/0TD/AkkfKFfKD0k6TtJsSedIekDS+ZLWK/O2fOXaWNSX\ntK6kk0pMCyR9uOF7e5ukn0z0/Yyz3pbjpbpq/mdgV+Ak4Azbvwf+H/AR4FXAF4DP2n7U9t227yjL\nrgQsAf4wJoS/As4usYxI+o9S0nxI0nfLMfK1EstlkjZriP0Vki6XdH+Z9vKGaSOSPlK+iwclndtw\nFX5R+f/+Mm1nyslyOd/bCLDnBN/jryTt2TC8iqqS0EvKMfbVchwvLrE+b6LfBPgq8NaG4QOpvu+l\niazdY0DSR6l+p2PKd/y5hu3sJunmEuMxk8RXG0kMfVKutG6nOhihubrk/cBtwPrA84B5ti1pZeB7\nwG+BzYCNgFMbVvtnwI3Ac4CjaS6RLAT2LKWWg4BPS9qhYfpsYIiqRHMwML983pzqRP8Wlp0kVgLO\norrS3RB4LfA+SX9R1rUdcNPYXQb+psz7AmAv4BzgiLKPKwGHTPqlLd/ngbVLzK+mOokc1DB9Jyb+\nfsaaSryiOrmPLqcx4zVm/Gg7ymLgEaqT6tgqjD2A7zcM70f1G2wEbAlcWuKfBfwKOLKsd1ZZ7jNl\n2qeA70saaljX/sDbyn6sCnygjB89Fte1vY7tn5WYJzuuKNvfnvGdQsNVPvCXwN22r6Y6sa8DbFxi\nPRh4dIL1APyMqnSydflb2I8qWTRq6xiw/WHgYuBfSvVk47G4J/BS4MXAvpL+cpIYayGJob/upPqD\nGOsJYANgru2nbf+0jN+pjP9gufJ83PYlDcv9zvZxpW7+JGCD0Ssw22fb/m35fBFwHstOBFCdwI60\n/aTtx4A3Ah+z/UC5uv0sy05sLwPWt/2ftp8q6/0y8KYyfV3g4XH26/O277F9J9Uf4aW2r7H9OPBt\nYIdxlmlJw4linu0/2v4d8EnggFa+nwm0Gu+HgC8BF1Kd7P5OVRXSEVQJ9iLg3cAhqqqSRttRhqiS\n/zXA0nYISVsCq9j+dRll4ATbv7X9IFWCutn2j2w/DXyjIZY9gZtsf832EttfpzoR7j1mXbeU3/l0\n4CWjm57ge1je9/YwsN74i3IKsLek1crw37PsYuYJqhP0n7hyle2HJljPqJOpTva7ATcAoyWvTh0D\n430HR9l+0PZtVL/xS8aZp1aSGPprY2BRw/DoQfkJ4BbgPFXVPoeX8ZtQHdhLGN9dox8a6qbXApC0\nh6SfqaqaWkxVVdHYkHdPY9UPVUngtobh2xs+bwZsWIrWi8v65lFdgQIsprpqG2thw+dHxww/Nhpr\nm9YHngX8rmHc76musEdN+P1MoKV4bX/I9i9H12v70HLif2epUsL2fbYPtt10RWx7MdUV++slrVNG\nL61GmiCWx4C7x4uF6nf7/Zhlf1fGj7qr4fOjLP97X973tjZw/3gL2v4NVYlib1UN6a+nShZQneTP\nBb4u6Q5JH9fk7Vsuy7yZcaqR6MwxMF47Q+P39QjTO05nhCSGPpH0Mqo/1p+MnWb7YdsfsL0l1ZXe\nYZJeQ3WQb1qujKayrWcD36QqOj+vXKmeTfMf1dg/iD9QJaJRjZ9vA35re6jh3zq29yrTrwW2aiW0\nqezHctwLPAnMbRi3Kc0Jbbomjdf2QVMZ3+BZVCW2x8vweImhaZWTTLuDKnE32oyGK+s21zuZFwJX\nTzL9VKrqpDcA19u+FaCUNj9ie1vgFVTVdW+deDVVSYuqEXoP4FtjJk/3GEjjc5HE0DujDWDrSNqL\n6o/lZNvXN04v8+wl6fml0exB4Ony7zKqE/ZRqu5+WU3SK1rY9qrl373AEkl7AH8x+SKcDsyTtJ6k\njaiqQkb/cC4DHlLVIL26pJUlvUjSS8v0HwI7Slq1hdg6olSpnA58VNJapTH2UJ5ZB913kv5a0laS\nVpL0XKp2gLNtP16uql9GVWXRtNgEn8c6B9hK0v6loXc/YGuqtqnlLX8PVYLacir7Q3UH1TmTTP86\nVdvCP7OstDB608N25ULnIaqT+tMtbO8dwGvGKX1N9xhYyPL3vZMXMwMriaF3zpL0INVV/zyqus/G\nK8nGxufnA+dT/bFcAnzB9o9LFdLry/TfU1257zvO8o3rpNTbHkL1R7OI6urtO+PN2+AjVFdav6Vq\nj/gGVZ3w6B/gXlR1rbdSnVC+RNWQiO2FwI+AfZbznXjM57HDEy0z0XzvAf5YYroY+BrL6u4n/H6m\nYLJ4p2Ij4AdUSf9Kqqq3A8u01wCXjKnWa2Xbo7/1fVS/zfupLgQ+QHWr9KKx845dV6la+Sjw03LX\nzp9Nti1YWvJ9yPYvJtpZ23dRHccvB05rmDSH6rh6gKq9YISqqmhStm+1feUE+zOdY+CzVO1DiyR9\nZqLNj7OO2pG79KIeScdTNYTdbXu7Mu4TVAftE8BvgINsP1CmzQPeTnXFcIjt87oSWLRF0juBfW3v\n2uL8LwROtL1TdyOrF0lfAK6z/cV+x9IKSWcAX7b9g37HEp3TzRLDCcDY+53PA7a1vT1wM9WVM6ru\n5d8P2KYsc6ym9vRldJikOZJ2KdUdLwAOo7oTpyW2f5Wk0JarmcL33G+2/y5JoX66dvK1fTFVEblx\n3PkNd9T8nOquHKgapU4tt0ouoLojJyeV/loV+CJVdccFVE8xH9vXiFYAtv+nVMVF9M20uj6Yprez\n7H7mDakeXhl1O823mEWPlbs/tut3HBHRe32prpH0YeAJ26dMMlvtG3giIgZRz0sMkt5GdZ/2axtG\n30HzffIbM85915KSLCIi2mC75Vtte1piKB1WfRB4Q3kcf9R3gTep6mp4c+BPqO6Vfwbbtf135JFH\n9j2G7F/2b0Xcvzrvmz316+mulRgknUrVidX6qnrlPJLqLqRVgfNLh4eX2n6X7RsknU51L/NTwLvc\nzt5ERMS0dS0x2N5/nNFj+5xvnP9jwMe6FU9ERLQmzwoMkOHh4X6H0FXZv5mtzvtX531rR9eefO4G\nSalhioiYIkl4UBufIyJi8CUxREREkySGiIhoksQQERFNkhgiIqJJEkNERDRJYoiIiCZJDBER0SSJ\nISIimiQxREREkySGiIhoksQQERFNkhgioiWzZoHUu3+zZvV7j1dc6V01IloiQS///Hq9vTpL76oR\nETEtSQwREdEkiSEiIpokMURERJMkhoiIaJLEEBERTZIYIiKiSRJDREQ0SWKIiIgmSQwREdEkiSEi\nIpokMURERJOuJQZJx0taKOm6hnGzJJ0v6WZJ50lar2HaPEm/lnSjpL/oVlwRETG5bpYYTgB2HzPu\nCOB821sBF5RhJG0D7AdsU5Y5VlJKMxERfdC1k6/ti4HFY0bvDZxYPp8I7FM+vwE41faTthcAtwA7\ndSu2iIiY2CrLm0HStsCfA3MBAwuAi21f38b2ZtteWD4vBGaXzxsCP2uY73ZgozbWHxER0zRhiUHS\nAZIuA/4LmAPcSpUUNgD+S9Llkt7S7obLG3cmew1HXtEREdEHk5UYhoDX2n5ovImS1gHeNsXtLZQ0\nx/ZdkjYA7i7j7wA2aZhv4zLuGebPn7/08/DwMMPDw1MMIaIeZs2CxWMra7toaKh324rpGRkZYWRk\npO3lu/pqT0lzgbNsb1eGjwbus/1xSUcA69k+ojQ+n0LVrrAR8EPg+WPf45lXe0YsU/dXX9Z9/3pp\nqq/2bKWN4XnAP1K1MYzOb9tvX85ypwKvBtaXdBvwb8BRwOmS3kFVLbVvWdkNkk4HbgCeAt6VDBAR\n0R/LLTFIuhS4CLgCWFJG2/Y3uxzbeLEkX0QUdb+irvv+9dJUSwytJIarbb9k2pF1QBJDxDJ1P3HW\nff96aaqJoZXnGL4nac9pxBQRETPIhCUGSQ+z7JbRNYEngCfLsG2v0/3wnhFTSgwRRd2vqOu+f73U\nscZn22t1JqSIiJhJlluVJOmCVsZFREQ9TFhikLQ6sAbwXEmzGiatQ7qriIiorcmeYzgYeC9VP0ZX\nNIx/CDimm0FFRET/tHK76iG2P9ejeCaVxueIZereOFv3/euljj/HUFb6CpqffMb2Se0EOB1JDBHL\n1P3EWff966VudInxVWAL4Grg6YZJPU8MERHRfctNDMCfAtvkUj0iYsXQypPPv6R6B0NERKwAWikx\nPBe4oby05/Eyzrb37l5YERHRL60khvnl/9GqJJG3q0VE1FardyXNAV5GlRAus333chbpityVFLFM\n3e/aqfv+9VLHe1eVtC/wc+CNVC/WuUzSG9sPMSIiBlkrD7hdC7xutJQg6bnABbZf3IP4xsaSEkNE\nUfcr6rrvXy91430MAu5pGL6vjIuIiBpqpfH5B8C5kk6hSgj7Aed0NaqIiOibVqqSBPwNsEsZdbHt\nb3c7sAliSVVSRFH3qpa6718vdaWvpLLidalKGAawvaitCKchiSFimbqfOOu+f73Ujb6SDgb+nerh\ntiVltKn6T4qIiJpppSrpFmBn2/f2JqRJY0mJIaKo+xV13fevl7pxV9KtwKPthxQRETNJKyWGHYGv\nAJcCT5TRtn1Id0MbN5aUGCKKul9R133/eqnjbQzAl4AfAtdRtTGkr6SIiBprJTGsbPuwrkcSERED\noZU2hnMkHSxpA0mzRv91PbKIiOiLVtoYFvDMqiPb7vntqmljiFim7nXwdd+/XurYA26SNrR9Z8ci\na173POAtVG0W1wEHAWsCpwGbAQuAfW3fP2a5JIaIou4nzrrvXy91MjGcA8wCLqTqL+kntp/qQIBz\ngR8BL7T9uKTTgLOBbYF7bR8t6XBgyPYRY5ZNYogo6n7irPv+9VLHnmOwvQcwDPyYqq+kn0n6tqR/\nkrTpNGJ8EHgSWEPSKsAawJ3A3sCJZZ4TgX2msY2IiGhTy30lAUjaAtgD+Etgju2d2tqo9E/AJ6ke\nnDvX9gGSFtseKtMFLBodblguJYaIou5X1HXfv17qxnMMS9m+FfgC8AVJz55qcACStgTeB8wFHgC+\nIektY7ZjSeMeEvPnz1/6eXh4mOHh4XbCiOi4WbNg8eLebW9oaPnzxIppZGSEkZGRtpefrI1he6qr\n+nuBecDxwI7AtcBBtm9pa4PSfsButv+hDB8A7Ay8BtjV9l2SNgAutL31mGVTYoiBlSvczsr32Tmd\n7Cvpi8Bnge8Al1A9AT0EHA0cO40YbwR2lrR6qTJ6HXADcBZwYJnnQODMaWwjIiLaNFmJ4SrbO5TP\nt9h+/njT2tqo9CGqk/8S4ErgH4C1gdOBTcntqjED5Qq3s/J9dk4nb1e91vaLy+d32T62Ydovbb9o\n2tFOURJDDLKcyDor32fndLIq6VhJawOMSQrPp+pULyIiamjS21UlrWb7sdH/exjXRPGkxBADK1e4\nnZXvs3M6/aKeL0panek1NkdExAwyYWKQ9GrgF8BFwBVlOCIiam55JYYlZZ4U6CIiVhCTJYaLgJ2A\nVwEvtf3j3oQUERH9lMbniA5JY2ln5fvsnDQ+R0TEtKTxOSIimqTxOSIimqTxOSIimqTxOaJD0lja\nWfk+O6ejL+opSWEL4D3lXc2rLJvkvduOMiIiBlYrb3A7E/gy1fsSlpRxyeMRETXVSmJ4zPbnuh5J\nREQMhEnbGGDpqze3BM4FHh8db/vK7oY2bixpY4iBlTrxzsr32TkdbWMotgUOAHZlWVUSZTgiImqm\nlRLDb4AX2n6iNyFNGktKDDGwcoXbWfk+O6fTXWIAXAcMtR9SRETMJK1UJQ0BN0q6nGVtDLldNSKi\nplpJDEeOMy4FvIiImlpuG8MgSRtDDLLUiXdWvs/O6UYbQ0RErEBaqUqKiOi5oaGq1NCrbS1a1Jtt\nzQSpSorokFR9zFx1/+06/oCbpFdSNUDPpbkTvS3aijAiIgZaKw+43QS8D7gSeHp0vO17uxvauLGk\nxBADq+5XnXVW99+uG11i3G/7nGnEFBERM0grJYajgJWBb9GhTvQkrUfVlfe2VM9EHAT8GjgN2AxY\nAOxr+/4xy6XEEAOr7leddVb3326qJYZWEsMI4zzQZrvtTvQknQj82PbxklYB1gQ+DNxr+2hJhwND\nto8Ys1wSQwysup9c6qzuv13HE0OnSVoXuGps47WkG4FX214oaQ4wYnvrMfMkMcTAqvvJpc7q/tt1\n/AE3SetJ+rSkK8q/T5aTe7s2B+6RdIKkKyX9j6Q1gdm2F5Z5FgKzp7GNiIhoUyuNz8dT9bD6RkBU\n72Y4AfibaWxzR+Ddti+X9BmgqcrItiWNm7/nz5+/9PPw8DDDw8NthhERUU8jIyOMjIy0vXwrbQzX\n2N5+eeNa3mBVTXSp7c3L8CuBecAWwK6275K0AXBhqpJiJql7dUSd1f2360ZfSY9KelXDBl4JPNJO\ncAC27wJuk7RVGfU64HrgLODAMu5A4Mx2txEREe1rpcTwEuAkYLRdYTFwoO1r2t6otD3V7aqrAr+h\nul11ZeB0YFNyu2rMQHW/6qyzuv92XbsrSdI6ALYfbDO2aUtiiEFW95NLndX9t+vYk8+SDrB9sqT3\n0/AcgyRRtQ9/anqhRkTEIJrsrqQ1yv9r0/yAm8gb3CIiaivdbkd0SN2rI+qs7r9dJ6uSPj/JcrZ9\nyJQii4iIGWGyqqQrqKqMxssyNc6tERErtlQlRXRI3asj6qzuv10nq5LOmmQ52957SpFFRMSMMFlV\n0id7FkVERAyMVCVFdEjdqyPqrO6/XSerkr5h+42Srhtnsm2/uK0IIyJioE1YYpC0oe07Jc0db7rt\nBd0La3wpMcQgq/tVZ53V/bfrdl9JS0sYthdNPbzpSWKIQVb3k0ud1f2361hVUsMKDwb+HXgcWFJG\nm+r9CRERUTOtdLt9C7Cz7Xt7E9KksaTEEAOr7leddVb3367jJQbgVuDR9kOK6I9Zs2Dx4t5tb2io\nd9uK6KZWSgw7Al8BLgWeKKP70ldSSgwxFXW/CozOqfux0o0Sw5eAHwLXUbUxpNvtiIgaayUxrGz7\nsK5HEhERA2GlFuY5R9LBkjaQNGv0X9cji4iIvmiljWEBz6w6su2e366aNoaYirrXG0fn1P1Y6doD\nboMgiSGmou5/7NE5dT9WppoYJqxKkjTcwsZ2bXVDERExM0zW+LyXpKOp7kj6BfAHqkQyB3gp8Drg\nwvIvIiJqYtKqJElrA28AXglsWkb/DvgJ8B3bD3c9wuZ4UpUULat79UB0Tj8ehlzUw97m0sYQUSQx\nxKDq9bHZsTaGhhXOkXScpB+U4W0kvWM6QUZExOBq5TmGrwDnARuW4V8Dh3YroIiI6K9WEsP6tk8D\nngaw/STwVFejioiIvmklMTws6TmjA5J2Bh6Y7oYlrSzpKklnleFZks6XdLOk8yStN91tRETE1LWS\nGN4PnAVsIekS4GSgEz2rvhe4gWVPVR8BnG97K+CCMhwRET3W0l1Jkp4FvKAM3lSqk9rfqLQxVdvF\nR4HDbL9e0o3Aq20vlDQHGLG99ZjlcldStCx3JcWgGvS7klp5teff0txX0laSHgCus313GzECfBr4\nILBOw7jZtheWzwuB2W2uOyIipqGVbrffDrycZU84DwNXAptL+ojtk6ayQUl7AXfbvmqibjdsW9K4\n+XT+/PlLPw8PDzM8PO4qIiJWWCMjI4yMjLS9fCu9q54HHDB6NS9pNlU7w/7ARba3ndIGpY8BB1Dd\n2bQaVanhW8DLgGHbd0naALgwVUkxHalKikE16FVJrTQ+b9JQxQNwdxl3H8te9dky2/9qexPbmwNv\nAn5k+wDgu8CBZbYDgTOnuu6IiJi+VqqSLpT0feB0qtd6/i0wImlN4P4OxDCaN48CTi9PVS8A9u3A\nuiMiYopaqUoaTQa7lFE/Bb7ZjzqdVCXFVKQqKQbVoFclLa931VWAX46t6++XJIaYiiSGGFSDnhgm\nbWOw/RRwk6TNph1ZRETMCK20McwCrpd0GfDHMs629+5eWBER0S+tJIb/2/UoIiJiYORFPVFbaWOI\nQTWj2xjKCl8u6XJJD0t6UtISSQ9OL8yIiBhUrTzgdgzw91Qv6FkNeAdwbDeDioiI/mklMWD718DK\ntp+2fQKwe3fDioiIfmml8fmPkp4NXCPpaOAuqiegIyKihlopMby1zPdu4BFgY6onoSMiooZyV1LU\nVu5KikE16HcltfKinlcCRwJzG+a37S3aijAiIgZaK53o3QS8j+rlPE+Pjrd9b3dDGzeWlBiiZSkx\nxKCa8SUG4H7b50wjpoiImEEmLDFI+tPy8Y3AylRvWXt8dLrtK7se3TNjcvPrp7traAgWLerZ5qLD\nUmKIQTVrFixe3MstdqjbbUkjTHIWtr3rlGObpl5XJeXEMrPl94uodPR9DIMmiSGmIr9fRKUbfSV9\nTNJ6DcNDkv6z3QAjImKwtfKA21/ZXvpuZ9uLgT27F1JERPRTK4lhJUmrjQ5IWh1YtXshRUREP7Vy\nu+rXgAskHU/VR9JBwEldjSoiIvqmpcZnSXsAry2D59s+t6tRTRxHGp+jZfn9IiodvytJ0prAY7af\nlvQC4AXAObafnF6oU5fEEFOR3y+i0vG7koCLgWdL2gg4FzgA+Ep74c0sQ0PVyaVX/2bN6vceR0S0\n1sYg249IegdwrO2jJV3T7cAGQa+felbechERA6ClN7hJejnwZuD7U1kuIiJmnlZO8O8D5gHftn29\npC2BC7sbVkRE9Eu6xBggaSztrHyfEZWOdbst6bO23yvprHEm2/bebQa4CdVzEM+j6qTvS7Y/J2kW\ncBqwGbAA2LfxieuIiOiNSbvdtn2FpOFxJtv2j9vaoDQHmGP7aklrAVcA+1A9OHdvadw+HBiyfcSY\nZVNiiJbl+4yodKV3VUnPBbB9zzRim2jdZwLHlH+vtr2wJI8R21uPmTeJIVqW7zOi0rHnGFSZL+le\n4GbgZkn3SjqyE4GWbcwFdgB+Dsy2vbBMWgjM7tR2IiKidZPdlXQosAvwMttDtoeAnYBdJB023Q2X\naqRvAu+1/VDjtFIsyLVeREQfTPaA21uB3Rqrj2zfKunNwPnAp9rdqKRnUSWFk22fWUYvlDTH9l2S\nNgDuHm/Z+fPnL/08PDzM8PBwu2EMnNEnrXu5vby6NKJ+RkZGGBkZaXv5yRqff2n7RVOdttwNSgJO\nBO6zfWjD+KPLuI9LOgJYb0VrfO61utfB133/IlrVsdtVgck6yZtOB3q7AG8BrpV0VRk3DzgKOL10\nvbEA2Hca24iIiDZNVmJ4GnhkguVWt91KP0sdlRJDZ9X9irru+xfRqo6VGGyv3JmQIiJiJklneBER\n0SSJISIimiQxREREkySGiIhoksQQERFNkhgiIqJJEkNERDRJYoiIiCZJDBER0SSJISIimiQxRERE\nkySGiIhoksQQERFNet51dqy4Zs2CxYt7t72hod5tK6JOJnwfwyDK+xg6q9fvK8j7ESL6Y6rvY0hV\nUkRENEliiIiIJkkMERHRJIkhIiKaJDFERESTJIaIiGiSxBAREU2SGCIiokkSQ0RENEliiIiIJkkM\nERHRJIkhIiKaDFRikLS7pBsl/VrS4f2OJyJiRTQwiUHSysAxwO7ANsD+kl7Y36h6a2RkpN8hdNlI\nvwPoqrr/fnXevzrvWzsGJjEAOwG32F5g+0ng68Ab+hxTT9X/4BzpdwBdVfffr877V+d9a8cgJYaN\ngNsahm8v4yIioocGKTHkFS4REQNgYN7gJmlnYL7t3cvwPGCJ7Y83zDMYwUZEzDBTeYPbICWGVYCb\ngNcCdwKXAfvb/lVfA4uIWMGs0u8ARtl+StK7gXOBlYHjkhQiInpvYEoMERExGAap8XlSdX74TdIm\nki6UdL2kX0o6pN8xdZqklSVdJemsfsfSaZLWk3SGpF9JuqG0l9WGpHnl2LxO0imSnt3vmKZD0vGS\nFkq6rmHcLEnnS7pZ0nmS1utnjNMxwf59ohyf10j6lqR1J1vHjEgMK8DDb08Ch9reFtgZ+Jea7R/A\ne4EbqOfdZ58Fzrb9QuDFQG2qQCXNBf4R2NH2dlTVvG/qZ0wdcALVuaTREcD5trcCLijDM9V4+3ce\nsK3t7YGbgXmTrWBGJAZq/vCb7btsX10+P0x1Ytmwv1F1jqSNgb8Cvgy0fGfETFCuvF5l+3io2sps\nP9DnsDrpQaoLlzXKDSJrAHf0N6TpsX0xsHjM6L2BE8vnE4F9ehpUB423f7bPt72kDP4c2HiydcyU\nxLDCPPxWrtB2oPrx6uLTwAeBJcubcQbaHLhH0gmSrpT0P5LW6HdQnWJ7EfBJ4PdUdwveb/uH/Y2q\nK2bbXlhm7imFAAADnElEQVQ+LwRm9zOYLns7cPZkM8yUxFDH6odnkLQWcAbw3lJymPEk7QXcbfsq\nalZaKFYBdgSOtb0j8EdmdjVEE0lbAu8D5lKVYteS9Oa+BtVlru7IqeU5R9KHgSdsnzLZfDMlMdwB\nbNIwvAlVqaE2JD0L+CbwVdtn9jueDnoFsLek3wKnAq+RdFKfY+qk24HbbV9ehs+gShR18VLgEtv3\n2X4K+BbVb1o3CyXNAZC0AXB3n+PpOElvo6rSXW5inymJ4RfAn0iaK2lVYD/gu32OqWMkCTgOuMH2\nZ/odTyfZ/lfbm9jenKrR8ke239rvuDrF9l3AbZK2KqNeB1zfx5A67UZgZ0mrl+P0dVQ3EdTNd4ED\ny+cDgTpdnCFpd6rq3DfYfmx588+IxFCuVEYffrsBOK1mD7/tArwF2LXc0nlV+SHrqI5F9PcAX5N0\nDdVdSR/rczwdY/sa4CSqi7Nry+gv9S+i6ZN0KnAJ8AJJt0k6CDgK2E3SzcBryvCMNM7+vR34PLAW\ncH45vxw76TrygFtERDSaESWGiIjonSSGiIhoksQQERFNkhgiIqJJEkNERDRJYoiIiCZJDLHCk7RE\n0skNw6tIuqfdLsIlrSvpnQ3Dw3XsbjzqK4khourfaFtJq5Xh3ai6umj3IZ8h4F2dCCyiH5IYIipn\nA3uWz/tT9eskWPoSlzPLS04ulbRdGT+/vBTlQkm/kfSesvxRwJblCdOjqRLMWpK+UV6W8tXRjUo6\nqrwE5xpJn+jVzkZMZmDe+RzRZ6cB/ybpe8B2VH1XvapM+3fgCtv7SNqVqouIHcq0rYBdgXWAm0pX\nA4dTvRRlB6iqksr82wB/AH4qaReqfoj2sb11mW+dru9lRAtSYogAbF9H1bX0/sD3x0zeBTi5zHch\n8BxJa1OVBL5v+0nb91H1yDmb8bsXv8z2naVL56uBzYD7gcckHSfpr4FHO79nEVOXxBCxzHeB/6Kh\nGqnBRO+SeKLh89