{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 1: Advanced Operational Amplifier Principles" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 1.1,Page 6" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "open output voltage is 0.5 V\n", "resistance lower loaded is 333.333 ohm\n", "loaded output voltage is 0.25 V\n" ] } ], "source": [ "#finding voltage current resistance\n", "\n", "#initialisation of variable\n", "from math import pi,tan,sqrt,sin,cos,acos,atan\n", "R1=1000.0;\n", "R2=1000.0;\n", "Rl=500.0#load resistance\n", "V=1.0#input voltage\n", "\n", "#calculation\n", "Vo=(R2/(R1+R2))*V;\n", "Rll=1/((1/R2)+(1/Rl))#lower loaded resistance\n", "Vol=(Rll/(R2+Rll))*V;\n", "\n", "#result\n", "print \"open output voltage is\",round(Vo,3),\"V\"\n", "print \"resistance lower loaded is\",round(Rll,3),\"ohm\"\n", "print \"loaded output voltage is\",round(Vol,3),\"V\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 1.2,Page 11" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "input resistance is 1.01 Kohm\n" ] } ], "source": [ "#finding voltage current resistance\n", "\n", "#initialisation of variable\n", "from math import pi,tan,sqrt,sin,cos,acos,atan\n", "Rf=100000.0#resistance\n", "Acl=100.0#amplifier gain\n", "\n", "#calculation\n", "Ri=Rf/(Acl-1);\n", "\n", "#result\n", "print \"input resistance is\",round(Ri/1000,2), \"Kohm\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 1.3,Page 17" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "current through Ri1 is 178.571 microAmp\n", "current through Ri2 is 31.915 microAmp\n", "current through Ri2 is 31.915 microAmp\n", "current through Rf is 210.486 microAmp\n", "voltage dropped is 2.105 V\n", "output voltage 1 is -2.105 V\n", "output voltage is 2.105 V\n" ] } ], "source": [ "#finding voltage current resistance\n", "\n", "#initialisation of variable\n", "from math import pi,tan,sqrt,sin,cos,acos,atan\n", "Vni=0.0#non inverting voltage\n", "Vinv=0.0;#inverting voltage\n", "Vri1=1.0;\n", "Vri2=15.0;\n", "Ri1=5600.0#resistance\n", "Ri2=470000.0;\n", "Rf=10000.0#load resistance\n", "\n", "#calculation\n", "Ir1=Vri1/Ri1;\n", "Ir2=Vri2/Ri2;\n", "Irf=(Vri1/Ri1)+(Vri2/Ri2);\n", "Vr=Irf*Rf;\n", "Vo1=-Vr;\n", "Vo=Irf*Rf;\n", "\n", "#result\n", "print \"current through Ri1 is\",round(Ir1*1e6,3), \"microAmp\"\n", "print \"current through Ri2 is\",round(Ir2*1e6,3), \"microAmp\"\n", "print \"current through Ri2 is\",round(Ir2*1e6,3),\"microAmp\"\n", "print \"current through Rf is\",round(Irf*1e6,3), \"microAmp\"\n", "print \"voltage dropped is\",round(Vr,3), \"V\"\n", "print \"output voltage 1 is\",round(Vo1,3), \"V\"\n", "print \"output voltage is\",round(Vo,3), \"V\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 1.4,Page 25" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "inverting voltage is 4.955 V\n", "non inverting voltage is 4.955 V\n", "current through Rf2 is 42.698 microA\n", "current through Ri2 is 42.698 microA\n", "voltage dropped is 4.056 V\n", "output voltage is 884.897 mV\n" ] } ], "source": [ "#finding voltage current resistance\n", "\n", "#initialisation of variable\n", "from math import pi,tan,sqrt,sin,cos,acos,atan\n", "Ri1=950.00;#ohm\n", "Ri2=1050.00;\n", "Rf1=105000.00;#resistance\n", "Rf2=95000.00;\n", "Vin=5.00;#voltage\n", "\n", "#calculation\n", "Vinv=(Rf1/(Rf1+Ri1))*Vin;\n", "Vni=Vinv;\n", "Irf2=(Vin-Vinv)/Ri2;\n", "Iri2=Irf2;\n", "Vrf2=Irf2*Rf2;\n", "Vo=Vinv-Vrf2-.014;\n", "\n", "#result\n", "print \"inverting voltage is\",round(Vinv,3), \"V\"\n", "print \"non inverting voltage is\",round (Vni,3), \"V\"\n", "print \"current through Rf2 is\",round(Irf2*1e6,3), \"microA\"\n", "print \"current through Ri2 is\",round(Iri2*1e6,3), \"microA\"\n", "print \"voltage dropped is\",round(Vrf2,3), \"V\"\n", "print \"output voltage is\",round(Vo*1000,3), \"mV\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 1.5,Page 27" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "input resistor current is 272.222 microA\n", "input resistor current is 500.0 microA\n", "feedback resistor current is 227.778 microAmp\n", "resistor voltage is 227.778 mV\n", "1st output voltage is 2.222 V\n", "input resistor current is 327.778 microA\n", "input resistor current is 827.778 microA\n", "feedback resistor voltage is 7.45 V\n", "2nd output voltage is 10.0 V\n" ] } ], "source": [ "#finding voltage current resistance \n", "\n", "#initialisation of variable\n", "from math import pi,tan,sqrt,sin,cos,acos,atan\n", "Vniu1=2.45;#V\n", "Vniu2=2.55;#V\n", "Vinvu1=2.45;\n", "Vinvu2=2.55;\n", "Ri1=9000.0;#ohm\n", "Ri2=1000.0;#ohm\n", "Rf1=1000.0;\n", "Rf2=9000.0;\n", "Rg=200.0;#load resistance\n", "\n", "#calculation\n", "Iri1=Vniu1/Ri1;\n", "Irg=(Vniu2-Vniu1)/Rg;\n", "Irf1=Irg-Iri1;\n", "Vrf1=Irf1*Rf1;\n", "Vou1=Vniu1-Vrf1;\n", "Iri2=(Vniu2-Vou1)/Ri2;\n", "Irf2=Iri2+Irg;\n", "Vrf2=Irf2*Rf2#feedback resistor voltage\n", "Vo=Vrf2+Vniu2;\n", "\n", "#result\n", "print \"input resistor current is\",round(Iri1*1e6,3), \"microA\"\n", "print \"input resistor current is\",round(Irg*1e6,3), \"microA\"\n", "print \"feedback resistor current is\",round(Irf1*1e6,3), \"microAmp\"\n", "print \"resistor voltage is\",round(Vrf1*1000,3), \"mV\"\n", "print \"1st output voltage is\",round(Vou1,3), \"V\"\n", "print \"input resistor current is\",round(Iri2*1e6,3), \"microA\"\n", "print \"input resistor current is\",round(Irf2*1e6,3),\"microA\"\n", "print \"feedback resistor voltage is\",round(Vrf2,3), \"V\"\n", "print \"2nd output voltage is\",round(Vo,3), \"V\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 1.6.a,Page 29" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "input resistor current is 128.0 microA\n", "feedback resistor current is 128.0 microA\n", "feedback resistor voltage is 5.018 V\n", "output resistor voltage is 5.018 V\n", "output voltage is 3.818 V\n", "load current is 0.5 A\n", "load power is 2.5 W\n", "power dissipated in LM317 is 5.0 W\n" ] } ], "source": [ "#finding voltage current resistance\n", "\n", "#initialisation of variable\n", "from math import pi,tan,sqrt,sin,cos,acos,atan\n", "Vniu1=0;#V\n", "Vinvu2=0;#V\n", "Vref=2.56;\n", "Rl=10000.0;#ohm\n", "Rf=39200.0;#ohm\n", "Ro=10.0;#resistance\n", "Vdc1=5.0;\n", "Vdc2=15.0;\n", "Idc=0.5;#current\n", "\n", "#calculation\n", "Iu1=(Vref/Rl)*.5;\n", "Irf=Iu1;\n", "Vrf=Irf*Rf;\n", "Vout=Vrf+Vinvu2;\n", "Eo=Vout-1.2;\n", "Iload=Vdc1/Ro;\n", "Pload=Vdc1**2/Ro;\n", "Plm317=(Vdc2-Vdc1)*Idc;\n", "\n", "#result\n", "print \"input resistor current is\",round(Iu1*1e6,3), \"microA\"\n", "print \"feedback resistor current is\",round(Irf*1e6,3), \"microA\"\n", "print \"feedback resistor voltage is\",round(Vrf,3), \"V\"\n", "print \"output resistor voltage is\",round(Vout,3), \"V\"\n", "print \"output voltage is\",round(Eo,3), \"V\"\n", "print \"load current is\",round(Iload,3), \"A\"\n", "print \"load power