{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 13 : Power Factor Improvement" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.1, Page No 754" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "V_s=250.0\n", "R_l=5.0\n", "I_l=20.0\n", "V_l1=math.sqrt(V_s**2-(R_l*I_l)**2)\n", "reg1=(V_s-V_l1)/V_s*100 \n", "pf1=1.0\n", "\n", "#Calculations\n", "P_l1=V_l1*I_l*pf1 #load power\n", "P_r1=V_s*I_l*pf1 #max powwible system rating\n", "utf1=P_l1*100/P_r1 \n", "pf2=0.5\n", " #(.5*V_l)**2+(.866*V_l+R_l*I_l)**2=V_s**2\n", " #after solving\n", "V_l2=158.35 \n", "reg2=(V_s-V_l2)/V_s*100 \n", "P_l2=V_l2*I_l*pf2 #load power\n", "P_r2=V_s*I_l #max powwible system rating\n", "utf2=P_l2*100/P_r2 \n", "\n", "\n", "#Results\n", "print(\"for pf=1\")\n", "print(\"load voltage=%.2f V\" %V_l1)\n", "print(\"voltage regulation=%.2f\" %reg1)\n", "print(\"system utilisation factor=%.3f\" %utf1)\n", "print(\"energy consumed(in units)=%.1f\" %(P_l1/1000))\n", "print(\"for pf=.5\")\n", "print(\"load voltage=%.2f V\" %V_l2)\n", "print(\"voltage regulation=%.2f\" %reg2)\n", "print(\"system utilisation factor=%.3f\" %utf2)\n", "print(\"energy consumed(in units)=%.2f\" %(P_l2/1000))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "for pf=1\n", "load voltage=229.13 V\n", "voltage regulation=8.35\n", "system utilisation factor=91.652\n", "energy consumed(in units)=4.6\n", "for pf=.5\n", "load voltage=158.35 V\n", "voltage regulation=36.66\n", "system utilisation factor=31.670\n", "energy consumed(in units)=1.58\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.2, Page No 756" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "f=50.0\n", "V_s=230.0\n", "I_m1=2\n", "pf1=.3\n", "\n", "#Calculations\n", "I_c1=I_m1*math.sin(math.radians(math.degrees(math.acos(pf1))))\n", "C1=I_c1/(2*math.pi*f*V_s) \n", "I_m2=5\n", "pf2=.5\n", "I_c2=I_m2*math.sin(math.radians(math.degrees(math.acos(pf2))))\n", "C2=I_c2/(2*math.pi*f*V_s) \n", "I_m3=10\n", "pf3=.7\n", "I_c3=I_m3*math.sin(math.radians(math.degrees(math.acos(pf3))))\n", "C3=I_c3/(2*math.pi*f*V_s) \n", "\n", "#Results\n", "print(\"at no load\")\n", "print(\"value of capacitance=%.3f uF\" %(C1*10**6))\n", "print(\"at half full load\")\n", "print(\"value of capacitance=%.3f uF\" %(C2*10**6))\n", "print(\"at full load\")\n", "print(\"value of capacitance=%.3f uF\" %(C3*10**6))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "at no load\n", "value of capacitance=26.404 uF\n", "at half full load\n", "value of capacitance=59.927 uF\n", "at full load\n", "value of capacitance=98.834 uF\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.3 Page No 764" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "I_c=10.0\n", "f=50.0\n", "V_s=230.0\n", "\n", "#Calculations\n", "C=I_c/(2*math.pi*f*V_s) \n", "I_l=10\n", "L=V_s/(2*math.pi*f*I_l) \n", "\n", "#Results\n", "print(\"value of capacitance=%.3f uF\" %(C*10**6))\n", "print(\"value of inductor=%.3f mH\" %(L*1000))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "value of capacitance=138.396 uF\n", "value of inductor=73.211 mH\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.4, Page No 765" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "V_s=230.0\n", "I_L=10.0\n", "X_L=V_s/I_L\n", "I_f1=6.0\n", " #B=2*a-math.sin(2*a)\n", "B=2*math.pi-I_f1*math.pi*X_L/V_s\n", "a=0\n", "i=1.0\n", "for a in range(1,360):\n", " b=2*a*math.pi/180-math.sin(math.radians(2*a)) \n", " if math.fabs(B-b)<=0.001 : #by hit and trial\n", " i=2\n", " break\n", "print(\"firing angle of TCR = %.1f deg\" %a)\n", " #(a-.01)*180/math.pi)\n", " \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "firing angle of TCR = 359.0 deg\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.5 Page No 766" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "L=.01\n", "\n", "\n", "#Calculations\n", "print(\"for firing angle=90deg\")\n", "a=90*math.pi/180\n", "L_eff=math.pi*L/(2*math.pi-2*a+math.sin(2*a)) \n", "print(\"effective inductance=%.0f mH\" %(L_eff*1000))\n", "print(\"for firing angle=120deg\")\n", "a=120*math.pi/180\n", "L_eff=math.pi*L/(2*math.pi-2*a+math.sin(2*a)) \n", "print(\"effective inductance=%.3f mH\" %(L_eff*1000))\n", "print(\"for firing angle=150deg\")\n", "a=150*math.pi/180\n", "L_eff=math.pi*L/(2*math.pi-2*a+math.sin(2*a)) \n", "print(\"effective inductance=%.2f mH\" %(L_eff*1000))\n", "print(\"for firing angle=170deg\")\n", "a=170*math.pi/180\n", "L_eff=math.pi*L/(2*math.pi-2*a+math.sin(2*a)) \n", "print(\"effective inductance=%.3f H\" %L_eff)\n", "print(\"for firing angle=175deg\")\n", "a=175*math.pi/180\n", "L_eff=math.pi*L/(2*math.pi-2*a+math.sin(2*a)) \n", "\n", "#Results\n", "print(\"effective inductance=%.2f H\" %L_eff)\n", "print(\"for firing angle=180deg\")\n", "a=180*math.pi/180\n", "L_eff=math.pi*L/(2*math.pi-2*a+math.sin(2*a)) \n", "print(\"effective inductance=%.3f H\" %L_eff)\n", " #random value at firing angle =180 is equivalent to infinity as in answer in book\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "for firing angle=90deg\n", "effective inductance=10 mH\n", "for firing angle=120deg\n", "effective inductance=25.575 mH\n", "for firing angle=150deg\n", "effective inductance=173.40 mH\n", "for firing angle=170deg\n", "effective inductance=4.459 H\n", "for firing angle=175deg\n", "effective inductance=35.51 H\n", "for firing angle=180deg\n", "effective inductance=-128265253940037.750 H\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.6 Page No 766" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Q=100.0*10**3\n", "V_s=11.0*10**3\n", "\n", "#Calculations\n", "f=50.0\n", "L=V_s**2/(2*math.pi*f*Q) \n", "\n", "#Results\n", "print(\"effective inductance=%.4f H\" %L)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "effective inductance=3.8515 H\n" ] } ], "prompt_number": 7 } ], "metadata": {} } ] }