NMXAp/fMx8z7L9NNXbCc8A9gJ+MNWAI7ohiSFimeOB+bbHdpt9MaUP+1ItdI/t\nh5g4WTwErL28jUlaE1jP9jnAYcD2bcYd0VFpY4godx/ZvgM4pmHc6F1J84HjS7faf2RZv/3jvunL\n9n2SfirpOqpG7bPHmc9UyeM75W4oAYd2aocipiPdbkdERJNUJUVERJMkhoiIaJLEEBERTZIYIiKi\nSRJDREQ0SWKIiIgmSQwREdEkiSEiIpr8L6I2DxQIB5NYAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEZCAYAAACJjGL9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8XPP9x/HXW6yxx5oggtoiCbHEFnVt/dGWtlpUa/8V\nrSpaXWh/JbSlqLX2WqqUn6Taov1ZQl20QUQiaBqERqyx7xTJ5/fH93vdybh37mTuneXeeT8fj/u4\nc87Mme9nzsycz3zO95zvUURgZmbWmQXqHYCZmTU2JwozMyvJicLMzEpyojAzs5KcKMzMrCQnCjMz\nK8mJwjol6f8k7VvvOHpSd1+TpDGSruzJmLpD0n9J+lOFy24jaXrB9ExJ2+fbH79OSYMlvSVJPRO1\nFevqcyXpPklDaxlTISeKBiLpt5J+Vqe2P/FBjYjPRkTDbBS7ImmupLfzRu1lSbdJ2rPwMT3wmhrt\nxKNfACdXsmBE3B0R6xXO6uh2RMyKiCWjQU66knR5OfMlfVXSdElv5M/DHyUNKnrMIElPVzPeDuJs\n6aDNrtbtr4ATqxRSl5wo5pOkBesdg5U0IiKWBNYBfgucK+m4Hnz+HvtVLalfN5ffDFgqIib2UEjz\nPH0VnrNbJF0gaXC+vZykiyQtJulCSQPy/MGSLsiL/AP4dEQsDawOvAucUfS0nwVuqtFLKKWr9X0j\nsJ2klWoRzCdERFP8ATOBY4B/Aq8ClwGLFNz/eeBB4DXSB2x40bI/BB4C3iMl2NHAhPz4WcD++bGL\nkLL/U8ALwAXAovm+FuAZ4HvAbOA54IB83yHAB8B/gLeA6/P8Y4AZwJs59i8WxLUAcDrwEvAkcDgw\nF1gg3780cGlu5xngZ233Fa2bnXO7H+S2p+T5rcB/59sH5PVyRn7NM4CtgAPz658N7FfwnJ2uh6K2\nFwFeBzYomLcC6Uu9fP77S27zFeAuQJ28x3OBNYvmfTm/Z8t28Jo+BdyZ238J+N+C5TYAxuc2XwCO\nzfOPB64FrsjvySPAJgXLlXq/Ctfhy6RfiANIG4E3gInAz4G7C5ZZryCO6cAeBfcdB1zcwTr4FvB4\njuFEYC3gnvw6/xdYqODz+HTBsv8Gts+3xwBX5ttDmPdzNQi4Icf0OPCNgucYA4ztbP108p6VG+9g\nUvKfkecPLXivrs3zLwdW66CdJXJMZxbN/2Pbe0T6nn+f9D1/i/TdWYmUSN7I78MyBcvult/j14A7\ngPWKthlHA1MLXsciwOKkz+Oc3MabwEC6+Fzl57yVgu9YTbef9Wi0Li80vXEPAasAywJ/B36W7xtJ\n2tBtRsrs++UvzUIFy07Oyy5C+nXyJrAX0I/0Zd8wP/ZM4M/AMvnDeQNwUsEX88P8ZeoH7AK8Ayyd\n778cOLEo7q8AK+fbewJvAyvl6W/mD+qg3N5t+QPY9oX+E2kDvRhp43sfcEgn6+d44HdF8+4ADsq3\nD8ix75/X0c9IyefXwELATnmd9O9qPXTQ9qXAzwumvw38X759cn4N/fLf1iXe444SxUI57v/q4DVd\nQ3sCWBjYKt9eEnge+G6evwQwKt83hvRF3zmvh5OAe8p8v9rW4bdJSX5R0gbk6nx7fVLSvSs/fnHg\n6bzOFwA2IiW09fL9Y4GjO1gHf8oxDyX9APgbaWO/VP687FfweawkUdwFnJvXzYbAi8B25ayfTt6z\ncuNdnfQD74n83m2Q5w/L6/EJ0mdpcMHzjyZtqOfm937hos/GS8DiBa9/Aum7Moi0TZicX+MiwO3A\ncfmx6+T3dgfS5/IHpGS3YMFz3QusTNreTAMOzfdtW7jey11vwNnA6XXZftaj0bq80PTGHVIwvQsw\nI9++gE9uoKcD2xQse0DBfccC13XQhvKHZ82CeVsCT+bbLaRfygsU3D+b9o3Q5eTkVeJ1TAF2zbf/\nBhxccN8O+QuxAOmX0PsU/IoH9gb+1snzjiFvGArmFSeKxwruG57bWqFg3svAiK7WQwdt79D2XuTp\nfwD75NsnkBLOWmW8x59IFHn+88DeHbymK4CLgFWKHr838ECJ9XRrwfRQ4N0u3q/dCtbhUwX39SNV\ncWsXzPsZuaIg/RC5q+j5LqJ9Y3UrRYk/r4MtC6YnAT8omP4V+Vc1FSQKYDXgI/LGNd9/EnB5hetn\nfuK9gFRVXA4sl9fFYvn/gDx/MHBBB+0Myuvr7KLP3W1Fr3/vguk/AOcVTB8O/Cnf/inzVqAi/XD6\ndMFzfa3g/lPa4ipe7+WuN1K1eWlX34Nq/DVbH0VhB9Is0ocH0i+VoyW91vYHrFpwf/Gyq5J29RRb\nAegPPFDwPDeRdp+0eSUi5hZMv0v6NdUhSftJmlLwfMMKnm9gUVzPFNxenfSL6fmCZS/MMVZqdsHt\n9wAi4qWieUtQ3noo1Ar0lzRK0hDSL7i2I3lOI+1SuFXSE5J+ND8BS1oox/NqB3f/kPQFnyjpEUkH\n5vmr0fH726ZwPbwLLCppgdxeR+/XcgWPL3y/VgAWpPR7uHnR5/JrpB8BkHZ5LNVFfO8VTb9Pic9b\nGQYBr0bEOwXzZpGq7Y7an2f9dKJUvG2fKSLiWxExK99+JSIOjYj38v9X8/xZEfGt4gYi4jnSxn2/\ngtmfBf46H7EUrrtBpNfd9vxBeh8L18MLHb2OErpab0uR3vOaa7aO2cFFt5/Nt2cBv4iIk0osGwW3\nnwZGdfCYl0kfiKER8XwF8RW2gaTVgYuB7UllaEiaQnvH1/OkjVqbwttPk8r45YoSU2fKeUy55ms9\nRMQcSWNJv+RfBG5s2xBFxNuk/cbfl7QB8DdJ90fE38qM5QukX8Cf6PCNiNmkviEkbQ3cJuku0udh\nr87C7ayhMt6v4uVfyrGtRtptAfO+h7OAOyPiM500+RBpF8j86DT+Mj0HDJC0RH5vIH2XnimxTI+K\niAPnZ36BhUgb4Da7AF/qYpnOOpmfJVXV6UHp0OHVaN+mlNLRe1DO+7I+8LsyHtfjmqmiEHCYpFXy\nERI/IXUeAfwG+Gb+RStJi0v6nKTOfgH8HthR0h6SFsxHYGyYN8i/Ac6StAJAbq+zL3qx2cCaBdOL\nkz5ALwML5F+8wwruHwscmQ/xWwb4UX48eQN9K3CGpCUlLSBpLUmfLtH2kJ44Vr7C9XA18FXSL+ar\n22bm9+FTOa43SX0wc0o8j/JyAyR9nbQv/ZcR8YlfYvn9WzVPvk5ad3NInecDJR0paZG8/kYVPn8n\nunq/5hERc0idqWPy0TvrAfvSvtH4K7COpH0kLZT/NsuPA/g/0v7urqiT2/MtIp4m7cc/Oa+bEcBB\nwFXded4iPRKvpK9JWi3fXp10KPF1eXoN0sEsj1b49OOAz0naPletR5MqjgllLDsbWE5SYTVY8nVK\nWhTYmNShXnPNlCiCtAG6ldTp9Thpnx8R8QBwMGmj8mq+bz86yfL5y/JZ0ofjFdJ+6BH57h+RdpXc\nK6ntSInCX32lfjlcCgzNuxn+GBHTSEc13UMqY4eROuHb/Ca/noeAB0gbljkFFcR+pA7Hafl1jSN1\nrnVkXP7/iqRJHb3sDmIv9Vq6Wg/zPlE6xPNt0u60wsMV187LvkX6Ep4XEXeWaHeqpLdI7+FBwFER\nMaaTx26a43sLuB44IiJm5l/KOwG7kqq2x0j7laHEeijj/epo2cNJR6e9QOozuYbUb0FEvAV8hpRA\nn82xnEx6T4mIKcAbBUns41g6iq+TGDp7D0s9bm9Sv8VzpER3XEGFN7+fk/mNd34MBSZIepu0e/Me\n0u5GgM/xyd1OXcX3cSw5wexDOpjjpfx8u0bERyWep23Z6aT3+UlJr0oaSNfrbVfgjoh4gTpQ7iTp\n+SeWLiOtvBcjYniedxrpMNQPSBvrAyPijXzfsaQv9hzSF/bWHo7n36TDIsvdZdHrSNqF1GE2pN6x\nWGUknQKsWMZulLbH7wQcFhFd7UKxApL+Cvw6Im6udyzlkHQv6SCMafVov5oVxeWkQ70K3Uo6pG1D\n0q+0YwGUTk3fi/QLYGfg/C46v4xUjkr6bN79tQrpENc/1jsuK5+kdSWNyLs8R5F+LJU9JEdEjHeS\nqEhr/usVImKLeiUJqGKiiIi7Keqhzx/qtt0i95GOHoLU4XhNRHwYETNJuyw66iy2eYl0WN2rpOO9\n/0k6Cct6jyVJ+83fJp0L8KuIuKG+IfV9EXFaRLxf7zh6i3oe9XQQaT8dpEPN7i247xnmPcys2yJi\njZ58vkYQEe/hhNqrRcQkUj+MWcOqy+4dST8BPoiIq0s8rDqdJ2ZmNl9qXlFIOoB0xNAOBbOfZd7j\nx1elg+ORJTl5mJlVICIqPtS4phWFpJ1JY6J8oWj/4A3AVyUtnI9vXpsOTpCC5hlypKu/448/vu4x\nNMqf14XXhddF6b/uqlpFIeka0slAyyuNvX486SinhYHx+byueyLisIiYls/MnUY6U/Ww6IlXZ2Zm\n3Va1RBERe3cw+7ISjz+JNLiYmZk1EJ+r0Eu1tLTUO4SG4XXRzuuinddFz6namdnVIMl7pMzM5pMk\nord0ZpuZWe/jRGFmZiU5UZiZWUlOFGZmVpIThZmZleREYWZmJTlRmJlZSU4UZmZWkhOFmZmV5ERh\nZmYlOVGYmVlJThSdeOcdmDCh3lGYmdWfE0UnZsyAPfaAI49MScPMrFk5UXRiww3h4YfhtddgxAho\nba13RGZm9eFhxsvwl7/AN78JX/gCnHIKLLFEzUMwM6uYhxmvgc9/Hh55BN57D4YPh9tvr3dEZma1\n44piPt18MxxyCOyyC5x2Giy1VF3DMTPrkiuKGtt559R3EZGqi1tuqXdEZmbV5YqiG8aPh4MPhh12\ngNNPh2WWqXdEZmaf5IqijnbaKVUXiyySqou//rXeEZmZ9TxXFD3kjjvgG9+ArbeGs86CAQPqHZGZ\nWeKKokFstx089BAsu2yqLq6/vt4RmZn1DFcUVXD33XDQQbDZZnDOObD88vWOyMyamSuKBrTNNjB1\nKgwcmM7qvu66ekdkZlY5VxRVNmFCqi5GjIBzz4UVV6x3RGbWbFxRNLittoIpU2CNNVKyuPbadA6G\nmVlvUbVEIekySbMlPVwwb4Ck8ZIek3SrpGUK7jtW0uOSpkv6TLXiqofFFktjRF1/PZx4InzlKzB7\ndr2jMjMrTzUrisuBnYvmHQOMj4h1gNvzNJKGAnsBQ/My50vqc9XO5pvD5Mmw3nqpuvj9711dmFnj\nq2ofhaQhwI0RMTxPTwe2jYjZklYGWiNiPUnHAnMj4pT8uJuBMRFxb9Hz9bo+is488AAccACsuSZc\neGHq+DYzq4aq91FI2kDStySdIumXkr4paYMK21spItp2uswGVsq3BwHPFDzuGWCVCtvoFTbZJCWL\njTZK17644gpXF2bWmDpNFJL2lTQR+BWwMvAkMBMYCPxK0v2S9qm04VwalNo09vnN5sILwwknwK23\nwplnpuHMn3223lGZmc1rwRL3LQvsEBFvdXSnpKWAA+azvdmSVo6IFyQNBF7M858FVit43Kp53ieM\nGTPm49stLS20tLTMZwiNZ6ON4P774eSTYeTINHz5fvuBKi4UzayZtba20tqDl+WsdR/FqcArEXGK\npGOAZSLimNyZfTUwirTL6TbgU8UdEn2pj6IzDz6Y+i5WXRUuvhgGDap3RGbW23W3j6LLRCFpReBg\nYAjtFUhExEFdLHcNsC2wPKk/4jjgemAsMJi0G2vPiHg9P/7HwEHAR8CREfGJKz00Q6IA+OADOOkk\nOP/8NHz5Pvu4ujCzytUiUdwD3AU8AMzNsyMiaj4wRbMkijZTpsD++8OQIXDRRT4yyswqU4tE8WBE\nbFRpAz2p2RIFpOri5z9Ph9CeeSZ87WuuLsxs/tQiUfwcuCci6n5ZnmZMFG3azrtYa62UNFZeud4R\nmVlvUbXzKCS9Lekt4EjgRknvS3or/71ZaYNWmU02gUmTYNiwdN7FNdf4vAszqw2PHtsL3X9/qi7W\nXRcuuABWWqnLRcysidXizOzby5lntbPZZmlX1LrrekRaM6u+TisKSYsB/YE7gJaCu5YCbo6I9aoe\n3SdjckVRZOLEdGTUBhukw2l9vQszK1bNiuJQYBKwLunQ2La/G4BzK23QetaoUekw2rXWStXFuHH1\njsjM+ppyjno6IiLOqVE8JbmiKO3ee1PfxYgRcN55sMIK9Y7IzBpB1Q+PzY1sxbxnZhMRv6u00Uo5\nUXTtvffguOPgqqvSpVe//OV6R2Rm9VaL8yiuAtYEHgTmtM2PiO9U2milnCjKN2ECHHhgGmTw3HNh\n+eXrHZGZ1UstEsW/gKGNsIV2opg/770H//M/6ZyL886DL32p3hGZWT3UIlGMIw3S91yljfQUJ4rK\n/P3vqbrYbDP49a9hueXqHZGZ1VLVz6MAVgCmSbpV0o3574ZKG7TaGz0apk5Nh84OHw7XX1/viMys\nNymnomjJN9seKNLosXdWMa7OYnFF0U13352qiy22gHPOgQED6h2RmVVbrY56WhnYjJQsJkbEi10s\nUhVOFD3jnXfgkENgscXgkkvqHY2ZVVsthvDYE7gP2APYE5goaY9KG7T6W3xx+Nzn4N136x2JmfUG\npa6Z3eZ/gM3aqghJKwC3Az4H2MysCZTTmS3gpYLpV/I8MzNrAuVUFDcDt0i6mpQg9gJuqmpUZmbW\nMMpJFD8Edge2ztMXRcSfqheSmZk1ki4TRT7M6DpJt+XHh6QBEfFq1aMzM7O66zJRSDoUOAH4DzA3\nzw7S+E9mZtbHlbPr6QfAsIh4udrBmJlZ4ynnqKcngfeqHYiZmTWmciqKY4B7JN0DfJDnRUQcUb2w\nzMysUZSTKC4GbgMeJvVRiPZxn8zMrI8rJ1H0i4jvVT0SMzNrSOX0Udwk6VBJAyUNaPuremRmZtYQ\nyqkovkba1XRMwTwfHmtm1iQ6TRSSBkXEcxExpKcblXQssA+pz+Nh4EBgceBaYHVgJrBnRLze022b\nmdn8KbXr6VJJ90n6paQWSeVUH12SNAQ4GNg4IoYD/YCvkiqW8RGxDml02mM6ew4zM6udThNFROwC\ntAB3ksZ6ulfSnyQdImlwN9p8E/gQ6J+TT3/gOWA34Ir8mCuAL3ajDTMz6yElq4SIeI80UuxNAJLW\nBHYBzpW0ckSMmt8GI+JVSacDs0gn8t0SEeMlrRQRs/PDZgMrze9zm5lZz5uv3UkR8SRwHnCepEUq\naVDSWsBRwBDgDWCcpH2K2glJHZ6rMWbMmI9vt7S00NLSUkkYZmZ9VmtrK62trT32fJ1eM1vShsDp\nwMvAscBlwMbAQ8CBETGjogalvYCdIuIbeXpfYAtge2C7iHhB0kDgjohYr2hZXzO7h1x9NfzlL+m/\nmfVt1bxm9oXA2cD1wATSGdrLAqcC51faIDAd2ELSYpIE7AhMA24E9s+P2R/4czfaMDOzHlIqUSwa\nETdGxDXAOxFxTUTMjYgbgRUqbTAipgK/AyaRqhNISeiXwE6SHiNVF7+stA0zM+s5pfoo+hXcPqPo\nvoW602hEnEqqTAq9SqouzMysgZSqKM6XtCRARHy8q0nSp0iDBJqZWRModR7FhaTzHZC0aMH8GRFx\nVA1iMzOzBtDVoIAXSlqM7nVem5lZL9ZpopC0LanD+S7ggTxtZmZNpquKYm5+jE9eMDNrUqUSxV3A\nKGAbYNOIuLM2IZmZWSMp1ZkdwDcj4l3gsNqFZGZmjcSd2WZmVpI7s83MrCR3ZpuZWUnuzDYzs5Lc\nmW1mZiV1dYW79/NV7b6Tr3W9YPtdsVuVYzMzswZQzhXu/gxcQrpexNw8z30WvVz//jB5MsyYAZ/6\nVL2jMbNGVk6ieD8izql6JFZTu+0GM2fCFlvAccfB4YfDAl0d2mBmTanTS6F+/IB0qdK1gFuA/7TN\nj4jJ1Q2tw1h8KdQe9thjcOCBsOCCcNllsNZa9Y7IzHpady+FWk5FsQGwL7Ad7bueyNPWy62zDtx1\nF5x9Nmy+OYwZA4cd5urCzNqVU1E8AawfER/UJqSSsbiiqKJHH4UDDoBFF4VLL4U116x3RGbWE7pb\nUZTzu/FhYNlKG7DeY9114e9/h899LlUX558Pc+d2vZyZ9W3lVBR3AiOA+2nvo6jL4bGuKGpn+vRU\nXfTvn/ouhgypd0RmVqnuVhTlJIqWDmZHPc7UdqKorY8+gjPOgNNOg5/9DA49FFTxR83M6qXqiaKR\nOFHUx7RpqbpYemm45BJYffV6R2Rm86MWfRTW5IYOhQkTYIcdYNNN4eKLwfnarHm4orD58sgjqboY\nMCBVF4MH1zsiM+uKKwqrqWHD4N57oaUFNtkkJQvnbrO+rZzO7NHA8cAQ5h0UsOZH2buiaCwPP5yq\nixVWSAlj1VXrHZGZdaQWFcWlwBnAaGCz/Deq0gat7xg+PFUXo0fDyJHpMFrncbO+p5yK4r6I2LxG\n8ZTkiqJxPfQQ7L8/DBwIv/kNrLJKvSMysza1qCjukHSapC0lbdz2V2mDAJKWkfQHSf+SNE3S5pIG\nSBov6TFJt0papjttWG2NGAETJ6bRaEeOhCuucHVh1leUU1G00sH1JyKi4kEBJV0B3BkRl0laEFgc\n+AnwckScKulHwLIRcUzRcq4oeoEHH0x9F6uumg6lHTSo3hGZNbded8KdpKWBKcWd4ZKmA9tGxGxJ\nKwOtEbFe0WOcKHqJDz6Ak05K40Wdfjrss4/P6jarl1oM4bEM6ainT+dZrcCJEfFGRQ1KGwEXAdOA\nDYEHgKOAZyJi2fwYAa+2TRcs60TRy0yenKqLIUPgootSH4aZ1VYtrkdxGWkE2T0Aka5NcTmwezfa\n3Bg4PCLul3QWMM8upogISR1mhDFjxnx8u6WlhZaWlgrDsFrYeGOYNCmNFbXhhvCrX8G++7q6MKum\n1tZWWltbe+z5yqkopkbEhl3NK7vBtFvpnohYI0+PBo4F1gS2i4gXJA0E7vCup75lypR0Nb1VVkl9\nFz4yyqw2anHU03uStilocDTwbqUNRsQLwNOS1smzdgT+CdwI7J/n7Q/8udI2rDGNHJmOjBo1yudd\nmPUm5VQUGwG/A5bOs14D9o+IqRU3Km0IXAIsDDwBHAj0A8YCg4GZwJ4R8XrRcq4o+oipU1N1seKK\nqbrwmFFm1VOzo54kLQUQEW9W2lh3OVH0LR9+CKeeCmedBb/4BRx8sPsuzKqhaolC0r4RcaWko5n3\nPAqR+pvPqLTRSjlR9E2PPJKqi7brXfhqemY9q5p9FP3z/yU7+TPrEcOGwT33wE47petdnHeer9Vt\n1kh8PQprKNOnp+pikUXg0kthrbXqHZFZ71fNXU+/LrFcRMQRlTZaKSeK5jBnDpx9djqz+6c/he98\nBxbwlVPMKlbNRHEAqW+ioyePiLii0kYr5UTRXB57DP77v9Ptyy6DtdeubzxmvVWvG+upO5woms/c\nuXDuuXDiiXDssXDUUdCvX72jMutdqllR3FhiuYiI3SpttFJOFM3riSdSdfGf/8Dll8N663W9jJkl\n1UwULaUWjIjWShutlBNFc5s7Fy68EI47Dn7wAzj6aFiwnNHKzJqcdz1Z0/n3v9PJeW++mfouhg2r\nd0Rmja1q51FIGpf/P9zB30OVNmjWXWusAePHwze+Adttl87q/vDDekdl1neV2vU0KCKekzSko/sj\nYmb1wuqYKworNmsWHHIIvPgi/Pa36ZKsZjavWo/19PEe4Yh4tdJGK+VEYR2JSB3cP/oRHH54Ojpq\n4YXrHZVZ46jFFe4OBU4A/gO0DawQxZcyrQUnCivl2Wfh0EPh6adTdTFyZL0jMmsMtUgUM4AtIuLl\nShvpKU4U1pUIuPJK+P73U9L46U9dXZjV4sJFTwLvVdqAWS1JsN9+6XoXU6emQQYnT653VGa9WzkV\nxcbAb4F7gA/ybI/1ZA0vAq66Kp1v8a1vwU9+4urCmlMtdj1NAu4CHib1UbRdj8JjPVmv8Nxz6cio\nZ55JfRcbbVTviMxqqxaJYkpENES3oBOFVSoCfve7dEb3t78NP/4xLLRQvaMyq41aJIqTgKeAG0hH\nPgE+PNZ6p2efTWd1v/CCz7uw5lGLRDGTeS+FCj481nqxwvMujjgCjjnG1YX1bR7ryaxCTz+dqouX\nXkrVxfDh9Y7IrDqqOdZTSxmNb1dpw2b1ttpqcNNN6Yio7bdPY0Z99FG9ozJrPKXGevoV8GngNmAS\n8DwpsawMbArsCNwRET+sTaiuKKx6Zs1Kgwy+9lqqLjbYoN4RmfWcqu56krQk8AVgNDA4z34K+Dtw\nfUS8XWnDlXCisGqKgN/8Jp1v8b3vpSOkfL0L6wvcR2HWw556Kl1N7803U3UxdGi9IzLrnqoP4SFp\nZUmXSro5Tw+V9N+VNmjW6FZfPV3v4qCD4NOfhlNOcd+FNbdyxnr6LXArMChPPw58t1oBmTUCCb75\nTbj/frjlFhg9GqZPr3dUZvVRTqJYPiKuBeYARMSHgH9fWVNYYw247bY00ODo0XDaaTBnTr2jMqut\nchLF25KWa5uQtAXwRncbltRP0hRJN+bpAZLGS3pM0q2SluluG2Y9YYEF4LDDYOJE+OtfYZtt4NFH\n6x2VWe2UkyiOBm4E1pQ0AbgS6ImRY48EptF+1vcxwPiIWAe4PU+bNYw114S//Q2+9jXYems4/XRX\nF9YcyjrqSdJCwLp58tG8+6nyRqVVSX0fvwC+FxG7SpoObBsRsyWtDLRGxHpFy/moJ2sITzwBBx6Y\nEsXll8M669Q7IrPO1eKopy8DuwLr5L9dJe0gacVKGwXOBH5A+6VVAVaKiNn59mxgpW48v1lVrbUW\ntLbCXnvBVlvBmWe6urC+q5zTiQ4CtgTuyNMtwGRgDUknRsTv5qdBSZ8HXoyIKZ0NExIRIanD0mHM\nmDEf325paaGlpcOnMKu6BRZIgwrusku63sWpp8Luu8Mee6R+jH796h2hNavW1lZaW1t77PnKGT32\nVmDftl/7klYi9VPsDdwVEfM12EEetnxf0pFTiwJLAX8ENgNaIuIFSQNJw4N415P1Go8/DuPGpb/n\nn4cvf9lJwxpDLYYZ/1dErF8wLWBaRKzf3YsaSdoW+H7uozgVeCUiTpF0DLBMRBxT9HgnCusVipNG\nW6Xx6U+H14K7AAAQxklEQVQ7aVjt1SJRnA+sDowlXQb1y8AzwPeBv0RExSPI5kRxdETsJmlAbmMw\nMBPYMyJeL3q8E4X1OjNmtCeNZ59trzScNKxWapEo2pLD1nnWP4Dr6rHFdqKw3m7GDPjDH2Ds2JQ0\nCisND0Bo1VLt0WMXBB4p7iuoFycK60vaksa4cfDMM04aVj21qCiuB46IiKcqbaSnOFFYX/XEE+2V\nxjPPwJe+BHvu6aRhPaMWieJuYCQwEXgnz46I2K3SRivlRGHNoC1pjBuXLtf6pS+lSmPbbZ00rDK1\nSBQtHc2PiNZKG62UE4U1myefbE8aTz3VXmk4adj88IWLzJpER0ljjz2gpcVJw0qrRUWxJXAOsD6w\nCNAPeDsilqq00Uo5UZgl//53e9KYORO++MVUaThpWEdqkSgeAL5KOsdhU2A/YN3ik+FqwYnC7JM6\nShp77AHbbeekYUlNEkVEbCLpoYgYkec9GBEbVdpopZwozEqbObM9aTz5ZHul4aTR3GqRKO4CdgIu\nAZ4HXgD2j4gNK220Uk4UZuXrKGm0VRoLLVTv6KyWapEohpCG/V6YdK3spYDzI2JGpY1WyonCrDJP\nPdWeNJ54Ar7whfZKw0mj7/NRT2Y2XwqTxowZ7ZXG9ts7afRVtagoRgPHA0Nov35FRMSalTZaKScK\ns541a1Z70nj8cSeNvqoWieJR4CjSxYo+voZXRLxcaaOVcqIwq55Zs+C669IwIo8/nnZP7bEH7LCD\nk0ZvV4tEcV9EbF5pAz3JicKsNp5+ur3SeOwxJ43ermqJQtIm+eYepJPs/gj8p+3+iJhcaaOVcqIw\nq73ipOHdU71PNRNFK9DpVrk7FyyqlBOFWX21JY2xY+ftCPfRU43NRz2ZWV20dYSPHZsOufXJfY2r\nFn0UJwGntl2WVNKypMuX/k+ljVbKicKsMbUdcjt2bBpSxGNPNZZaJIpPDNchaUpEjKy00Uo5UZg1\nvrYzwseOTbc9NHr91SJRPASMioj38/RiwKSI2KDSRivlRGHWu7QNWDh2bNpV5Sv31UctEsWPgN2A\nywABBwI3RMQplTZaKScKs96r7XoaY8emTvHdd29PGv361Tu6vq0mndmSdgF2yJPjI+KWShvsDicK\ns76h+BrhX/5yShrbbOOkUQ21qCgWB96PiDmS1gXWBW6KiA8rbbRSThRmfc+MGe1J47nn2pPG6NFO\nGj2lFoliMjAaWBb4B3A/8EFEfL3SRivlRGHWt82YkU7su/ZamD27PWlsvbWTRnfUIlFMiYiRkr4D\nLBYRp0qa6utRmFk1Pf54Shpjx6ak8ZWvtCeNBRaod3S9S3cTRVmrO183++vAX+dnOTOzSq29Nvz4\nx/Dgg9DaCiutBIcfDquuCkccAX//O8ydW+8om0M5FcW2wNHAPyLiFElrAUdGxBG1CLAoFlcUZk1u\n+vRUaYwbB6+80l5pbLmlK43OeAgPM2ta//pXe9J47bX2pLHFFk4ahao5KODZEXGkpBs7uDsiYreK\nGpRWA34HrEgadPDiiDhH0gDgWmB1YCawZ9uwIQXLOlGYWYemTWtPGm+80Z40Nt/cSaOqw4xHxAOS\nWjq4OyLizooalFYGVo6IByUtATwAfJF0It/LubP8R8CyEXFM0bJOFGbWpX/+s70j/O23500aqnhz\n2XvV6oS7FQAi4qVKGyrx3H8Gzs1/20bE7JxMWiNivaLHOlGYWdki5k0a777bnjRGjWqepFHNikKk\na2UfTrpwEaRLof46Ik6otMGiNoYAdwLDgFkRsWxB26+2TRc83onCzCoSAY880p403n+/PWlstlnf\nThrVPDz2u8DWwGYRsWzeaI8Ctpb0vUobbJN3O11HOoLqrcL7cjZwRjCzHiPB8OFw4ompE/yGG2Cx\nxWDffWHoULjrrnpH2LhKVRQPAjsV727Ku6HGFw89Pl+NSgsBfyENBXJWnjcdaImIFyQNBO7oaNfT\n8ccf//F0S0sLLS0tlYZhZkYEXH89fPvb6Uzwk0+GxRevd1Td09raSmtr68fTJ5xwQtV2PT0SEcPm\n974uG0y7la4AXomI7xbMPzXPO0XSMcAy7sw2s1p59VU46qh0It+ll6Yr9fUV1eyj6PTiRN25cJGk\n0cBdwEO07146FpgIjAUG48NjzaxO/vIX+Na3YNdd4ZRTYMkl6x1R91UzUcwB3u1kucUiouaXHXGi\nMLNaeP11OPpouP12uOQS2HHHekfUPT4z28ysSm6+GQ45BHbeGU47DZZeut4RVaYmgwKamTWjnXdO\nh9S2HTF18831jqg+XFGYmZXhttvgG9+A7beHM86AZZapd0Tlc0VhZlYDO+4IDz+czr0YNix1ejcL\nVxRmZvPpjjtSdbH11nDWWTBgQL0jKs0VhZlZjW23HTz0ECy7bOq7+POf6x1RdbmiMDPrhrvvhoMO\nSuNFnXMOLL98vSP6JFcUZmZ1tM02MHUqDByYqos//KHeEfU8VxRmZj1kwoRUXYwYAeeeCyuuWO+I\nElcUZmYNYqutYMoUWGONlCyuvTYNOtjbuaIwM6uC++5L1cW668L558PKK9cvFlcUZmYNaPPNYfJk\nWH992HBDuOqq3ltduKIwM6uyBx6AAw+E1VeHiy6CQYNq274rCjOzBrfJJjBpEmy8MWy0Efz2t72r\nunBFYWZWQw8+CAccAKusAhdfnP5XmysKM7NeZKONYOLEdILeyJFwxRWNX124ojAzq5MpU1J1MXhw\ndfsuXFGYmfVSI0fC/fen/xttBFde2ZjVhSsKM7MG8MADqbpYc81UXfTkeReuKMzM+oC2I6OGD0/n\nXfz+941TXbiiMDNrMJMmpepi7bXhwgthpZW693yuKMzM+phNN027otZfP40Zdc019a0uXFGYmTWw\niRNTdbH++nDBBZWNSOuKwsysDxs1Ko0ZtfbaqboYO7b2MbiiMDPrJe67L1UXw4alEWlXWKG85VxR\nmJk1ic03b7/exfDhMG5cbdp1RWFm1gvdc08akXbDDeG880pfq9sVhZlZE9pyy1RdrLZaqi6uu656\nbTVURSFpZ+AsoB9wSUScUnS/KwozsyL/+EeqLjbZJF2re7nl5r2/z1QUkvoB5wI7A0OBvSWtX9+o\nGldra2u9Q2gYXhftvC7aNdO62HrrNHz5wIGpuvjTn3r2+RsmUQCjgBkRMTMiPgT+F/hCnWNqWM30\nJeiK10U7r4t2zbYu+veHM85Ih8/+8Ifw9a/DK6/0zHM3UqJYBXi6YPqZPM/MzMo0ejRMnZoOnR0x\nAq6/vvvPuWD3n6LHuPPBzKwH9O8PZ50Fu+8OBx3U/edrmM5sSVsAYyJi5zx9LDC3sENbUmMEa2bW\ny3SnM7uREsWCwKPADsBzwERg74j4V10DMzNrcg2z6ykiPpJ0OHAL6fDYS50kzMzqr2EqCjMza0yN\ndNRTSZJ2ljRd0uOSflTveGpJ0mqS7pD0T0mPSDoizx8gabykxyTdKmmZesdaK5L6SZoi6cY83ZTr\nQtIykv4g6V+SpknavInXxbH5O/KwpKslLdIs60LSZZJmS3q4YF6nrz2vq8fzNvUzXT1/r0gUPhmP\nD4HvRsQGwBbAt/PrPwYYHxHrALfn6WZxJDCN9qPlmnVdnA38X0SsD4wAptOE60LSEOBgYOOIGE7a\nff1VmmddXE7aPhbq8LVLGgrsRdqW7gycL6lkLugViYImPxkvIl6IiAfz7beBf5HOMdkNuCI/7Arg\ni/WJsLYkrQp8FrgEaDuSo+nWhaSlgW0i4jJI/XwR8QZNuC6AN0k/qPrnA2P6kw6KaYp1ERF3A68V\nze7stX8BuCYiPoyImcAM0ja2U70lUfhkvCz/choJ3AesFBGz812zgW5eWbfXOBP4ATC3YF4zros1\ngJckXS5psqTfSFqcJlwXEfEqcDowi5QgXo+I8TThuijQ2WsfRNqGtulye9pbEoV73AFJSwDXAUdG\nxFuF9+XREvv8epL0eeDFiJhCezUxj2ZZF6SjFjcGzo+IjYF3KNq10izrQtJawFHAENKGcAlJ+xQ+\nplnWRUfKeO0l10tvSRTPAqsVTK/GvBmxz5O0EClJXBkRf86zZ0taOd8/EHixXvHV0FbAbpL+DVwD\nbC/pSppzXTwDPBMR9+fpP5ASxwtNuC42BSZExCsR8RHwR2BLmnNdtOnsO1G8PV01z+tUb0kUk4C1\nJQ2RtDCpI+aGOsdUM5IEXApMi4izCu66Adg/394f+HPxsn1NRPw4IlaLiDVInZV/i4h9ac518QLw\ntKR18qwdgX8CN9Jk64LUib+FpMXy92VH0sEOzbgu2nT2nbgB+KqkhSWtAaxNOsG5U73mPApJu9B+\nrYpLI+LkOodUM5JGA3cBD9FeIh5LenPHAoOBmcCeEfF6PWKsB0nbAkdHxG6SBtCE60LShqRO/YWB\nJ4ADSd+RZlwXPyRtEOcCk4FvAEvSBOtC0jXAtsDypP6I44Dr6eS1S/oxcBDwEWlX9i0ln7+3JAoz\nM6uP3rLryczM6sSJwszMSnKiMDOzkpwozMysJCcKMzMryYnCzMxKcqIwm0+SjpK0WJXbWF3S3gXT\nm0g6u5ptmnXG51FYU5DULyLm9NBz/RvYNCJe6Ynn66SNFtLJhLtWqw2zcrmisF4hD98yXdJV+QI9\n49p+1edf262SJkm6uWB8m1ZJZ0q6HzhC0maSJkh6UNJ9khbPF0A6TdJESVMlHZKXbcnLj8sXBboq\nzz+CNOjcHZJuz/MukHS/0kWlxhTE/Nm87CRJ56j9IkuL5wvN3JdHfd2tg5f8S2AbpYszHZXjaVt+\njKQrJN0laaak3SX9StJDkm7Kw2x3ul7M5ltE+M9/Df9HGhV0LrBlnr4UOJo0guoEYLk8fy/SEC8A\ndwDn5tttQ1xskqeXIA11cQjwkzxvEeD+3FYL8DopKSi3sVV+3L+BAQWxLZv/98ttDgcWJQ15vXq+\n72rghnz7JODr+fYywKNA/6LXuy1wY8F0S9s0MIY0pEs/0sWK3gX+K9/3R9L1BhbqbL34z3/z+7fg\n/KUVs7p6OiLuybevAo4AbgY2AG5LY8HRj3Q9gjbX5v/rAs9HxAPw8QWgyJeBHC7pK/lxSwGfIl0E\nZ2JEPJcf9yApgUzoIK69JB1MSloDSVcO6wc8GRFP5cdcQ0pKAJ8BdpX0/Ty9CGk0z0cLnrPDIdSz\nAG6KiDmSHgEWiPaxeh7Oca7TxXoxK5sThfUmhR1qytMC/hkRW3WyzDtlPO/hkS5y0/7kqY/gPwWz\n5tDB9yWPvnk0qc/iDUmXk6qJ4s6/4g3/7hHxeBmxdeYDgIiYK+nDgvlzc5xdrRezsrmPwnqTwZK2\nyLe/BtxN+hW+Qtt8SQspXRO4TdsG+lFgoKRN8+OWVLoW+y3AYQX79deR1L+LON4iVR7k/+8Ab0pa\nCdiFlCQeBdaUtHp+3F60J49bSNUQuc2RHbTxJmnk046UqjbadLVezMrmRGG9yaPAtyVNA5YGLoh0\nDfWvAKfk3UNTSBesaRMAEfEBaWP96/y4W0i7fC4hXbdgsqSHgQtIv8hLXRHsYuBmSbdHxNTc5nTg\n98Dfc3vvA4flx00ibfjfzMv/DFgodz4/ApzQQRsPAXNyx/tRRfEUx1YcZ5SxXszK5sNjrVdQulb4\njRExvM6hlE3S4hHxTr59HvBYRPhcCOt1XFFYb9LbftUcnA9v/SdpF9VF9Q7IrBKuKMzMrCRXFGZm\nVpIThZmZleREYWZmJTlRmJlZSU4UZmZWkhOFmZmV9P/0fFqOisr9dQAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Power developed is 13.79 MW\n" ] } ], "source": [ "%matplotlib inline\n", "from matplotlib.pyplot import plot, subplot, title,show,xlabel,ylabel\n", "#Input data\n", "q=[0,30,25,20,0,10,50,80,100,110,65,45,30]#Mean discharge in millions of cu.m per month respectively\n", "h=90#Head in m\n", "n=86#Overall efficiency in percent\n", "\n", "#Calculations\n", "Qm=(q[(1)]+q[(2)]+q[(3)]+q[(4)]+q[(5)]+q[(6)]+q[(7)]+q[(8)]+q[(9)]+q[(10)]+q[(11)]+q[(12)])/12#Mean discharge in millions m**3/s\n", "Q=[0,30,30,25,25,20,20,0,0,10,10,50,50,80,80,100,100,110,110,65,65,45,45,30,30,0]#Discharge(million m**3/month) on y-axis\n", "y=[0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12]#Months on x-ais\n", "D=[0,110,100,90,80,70,60,50,40,30,25,20,10,0]#Discharge per month in million m**3\n", "pt=[0,8.3,16.7,25,25,25,33.3,41.7,50,66.7,75,83.3,91.7,100]#Percentage time \n", "Po=((Qm*10**6*9.81*h*(n/100))/(30*24*3600*1000))#Power developed in MW\n", "\n", "#Output\n", "#subplot(131)\n", "plot(y[1:],Q[1:])#Graph Discharge(million m**3/month) vs Month\n", "title(\"Discharge(million m**3/month) vs Month\")\n", "xlabel(\"Months\")\n", "ylabel(\"Discharge(million m**3/month)\")\n", "show()\n", "#subplot(133)\n", "plot(pt[1:],D[1:])#Graph percentage time vs Discharge(million m**3/month)\n", "title(\"percentage time vs Discharge(million m**3/month)\")\n", "xlabel(\"percentage time\")\n", "ylabel(\"Discharge(million m**3/month)\")\n", "show()\n", "print \"Power developed is %3.2f MW\"%(Po)\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }