{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 08 : Inverters" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.3, Page No 465" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "T=0.1*10**-3\n", "f=1.0/T\n", "k=15*10**-6 #k=th/w\n", "\n", "#Calculations\n", "th=2*math.pi*f*k\n", "X_l=10.0\n", "R=2.0\n", "X_c=R*math.tan(th)+X_l\n", "C=1/(2*math.pi*f*X_c) \n", "\n", "#Results\n", "print(\"value of C=%.3f uF\" %(C*10**6))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "value of C=1.248 uF\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.4 Page No 466" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "V_s=230.0\n", "\n", "#Calculations\n", "V_01=2*V_s/(math.sqrt(2)*math.pi)\n", "R=2.0\n", "I_01=V_01/R\n", "P_d=I_01**2*R \n", "V=V_s/2\n", "I_s=math.sqrt(2)*I_01/math.pi\n", "P_s=V*I_s\n", "\n", "#Results\n", "print(\"power delivered to load=%.1f W\" %P_d)\n", "print(\"power delivered by both sources=%.1f W\" %(2*P_s))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "power delivered to load=5359.9 W\n", "power delivered by both sources=5359.9 W\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.5, Page No 468" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "V_s=230.0\n", "V_01=4*V_s/(math.pi*math.sqrt(2))\n", "R=1.0\n", "X_L=6.0\n", "X_c=7.0\n", "\n", "#Calculations\n", "I_01=V_01/math.sqrt(R**2+(X_L-X_c)**2)\n", "P=I_01**2*R \n", "I_s=math.sqrt(2)*I_01*(2*math.cos(math.radians(45)))/math.pi\n", "P_s=V_s*I_s \n", "\n", "#Results\n", "print(\"power delivered to the source=%.3f kW\" %(P/1000))\n", "print(\"\\npower from the source=%.3f kW\" %(P_s/1000))\n", " " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "power delivered to the source=21.440 kW\n", "\n", "power from the source=21.440 kW\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.6 Page No 469" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "V_01=230.0\n", "R=2.0\n", "I_01=V_01/R\n", "I_m=I_01*math.sqrt(2)\n", "I_T1=I_m/2 \n", "I_D1=0 \n", "X_L=8.0\n", "X_C=6.0\n", "\n", "#Calculations\n", "I_01=V_01/math.sqrt(R**2+(X_L-X_C)**2)\n", "phi1=math.degrees(math.atan((X_L-X_C)/R))\n", "I_T1=I_T1*math.sqrt(2)*0.47675 \n", "I_D1=.1507025*I_m/math.sqrt(2) \n", "\n", "\n", "#Results\n", "print(\"when load R=2 ohm\")\n", "print(\"rms value of thyristor current=%.2f A\" %I_T1)\n", "print(\"rms value of diode current=%.0f A\" %I_D1)\n", "print(\"when load R=2ohm % X_L=8ohm and X_C=6ohm\")\n", "print(\"rms value of thyristor current=%.3f A\" %I_T1)\n", "print(\"rms value of diode current=%.3f A\" %I_D1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "when load R=2 ohm\n", "rms value of thyristor current=54.83 A\n", "rms value of diode current=17 A\n", "when load R=2ohm % X_L=8ohm and X_C=6ohm\n", "rms value of thyristor current=54.826 A\n", "rms value of diode current=17.331 A\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.7 Page No 470" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "V_s=230.0\n", "R=4.0\n", "f=50.0\n", "w=2*math.pi*f\n", "L=0.035\n", "\n", "#Calculations\n", "C=155*10**-6\n", "X_L=w*L\n", "X_C=1/(w*C)\n", "Z1=math.sqrt(R**2+(X_L-X_C)**2)\n", "phi1=-math.degrees(math.atan((X_L-X_C)/R))\n", "Z3=math.sqrt(R**2+(X_L*3-X_C/3)**2)\n", "phi3=math.degrees(math.atan((X_L*3-X_C/3)/R))\n", "Z5=math.sqrt(R**2+(X_L*5-X_C/5)**2)\n", "phi5=math.degrees(math.atan((X_L*5-X_C/5)/R))\n", "I_m1=4*V_s/(Z1*math.pi)\n", "I_01=I_m1/math.sqrt(2) \n", "I_m3=4*V_s/(3*Z3*math.pi)\n", "I_m5=4*V_s/(5*Z5*math.pi)\n", "I_m=math.sqrt(I_m1**2+I_m3**2+I_m5**2)\n", "I_0=I_m/math.sqrt(2)\n", "P_0=(I_0)**2*R \n", "P_01=(I_01)**2*R \n", "t1=(180-phi1)*math.pi/(180*w) \n", "t1=(phi1)*math.pi/(180*w) \n", "\n", "#Results\n", "print(\"rms value of fundamental load current=%.2f A\" %I_01)\n", "print(\"load power=%.1f W\" %P_0)\n", "print(\"fundamental load power=%.1f W\" %P_01)\n", "print(\"rms value of thyristor current=%.3f A\" %(I_m/2))\n", "print(\"conduction time for thyristor=%.3f ms\" %(t1*1000))\n", "print(\"Conduction time for diodes=%.3f ms\" %(t1*1000))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "rms value of fundamental load current=20.02 A\n", "load power=1632.5 W\n", "fundamental load power=1602.6 W\n", "rms value of thyristor current=14.285 A\n", "conduction time for thyristor=3.736 ms\n", "Conduction time for diodes=3.736 ms\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.8, Page No 473" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "V_s=230.0\n", "V_01=2*V_s/(math.sqrt(2)*math.pi) \n", "R=10.0\n", "\n", "#Calculations\n", "I_01=V_01/R\n", "P=I_01**2*R \n", "V_or=math.sqrt((V_s/2)**2)\n", "P=V_or**2/R \n", "I_TP=V_s/(2*R)\n", "I_or=I_TP\n", "pf=I_01**2*R/(V_or*I_or) \n", "DF=V_01/V_or \n", "V_oh=math.sqrt(V_or**2-V_01**2)\n", "THD=V_oh/V_01 \n", "V_03=V_01/3\n", "HF=V_03/V_01\n", "\n", "#Results\n", "print(\"fundamental rms o/p voltage=%.3f V\" %V_01)\n", "print(\"fundamental power to load=%.1f W\" %P)\n", "print(\"total o/p power to load=%.1f W\" %P)\n", "print(\"avg SCR current=%.2f A\" %(I_TP*180/360))\n", "print(\"i/p pf=%.3f\" %pf) \n", "print(\"distortion factor=%.1f\" %DF)\n", "print(\"THD=%.3f\" %THD) \n", "print(\"harmonic factor=%.4f\" %HF)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "fundamental rms o/p voltage=103.536 V\n", "fundamental power to load=1322.5 W\n", "total o/p power to load=1322.5 W\n", "avg SCR current=5.75 A\n", "i/p pf=0.811\n", "distortion factor=0.9\n", "THD=0.483\n", "harmonic factor=0.3333\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.9 Page No 474" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "V_s=60\n", "R=3.0\n", "\n", "#Calculations\n", "V_or=math.sqrt(V_s**2*math.pi/math.pi) \n", "V_01=4*V_s/(math.sqrt(2)*math.pi) \n", "P_o=V_or**2/R \n", "P_01=V_01**2/R \n", "I_s=V_s/R \n", "I_avg=I_s*math.pi/(2*math.pi) \n", "V_03=V_01/3\n", "HF=V_03/V_01 \n", "V_oh=math.sqrt(V_or**2-V_01**2)\n", "THD=V_oh/V_01 \n", "\n", "#Results\n", "print(\"rms value of o/p voltage=%.0f V\" %V_or)\n", "print(\"o/p power=%.0f W\" %P_o)\n", "print(\"fundamental component