is\",round(Pload,3), \"W\"\n", "print \"power dissipated in LM317 is\",round(Plm317,3), \"W\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 1.6.b,Page 31" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "input resistor current is 360.36 microamp\n", "inverting voltage 1 & 2 is 396.396 mV\n", "current across Rs is 3.964 A\n", "emitter voltage is 8.324 V\n", "output voltage is 10.124 V\n" ] } ], "source": [ "#finding voltage current resistance\n", "\n", "#initialisation of variable\n", "from math import pi,tan,sqrt,sin,cos,acos,atan\n", "Vin=4;#V\n", "Vs=1.8;#V\n", "Rf=10000.0;#ohm\n", "Ri=1100.0;#ohm\n", "Rl=2.0;#ohm\n", "Rs=0.1;#ohm\n", "\n", "#calculation\n", "Irf=Vin/(Rf+Ri);\n", "Vni=Irf*Ri;\n", "Ir=Vni/Rs;\n", "Ve=Ir*(Rl+Rs);\n", "Vo=Ve+Vs;\n", "\n", "#result\n", "print \"input resistor current is\",round(Irf*1e6,3),\"microamp\"\n", "print \"inverting voltage 1 & 2 is\",round(Vni*1000,3), \"mV\"\n", "print \"current across Rs is\",round(Ir,3), \"A\"\n", "print \"emitter voltage is\",round(Ve,3), \"V\"\n", "print \"output voltage is\",round(Vo,3), \"V\"\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 1.7,Page 36" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "rms voltage is 9.899 V\n", "power delivered is 12.25 W\n", "load voltage is 28.284 V\n" ] } ], "source": [ "#finding voltage and power\n", "\n", "#initialisation of variable\n", "from math import pi,tan,sqrt,sin,cos,acos,atan\n", "Vs=18.0;#V\n", "Rl=8.0;#load resistance\n", "Pll=100.0;#power\n", "\n", "#calculation\n", "Vlp=Vs-4;\n", "Vlr=Vlp/(2**(.5));\n", "Pl=(Vlr**2)/Rl;\n", "Vl=(Pll*Rl)**(.5);\n", "\n", "#result\n", "print \"rms voltage is\",round(Vlr,3), \"V\"\n", "print \"power delivered is\",round(Pl,3), \"W\"\n", "print \"load voltage is\",round(Vl,3), \"V\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 1.9,Page 44" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "output voltage is 37.34 V\n", "V+ is 45.34 V ;V- is 29.34 V\n" ] } ], "source": [ "#finding output volatage and range \n", "\n", "#initialisation of variable\n", "from math import pi,tan,sqrt,sin,cos,acos,atan\n", "import numpy as np\n", "Vp=6.0;#V\n", "Ra=10.0;#Kohm\n", "Rb=1800.0;#ohm\n", "V=8.0;\n", "#solving for Ir & Vo\n", "a=np.array([[1.0,-124.6e-6],[7800.0,-1.0]])\n", "b=np.array([134.6e-6,0.0])\n", "\n", "#calculation\n", "x=np.linalg.solve(a,b);\n", "Vo=x[1];\n", "Va=Vo+V;\n", "Vb=Vo-V;\n", "\n", "#result\n", "print \"output voltage is\",round(Vo,2), \"V\"\n", "print \"V+ is\",round(Va,2), \"V ;V- is\",round(Vb,2), \"V\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 1.11,Page 50" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "output current is 4.091 mA\n", "output voltage is 45.409 V\n", "gain output voltage 1 is 13.356 V\n", "gain output voltage 2 is 0.38 V\n" ] } ], "source": [ "#finding output voltage and gain output voltage \n", "\n", "#initialisation of variable\n", "from math import pi,tan,sqrt,sin,cos,acos,atan\n", "Vin=4.5;\n", "R1=1100.0;\n", "R2=10000.0;\n", "\n", "G1=3.4#gain 1\n", "G2=120.0#gain 2\n", "\n", "#calculation\n", "Ir=Vin/R1;\n", "Vo=Ir*(R1+R2);\n", "Vuo1=Vo/G1;\n", "Vuo2=Vo/G2;\n", "\n", "#result\n", "print \"output current is\",round(Ir*1000,3),\"mA\"\n", "print \"output voltage is\",round(Vo,3), \"V\"\n", "print \"gain output voltage 1 is\",round(Vuo1,3), \"V\"\n", "print \"gain output voltage 2 is\",round(Vuo2,2),\"V\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }