{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 05 : Thyristor Commutation Techniques" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.1, Page No 252" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "L=5.0*10**-3 #mH\n", "C=20.0*10**-6 #\u00b5F\n", "V_s=200 #V\n", "\n", "#Calculations\n", "w_o=math.sqrt(1/(L*C)) #rad/s\n", "t_o=math.pi/w_o #ms\n", "\n", "#Results\n", "print('conduction time of thyristor = %.2f ms' %(t_o*1000))\n", "print('voltage across thyristor=%.0f V' %V_s)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "conduction time of thyristor = 0.99 ms\n", "voltage across thyristor=200 V\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.2, Page No 255" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "C=20.0*10**-6 #\u00b5F\n", "L=5.0*10**-6 #\u00b5H\n", "V_s=230.0 #V\n", "\n", "#Calculations\n", "I_p=V_s*math.sqrt(C/L) #A\n", "w_o=math.sqrt(1/(L*C)) #rad/sec\n", "t_o=math.pi/w_o #\u00b5S\n", "I_o=300 \n", "a = math.degrees(math.asin(I_o/(2*V_s))) \n", "V_ab = V_s*math.cos(math.radians(a)) #V \n", "t_c=C*V_ab/I_o #\u00b5s\n", "\n", "#Calculations\n", "print(\"conduction time of auxillery thyristor=%.2f us\" %(t_o*10**6))\n", "print(\"voltage across main thyristor=%.2f V\" %V_ab)\n", "print(\"ckt turn off time=%.2f us\" %(t_c*10**6))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "conduction time of auxillery thyristor=31.42 us\n", "voltage across main thyristor=174.36 V\n", "ckt turn off time=11.62 us\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.3 Page No 258" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "V_s=200.0 #V\n", "R1=10.0 #\u2126\n", "R2=100.0 #\u2126\n", "C=0 # value of capacitor\n", "\n", "#Calculations\n", "I1=V_s*(1/R1+2/R2) #A\n", "I2=V_s*(2/R1+1/R2) #A\n", "t_c1=40*10**-6\n", "fos=2 #factor of safety\n", "C1=t_c1*fos/(R1*math.log(2))\n", "C2=t_c1*fos/(R2*math.log(2))\n", "if C1 > C2 :\n", " C = C1*10**6\n", "else :\n", " C = C2*10**6\n", "\n", "\n", "#Results\n", "print(\"peak value of current through SCR1=%.2f A\" %I1); \n", "print(\"Peak value of current through SCR2=%.2f A\" %I2);\n", "print(\"Value of capacitor=%.2f uF\" %C);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "peak value of current through SCR1=24.00 A\n", "Peak value of current through SCR2=42.00 A\n", "Value of capacitor=11.54 uF\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.4, Page No 260" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "V_s=230.0 #V\n", "L=20*10**-6 #\u00b5H\n", "C=40*10**-6 #\u00b5F\n", "I_o=120.0 #A\n", "\n", "#Calculations\n", "I_p=V_s*math.sqrt(C/L) #A\n", "t_c=C*V_s/I_o #\u00b5s\n", "w_o=math.sqrt(1/(L*C)) \n", "t_c1=math.pi/(2*w_o) #\u00b5s\n", "\n", "#Results\n", "print(\"current through main thyristor=%.2f A\" %(I_o+I_p))\n", "print(\"Current through auxillery thyristor=%.2f A\" %I_o)\n", "print(\"Circuit turn off time for main thyristor=%.2f us\" %(t_c*10**6))\n", "print(\"Circuit turn off time for auxillery thyristor=%.2f us\" %(t_c1*10**6))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "current through main thyristor=445.27 A\n", "Current through auxillery thyristor=120.00 A\n", "Circuit turn off time for main thyristor=76.67 us\n", "Circuit turn off time for auxillery thyristor=44.43 us\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.5 Page No 263" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "C_j=25*10**-12 #pF\n", "I_c=5*10**-3 #charging current\n", "V_s=200.0 #V\n", "R=50.0 #\u2126\n", "\n", "#Calculations\n", "C=(C_j*V_s)/(I_c*R)\n", "\n", "\n", "#RESULTS\n", "print(\"Value of C=%.2f \u00b5F\" %(C*10**6))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Value of C=0.02 \u00b5F\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.6 Page No 263" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "V_s=200.0 #V\n", "R=5.0 #\u2126\n", "\n", "#Calculations\n", "C=10.0*10**-6\n", "#for turn off V_s*(1-2*exp(-t/(R*C)))=0, so after solving\n", "t_c=R*C*math.log(2.0)\n", "\n", "#Results\n", "print(\"circuit turn off time=%.2f us\" %(t_c*10**6))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "circuit turn off time=34.66 us\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.7, Page No 264 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "R=1.0 #\u2126\n", "L=20*10**-6 #\u00b5H\n", "C=40*10**-6 #\u00b5F\n", "\n", "#Calculations\n", "w_r=math.sqrt((1/(L*C))-(R/(2*L))**2)\n", "t_1=math.pi/w_r\n", "\n", "#Results\n", "print(\"conduction time of thyristor=%.3f us\" %(t_1*10**6))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "conduction time of thyristor=125.664 us\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.8 Page No 265" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#initialisation of variables\n", "dv=400*10.0**-6 #dv=dv_T/dt(V/s)\n", "V_s=200.0 #v\n", "R=20.0 #\u2126\n", "\n", "#Calculations\n", "C=V_s/(R*dv) \n", "C_j=.025*10**-12\n", "C_s=C-C_j\n", "I_T=40;\n", "R_s=1/((I_T/V_s)-(1/R)) \n", "#value of R_s in book is wrongly calculated\n", "\n", "#Results\n", "print(\"R_s=%.2f ohm\" %R_s)\n", "print(\"C_s=%.3f uF\" %(C_s/10**6))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "R_s=6.67 ohm\n", "C_s=0.025 uF\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.9 Page No 265" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "V_s=200.0 #V\n", "C=20.0*10**-6 #\u00b5H \n", "L=0.2*10**-3 #\u00b5F\n", "i_c=10.0\n", "\n", "#Calculations\n", "i=V_s*math.sqrt(C/L)\n", "w_o=1.0/math.sqrt(L*C)\n", "t_1 = (1/w_o)*math.degrees(math.asin(i_c/i))\n", "t_o=math.pi/w_o\n", "t_c=t_o-2*t_1 \n", "\n", "#Results\n", "print(\"reqd time=%.2f us\" %(t_1*10**6))\n", "print(\"ckt turn off time=%.2f us\" %(t_c*10**6))\n", "print(\"ckt turn off time=%.5f us\" %t_1)\n", "#solution in book wrong, as wrong values are selected while filling the formuleas" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "reqd time=575.37 us\n", "ckt turn off time=-952.05 us\n", "ckt turn off time=0.00058 us\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.11 Page No 268 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "L=1.0 #\u00b5H\n", "R=50.0 #\u2126\n", "V_s=200.0 #V\n", "t=0.01 #sec\n", "Vd=0.7\n", "\n", "#Calculations\n", "tau=L/R\n", "i=(V_s/R)*(1-math.exp(-t/tau))\n", "t=8*10**-3\n", "i1=i-t*Vd \n", "\n", "\n", "#Results\n", "print(\"current through L = %.2f A\" %i1)\n", "i_R=0 #current in R at t=.008s\n", "print(\"Current through R = %.2f A\" %i_R)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "current through L = 1.57 A\n", "Current through R = 0.00 A\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.12, Page No 269" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "\n", "#initialisation of variables\n", "L=1.0 #H\n", "R=50.0 #ohm\n", "V_s=200.0 #V\n", "\n", "#Calculations\n", "tau=L/R\n", "t=0.01 #s\n", "i=(V_s/R)*(1-math.exp(-t/tau))\n", "C=1*10**-6 #F\n", "V_c=math.sqrt(L/C)*i\n", "\n", "#Results\n", "print(\"current in R,L=%.2f A\" %i)\n", "print(\"voltage across C=%.2f kV\" %(V_c/1000))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "current in R,L=1.57 A\n", "voltage across C=1.57 kV\n" ] } ], "prompt_number": 22 } ], "metadata": {} } ] }