{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 3 : Power Parameter Calculations" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 3.1,Page 109" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ramp current is 450.0 kAt/s\n", "current at 5 micro sec is 2.25 A\n" ] } ], "source": [ "#finding ramp current and current at 5 micro sec\n", "\n", "#initialisation of variable\n", "from math import pi,tan,sqrt,sin,cos,acos,atan\n", "Ip=3.0;\n", "f=150000.0;\n", "t=5.0e-6;\n", "\n", "#calculation\n", "T=1/f;\n", "It=Ip/T;\n", "I5=It*t;\n", "\n", "#result\n", "print \"ramp current is\",round(It/1000,3), \"kAt/s\"\n", "print \"current at 5 micro sec is\",round(I5,3), \"A\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 3.2,Page 110" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "current in time 0<=t<800ns is 3.575 A\n", "current in time 800ns<=t<2 microsec is 0.0 A\n", "current in time 400ns is 1.85 A\n", "current in time 1 microsec is 0.0 A\n" ] } ], "source": [ "#finding current at different time\n", "\n", "#initialisation of variable\n", "from math import pi,tan,sqrt,sin,cos,acos,atan\n", "Ip=2.0;\n", "f=500000.0;\n", "Ir=.3;\n", "Cd=.4#duty cycle\n", "t1=4.0e-7;\n", "t2=1.0e-6;\n", "I1=0;\n", "\n", "#calculation\n", "T=1/f;\n", "Im=Ip-Ir;\n", "I4=(Ip-Im)*t1/(Cd*T)+Im;\n", "It=(Ip-Im)*t/(Cd*T)+Im;\n", "It1=0\n", "\n", "#resilt\n", "print \"current in time 0<=t<800ns is\",round(It,3),\"A\"\n", "print \"current in time 800ns<=t<2 microsec is\",round(It1,2), \"A\"\n", "print \"current in time 400ns is\",round(I4,2), \"A\"\n", "print \"current in time 1 microsec is\",round(I1,2), \"A\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 3.3,Page 115" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "average voltage is 54.02 V\n" ] } ], "source": [ "#finding average voltage\n", "\n", "#initialisation of variable\n", "from math import pi,tan,sqrt,sin,cos,acos,atan\n", "Vr=120;\n", "\n", "#calculation\n", "V=(Vr*2**.5)/pi;\n", "\n", "#result\n", "print \"average voltage is\",round(V,2), \"V\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 3.4,Page 119" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "average current is 0.98 A\n" ] } ], "source": [ "#finding average current\n", "\n", "#initialisation of variable\n", "from math import pi,tan,sqrt,sin,cos,acos,atan\n", "f=100000.0;\n", "Cd=.35#duty cycle\n", "Ip=3.0;\n", "Ir=.4;\n", "\n", "#calculation\n", "Im=Ip-Ir;\n", "T=1/f;\n", "I=Cd*((Ip-Im)/2+Im)\n", "\n", "#result\n", "print \"average current is\",round(I,2), \"A\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 3.5,Page 124" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "rms voltage is 8.87 V\n" ] } ], "source": [ "#finding rms voltage\n", "\n", "#initialisation of variable\n", "from math import pi,tan,sqrt,sin,cos,acos,atan\n", "Vp=15.0;\n", "Cd=.35;\n", "f=100000.0;\n", "\n", "#calculation\n", "V=Vp*Cd**.5;\n", "\n", "#result\n", "print \"rms voltage is\",round(V,2), \"V\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 3.6,Page 127" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "rms current is 1.73 A\n" ] } ], "source": [ "#finding rms current\n", "\n", "#initialisation of variable\n", "from math import pi,tan,sqrt,sin,cos,acos,atan\n", "Ip=3.0;\n", "f=100000.0;\n", "\n", "#calculation\n", "I=Ip/3**.5;\n", "\n", "#result\n", "print \"rms current is\",round(I,2), \"A\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 3.7,Page 133" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "rms voltage is 85.0 V\n" ] } ], "source": [ "#finding rms voltage\n", "\n", "#initialisation of variable\n", "from math import pi,tan,sqrt,sin,cos,acos,atan\n", "Vp=170.0;\n", "f=60.0;\n", "\n", "#calculation\n", "Vr=Vp/2;\n", "\n", "#result\n", "print \"rms voltage is\",round(Vr,2), \"V\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 3.8,Page 140" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "power required is 2.42 hp\n", "Pick a 5HP motor\n", "current required is 18.84 amp\n" ] } ], "source": [ "#finding current and power\n", "\n", "#initialisation of variable\n", "from math import pi,tan,sqrt,sin,cos,acos,atan\n", "M=1000.0;\n", "H=40.0;\n", "T=30.0;\n", "E1=.9;\n", "E2=.5;\n", "V=220.0;\n", "P1=5.0;\n", "\n", "#calculation\n", "W=M*H;\n", "P=(W)/(T*550);\n", "Pe=P1/E1;\n", "I=(Pe*746)/V;\n", "\n", "#result\n", "print \"power required is\",round(P,2), \"hp\"\n", "print('Pick a 5HP motor')\n", "print \"current required is\",round(I,2), \"amp\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 3.9,Page 145" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "power delivered to the load is 6.36 Watt\n", "power provided by each supply is 7.23 Watt\n" ] } ], "source": [ "#finding power\n", "\n", "#initialisation of variable\n", "from math import pi,tan,sqrt,sin,cos,acos,atan\n", "Vin=1.0;\n", "Ri=1100.0;\n", "Rf=10000.0;\n", "Rl=8.0;\n", "Vs=18.0;\n", "\n", "#calculation\n", "Ir=Vin/Ri;\n", "Vl=Ir*(Ri+Rf);\n", "Ip=Vl/Rl;\n", "Pl=(Vl*Ip)/2;\n", "Ps=(Vs*Ip)/pi;\n", "\n", "#result\n", "print \"power delivered to the load is\",round(Pl,2),\"Watt\"\n", "print \"power provided by each supply is\",round(Ps,2), \"Watt\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 3.10,Page 149" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "power delivered is 141.67 Watt\n" ] } ], "source": [ "#finding power\n", "\n", "#initialisation of variable\n", "from math import pi,tan,sqrt,sin,cos,acos,atan\n", "V=170.0;\n", "R=51.0;\n", "\n", "#calculation\n", "I=V/R;\n", "P=(V*I)/4;\n", "\n", "#result\n", "print \"power delivered is\",round(P,2), \"Watt\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 3.11,Page 151" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "power dissipated is 7.05 watt\n", "power dissipated when transistor resistance is 0.2 hm is 0.35 watt\n" ] } ], "source": [ "#finding power\n", "\n", "#initialisation of variable\n", "from math import pi,tan,sqrt,sin,cos,acos,atan\n", "V=7.2;\n", "Rq=.2;\n", "Rl=4;\n", "D=.6;\n", "\n", "#calculation\n", "Ip=V/(Rq+Rl);\n", "Vl=Ip*Rl;\n", "P=D*Vl*Ip;\n", "Vq=Ip*Rq;\n", "Pq=D*Vq*Ip;\n", "\n", "#result\n", "print \"power dissipated is\",round(P,2), \"watt\"\n", "print \"power dissipated when transistor resistance is 0.2 hm is\",round(Pq,2), \"watt\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" } }, "nbformat": 4, "nbformat_minor": 0 }