of rms voltage=%.2f V\" %V_01)\n", "print(\"fundamental freq o/p power=%.2f W\" %P_01) \n", "print(\"peak current=%.0f A\" %I_s)\n", "print(\"avg current of each transistor=%.0f A\" %I_avg)\n", "print(\"peak reverse blocking voltage=%.0f V\" %V_s)\n", "print(\"harmonic factor=%.4f\" %HF)\n", "print(\"THD=%.4f\" %THD)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "rms value of o/p voltage=60 V\n", "o/p power=1200 W\n", "fundamental component of rms voltage=54.02 V\n", "fundamental freq o/p power=972.68 W\n", "peak current=20 A\n", "avg current of each transistor=10 A\n", "peak reverse blocking voltage=60 V\n", "harmonic factor=0.3333\n", "THD=0.4834\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.10 Page No 475" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "V_s=220.0\n", "R=6.0\n", "f=50.0\n", "w=2*math.pi*f\n", "L=0.03\n", "C=180*10**-6\n", "X_L=w*L\n", "X_C=1/(w*C)\n", "\n", "#Calculations\n", "V_or=math.sqrt(V_s**2*math.pi/math.pi)\n", "V_01=4*V_s/(math.sqrt(2)*math.pi)\n", "V_oh=math.sqrt(V_or**2-V_01**2)\n", "THD=V_oh/V_01 \n", "print(\"THD of voltage=%.4f\" %THD)\n", "DF=V_01/V_or \n", "Z1=math.sqrt(R**2+(X_L-X_C)**2)\n", "phi1=-math.degrees(math.atan((X_L-X_C)/R))\n", "Z3=math.sqrt(R**2+(X_L*3-X_C/3)**2)\n", "phi3=math.degrees(math.atan((X_L*3-X_C/3)/R))\n", "Z5=math.sqrt(R**2+(X_L*5-X_C/5)**2)\n", "phi5=math.degrees(math.atan((X_L*5-X_C/5)/R))\n", "Z7=math.sqrt(R**2+(X_L*7-X_C/7)**2)\n", "phi7=math.degrees(math.atan((X_L*7-X_C/7)/R))\n", "I_01=19.403\n", "I_m1=4*V_s/(Z1*math.pi)\n", "I_m3=4*V_s/(3*Z3*math.pi)\n", "I_m5=4*V_s/(5*Z5*math.pi)\n", "I_m7=4*V_s/(7*Z7*math.pi)\n", "I_m=math.sqrt(I_m1**2+I_m3**2+I_m5**2+I_m7**2)\n", "I_or=I_m/math.sqrt(2)\n", "I_oh=math.sqrt((I_m**2-I_m1**2)/2)\n", "THD=I_oh/I_01 \n", "DF=I_01/I_or \n", "P_o=I_or**2*R \n", "I_avg=P_o/V_s \n", "t1=(180-phi1)*math.pi/(180*w) \n", "t1=1/(2*f)-t1 \n", "I_p=I_m1 \n", "I_t1=.46135*I_p \n", "\n", "#Results\n", "print(\"\\nDF=%.1f\" %DF)\n", "print(\"THD of current=%.4f\" %THD) \n", "print(\"DF=%.3f\" %DF)\n", "print(\"load power=%.1f W\" %P_o)\n", "print(\"avg value of load current=%.2f A\" %I_avg)\n", "print(\"conduction time for thyristor=%.0f ms\" %(t1*1000))\n", "print(\"conduction time for diodes=%.0f ms\" %(t1*1000))\n", "print(\"peak transistor current=%.2f A\" %I_p)\n", "print(\"rms transistor current=%.2f A\" %I_t1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "THD of voltage=0.4834\n", "\n", "DF=1.0\n", "THD of current=0.1557\n", "DF=0.988\n", "load power=2313.5 W\n", "avg value of load current=10.52 A\n", "conduction time for thyristor=3 ms\n", "conduction time for diodes=3 ms\n", "peak transistor current=27.44 A\n", "rms transistor current=12.66 A\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.11 Page No 497" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "V_s=450.0\n", "R=10.0\n", "\n", "#Calculations\n", "I_or=math.sqrt((V_s/(3*R))**2*2/3+(2*V_s/(3*R))**2*1/3) \n", "I_T1=math.sqrt((1/(2*math.pi))*((V_s/(3*R))**2*2*math.pi/3+(2*V_s/(3*R))**2*math.pi/3)) \n", "P=3*I_or**2*R \n", "I_or=math.sqrt((1/(math.pi))*((V_s/(2*R))**2*2*math.pi/3)) \n", "I_T1=math.sqrt((1/(2*math.pi))*((V_s/(2*R))**2*2*math.pi/3)) \n", "P=3*I_or**2*R \n", "\n", "#Results\n", "print(\"for 180deg mode\")\n", "print(\"rms value of load current=%.3f A\" %I_or)\n", "print(\"power delivered to load=%.1f kW\" %(P/1000))\n", "print(\"rms value of load current=%.0f A\" %I_T1)\n", "print(\"for 120deg mode\")\n", "print(\"rms value of load current=%.3f A\" %I_or)\n", "print(\"rms value of load current=%.2f A\" %I_T1)\n", "print(\"power delivered to load=%.3f kW\" %(P/1000))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "for 180deg mode\n", "rms value of load current=18.371 A\n", "power delivered to load=10.1 kW\n", "rms value of load current=13 A\n", "for 120deg mode\n", "rms value of load current=18.371 A\n", "rms value of load current=12.99 A\n", "power delivered to load=10.125 kW\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.12, Page No 510" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "V_s=230.0\n", "R=10.0\n", "f=50.0\n", "w=2*math.pi*f\n", "L=0.03\n", "\n", "#Calculations\n", "X_L=w*L\n", "V_or=math.sqrt(V_s**2*math.pi/math.pi)\n", "V_01=4*V_s/(math.sqrt(2)*math.pi)\n", "Z1=math.sqrt(R**2+(X_L)**2)\n", "phi1=-math.degrees(math.atan((X_L)/R))\n", "Z3=math.sqrt(R**2+(X_L*3)**2)\n", "phi3=math.degrees(math.atan((X_L*3)/R))\n", "Z5=math.sqrt(R**2+(X_L*5)**2)\n", "phi5=math.degrees(math.atan((X_L*5)/R))\n", "Z7=math.sqrt(R**2+(X_L*7)**2)\n", "phi7=math.degrees(math.atan((X_L*7)/R))\n", "I_m1=4*V_s/(math.sqrt(2)*Z1*math.pi)\n", "I_m3=4*V_s/(math.sqrt(2)*3*Z3*math.pi)\n", "I_m5=4*V_s/(math.sqrt(2)*5*Z5*math.pi)\n", "I_m7=4*V_s/(math.sqrt(2)*7*Z7*math.pi)\n", "I_m=math.sqrt(I_m1**2+I_m3**2+I_m5**2+I_m7**2)\n", "P=I_m**2*R \n", "I_01=I_m1*math.sin(math.radians(45))\n", "I_03=I_m3*math.sin(math.radians(3*45))\n", "I_05=I_m5*math.sin(math.radians(5*45))\n", "I_07=I_m7*math.sin(math.radians(7*45))\n", "I_0=(I_01**2+I_03**2+I_05**2+I_07**2)\n", "P=I_0*R \n", "g=(180-90)/3+45/2\n", "I_01=2*I_m1*math.sin(math.radians(g))*math.sin(math.radians(45/2))\n", "I_03=2*I_m3*math.sin(math.radians(g*3))*math.sin(math.radians(3*45/2))\n", "I_05=2*I_m5*math.sin(math.radians(g*5))*math.sin(math.radians(5*45/2))\n", "I_07=2*I_m7*math.sin(math.radians(g*7))*math.sin(math.radians(7*45/2))\n", "I_0=(I_01**2+I_03**2+I_05**2+I_07**2)\n", "P=I_0*R \n", "\n", "\n", "#Results\n", "print(\"using square wave o/p\")\n", "print(\"power delivered=%.2f W\" %P)\n", "print(\"using quasi-square wave o/p\")\n", "print(\"power delivered=%.2f W\" %P)\n", "print(\"using two symmitrical spaced pulses\")\n", "print(\"power delivered=%.2f W\" %P)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "using square wave o/p\n", "power delivered=845.87 W\n", "using quasi-square wave o/p\n", "power delivered=845.87 W\n", "using two symmitrical spaced pulses\n", "power delivered=845.87 W\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.14, Page No 520" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "f=50.0\n", "T=1/f\n", "I=0.5\n", "\n", "#Calculations\n", "di=I/T #di=di/dt\n", "V_s=220.0\n", "L=V_s/di \n", "t=20*10**-6\n", "fos=2 #factor of safety\n", "t_c=t*fos\n", "R=10\n", "C=t_c/(R*math.log(2))\n", "\n", "#Results \n", "print(\"source inductance=%.1f H\" %L)\n", "print(\"commutating capacitor=%.2f uF\" %(C*10**6))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "source inductance=8.8 H\n", "commutating capacitor=5.77 uF\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.15, Page No 539" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "R=10.0\n", "L=.01\n", "C=10*10**-6\n", "#Calculations\n", "if (R**2)<(4*L/C) :\n", " print(\"ckt will commutate on its own\")\n", "else:\n", " print(\"ckt will not commutate on its own\")\n", "\n", "xie=R/(2*L)\n", "w_o=1/math.sqrt(L*C)\n", "w_r=math.sqrt(w_o**2-xie**2)\n", "phi=math.degrees(math.atan(xie/w_r))\n", "t=math.pi/w_r\n", "V_s=1\n", "v_L=V_s*(w_o/w_r)*math.exp(-xie*t)*math.cos(math.radians(180+phi))\n", "v_c=V_s*(1-(w_o/w_r)*math.exp(-xie*t)*math.cos(math.radians(180-phi))) \n", "di=V_s/L \n", "\n", "\n", "#Results\n", "print(\"voltage across inductor(*V_s)=%.5f V\" %v_L) \n", "print(\"voltage across capacitor(*V_s)=%.5f V\" %v_c)\n", "print(\"di/dt*V_s (for t=0)=%.0f A/s\" %di)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "ckt will commutate on its own\n", "voltage across inductor(*V_s)=-0.60468 V\n", "voltage across capacitor(*V_s)=1.60468 V\n", "di/dt*V_s (for t=0)=100 A/s\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.16, Page No 540" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "L=0.006\n", "C=1.2*10**-6\n", "R=100.0\n", "\n", "#Calculations\n", "T=math.pi/math.sqrt(1/(L*C)-(R/(2*L))**2)\n", "T_off=0.2*10**-3\n", "f=1/(2*(T+T_off)) \n", "R=40\n", "T=math.pi/math.sqrt(1/(L*C)-(R/(2*L))**2)\n", "T_off=.2*10**-3\n", "f=1/(2*(T+T_off)) \n", "R=140\n", "T=math.pi/math.sqrt(1/(L*C)-(R/(2*L))**2)\n", "T_off=.2*10**-3\n", "f=1/(2*(T+T_off)) \n", "\n", "#Results\n", "print(\"o/p freq=%.2f Hz\" %f)\n", "print(\"for R=40ohm\")\n", "print(\"upper limit o/p freq=%.1f Hz\" %f)\n", "print(\"for R=140ohm\")\n", "print(\"lower limit o/p freq=%.1f Hz\" %f)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "o/p freq=239.81 Hz\n", "for R=40ohm\n", "upper limit o/p freq=239.8 Hz\n", "for R=140ohm\n", "lower limit o/p freq=239.8 Hz\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.17, Page No 540" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "f=5000.0\n", "w=2*math.pi*f\n", "R=3.0\n", "\n", "#Calculations\n", "L=60*10**-6\n", "xie=R/(2*L)\n", "C=7.5*10**-6\n", "w_o=1/math.sqrt(L*C)\n", "w_r=math.sqrt(w_o**2-xie**2)\n", "t_c=math.pi*(1/w-1/w_r) \n", "fos=1.5\n", "t_q=10*10**-6\n", "f_max=1/(2*math.pi*(t_q*fos/math.pi+1/w_r)) \n", "\n", "#Results\n", "print(\"ckt turn off time=%.2f us\" %(t_c*10**6))\n", "print(\"max possible operating freq=%.1f Hz\" %f_max)\n", " #Answers have small variations from that in the book due to difference in the rounding off of digits." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "ckt turn off time=21.39 us\n", "max possible operating freq=5341.4 Hz\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.18, Page No 541" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "a=30.0\n", "R=10.0\n", "P=5000.0\n", "\n", "#Calculations\n", "V_s=math.sqrt(P*R*2*math.pi/(2*3)/(math.pi/3+math.sqrt(3)*math.cos(math.radians(2*a))/2))\n", "V_ph=V_s/math.sqrt(3) \n", "I_or=math.sqrt(P*R)\n", "V_s=I_or*math.pi/(math.sqrt(2)*3*math.cos(math.radians(a)))\n", "V_ph=V_s/math.sqrt(3) \n", "\n", "#Results\n", "print(\"per phase voltage V_ph=%.3f V\" %V_ph) \n", "print(\"for constant load current\")\n", "print(\"V_ph=%.2f V\" %V_ph)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "per phase voltage V_ph=110.384 V\n", "for constant load current\n", "V_ph=110.38 V\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.19, Page No 547" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "t=20.0\n", "fos=2.0 #factor of safety\n", "\n", "#Calculations\n", "t_c=t*fos\n", "n=1.0/3\n", "R=20.0\n", "C=n**2*t_c/(4*R*math.log(2)) \n", "\n", "#Results \n", "print(\"value of capacitor=%.2f uF\" %C)\n", " #printing mistake in the answer in book." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "value of capacitor=0.08 uF\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.20, Page No 547" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "V_s=220.0\n", "V_p=math.sqrt(2)*V_s/3 \n", "V_L=math.sqrt(3)*V_p \n", "V_p1=math.sqrt(2)*V_s/math.pi \n", "V_L1=math.sqrt(3)*V_p1 \n", "V_oh=math.sqrt(V_L**2-V_L1**2)\n", "\n", "#Calculations\n", "THD=V_oh/V_L1 \n", "V_a1=2*V_s/math.pi\n", "V_a5=2*V_s/(5*math.pi)\n", "V_a7=2*V_s/(7*math.pi)\n", "V_a11=2*V_s/(11*math.pi)\n", "R=4.0\n", "L=0.02\n", "f=50\n", "w=2*math.pi*f\n", "Z1=math.sqrt(R**2+(w*L)**2)\n", "Z5=math.sqrt(R**2+(5*w*L)**2)\n", "Z7=math.sqrt(R**2+(7*w*L)**2)\n", "Z11=math.sqrt(R**2+(11*w*L)**2)\n", "I_a1=V_a1/Z1\n", "I_a5=V_a5/Z5\n", "I_a7=V_a7/Z7\n", "I_a11=V_a11/Z11\n", "I_or=math.sqrt((I_a1**2+I_a5**2+I_a7**2+I_a11**2)/2)\n", "P=3*I_or**2*R \n", "I_s=P/V_s \n", "I_TA=I_s/3 \n", " \n", "#Results\n", "print(\"rms value of phasor voltages=%.2f V\" %V_p)\n", "print(\"rms value of line voltages=%.2f V\" %V_L)\n", "print(\"fundamental component of phase voltage=%.3f V\" %V_p1)\n", "print(\"fundamental component of line voltages=%.3f V\" %V_L1)\n", "print(\"THD=%.7f\" %THD)\n", "print(\"load power=%.1f W\" %P)\n", "print(\"avg value of source current=%.3f A\" %I_s)\n", "print(\"avg value of thyristor current=%.3f A\" %I_TA)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "rms value of phasor voltages=103.71 V\n", "rms value of line voltages=179.63 V\n", "fundamental component of phase voltage=99.035 V\n", "fundamental component of line voltages=171.533 V\n", "THD=0.3108419\n", "load power=2127.6 W\n", "avg value of source current=9.671 A\n", "avg value of thyristor current=3.224 A\n" ] } ], "prompt_number": 17 } ], "metadata": {} } ] }