{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 09 : AC Voltage Controllers" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.1, Page No 560" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "V_s=230.0\n", "V_m=math.sqrt(2)*V_s\n", "a=45.0\n", "\n", "#Calculations\n", "V_or=(V_m/2)*math.sqrt(1/math.pi*((2*math.pi-a*math.pi/180)+math.sin(math.radians(2*a))/2)) \n", "R=20\n", "I_or=V_or/R\n", "P_o=I_or**2*R \n", "I_s=I_or\n", "VA=V_s*I_s\n", "pf=P_o/VA \n", "V_o=math.sqrt(2)*V_s/(2*math.pi)*(math.cos(math.radians(a))-1)\n", "I_ON=V_o/R \n", "\n", "#Results\n", "print(\"rms value of o/p voltage=%.3f V\" %V_or)\n", "print(\"load power=%.1f W\" %P_o)\n", "print(\"i/p pf=%.4f\" %pf)\n", "print(\"avg i/p current=%.4f A\" %I_ON)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "rms value of o/p voltage=224.716 V\n", "load power=2524.9 W\n", "i/p pf=0.9770\n", "avg i/p current=-0.7581 A\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.2, Page No 560" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "V_s=230.0\n", "V_m=math.sqrt(2)*V_s\n", "a=45.0\n", "\n", "#Calculations\n", "V_or=(V_s)*math.sqrt(1/math.pi*((math.pi-a*math.pi/180)+math.sin(math.radians(2*a))/2)) \n", "R=20\n", "I_or=V_or/R\n", "P_o=I_or**2*R \n", "I_s=I_or\n", "VA=V_s*I_s\n", "pf=P_o/VA \n", "I_TA=math.sqrt(2)*V_s/(2*math.pi*R)*(math.cos(math.radians(a))+1) \n", "I_Tr=math.sqrt(2)*V_s/(2*R)*math.sqrt(1/math.pi*((math.pi-a*math.pi/180)+math.sin(math.radians(2*a))/2)) \n", "\n", "#Results\n", "print(\"rms value of o/p voltage=%.3f V\" %V_or)\n", "print(\"load power=%.2f W\" %P_o)\n", "print(\"i/p pf=%.2f\" %pf)\n", "print(\"avg thyristor current=%.2f A\" %I_TA) \n", "print(\"rms value of thyristor current=%.2f A\" %I_Tr)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "rms value of o/p voltage=219.304 V\n", "load power=2404.71 W\n", "i/p pf=0.95\n", "avg thyristor current=4.42 A\n", "rms value of thyristor current=7.75 A\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.3 Page No 564" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "V_s=230.0\n", "n=6.0 #on cycles\n", "m=4.0 #off cycles\n", "\n", "#Calculations\n", "k=n/(n+m)\n", "V_or=V_s*math.sqrt(k) \n", "pf=math.sqrt(k) \n", "R=15\n", "I_m=V_s*math.sqrt(2)/R\n", "I_TA=k*I_m/math.pi\n", "I_TR=I_m*math.sqrt(k)/2 \n", " \n", "#Results\n", "print(\"rms value of o/ voltage=%.2f V\" %V_or)\n", "print(\"i/p pf=%.2f\" %pf)\n", "print(\"avg thyristor current=%.2f A\" %I_TA) \n", "print(\"rms value of thyristor current=%.2f A\" %I_TR)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "rms value of o/ voltage=178.16 V\n", "i/p pf=0.77\n", "avg thyristor current=4.14 A\n", "rms value of thyristor current=8.40 A\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.4, Page No 569" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "V_s=230.0\n", "V_m=math.sqrt(2)*V_s\n", "R=3.0\n", "\n", "#Calculations\n", "I_TAM1=2*V_m/(2*math.pi*R) \n", "I_TRM2=V_m/(2*R) \n", "f=50\n", "w=2*math.pi*f\n", "t_c=math.pi/w \n", " \n", "#Results\n", "print(\"max value of avg thyristor current=%.3f A\" %I_TAM1)\n", "print(\"max value of avg thyristor current=%.3f A\" %I_TRM2)\n", "print(\"ckt turn off time=%.0f ms\" %(t_c*1000))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "max value of avg thyristor current=34.512 A\n", "max value of avg thyristor current=54.212 A\n", "ckt turn off time=10 ms\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.5 Page No 575" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "R=3.0\n", "X_L=4.0\n", "\n", "#Calculations\n", "phi=math.degrees(math.atan(X_L/R)) \n", "V_s=230\n", "Z=math.sqrt(R**2+X_L**2)\n", "I_or=V_s/Z \n", "P=I_or**2*R \n", "I_s=I_or\n", "pf=P/(V_s*I_s) \n", "I_TAM=math.sqrt(2)*V_s/(math.pi*Z) \n", "I_Tm=math.sqrt(2)*V_s/(2*Z) \n", "f=50\n", "w=2*math.pi*f\n", "di=math.sqrt(2)*V_s*w/Z \n", "\n", "#Results\n", "print(\"min firing angle=%.2f deg\" %phi)\n", "print(\"\\nmax firing angle=%.0f deg\" %180)\n", "print(\"i/p pf=%.1f\" %pf)\n", "print(\"max value of rms load current=%.0f A\" %I_or)\n", "print(\"max power=%.0f W\" %P)\n", "print(\"max value of avg thyristor current=%.3f A\" %I_TAM)\n", "print(\"max value of rms thyristor current=%.3f A\" %I_Tm)\n", "print(\"di/dt=%.0f A/s\" %di)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "min firing angle=53.13 deg\n", "\n", "max firing angle=180 deg\n", "i/p pf=0.6\n", "max value of rms load current=46 A\n", "max power=6348 W\n", "max value of avg thyristor current=20.707 A\n", "max value of rms thyristor current=32.527 A\n", "di/dt=20437 A/s\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.6 Page No 576" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "V=230.0\n", "R=3.0 #ohm\n", "X_L=5.0 #ohm\n", "a=120.0 #firing angle delay\n", "\n", "#Calculations\n", "phi=math.degrees(math.atan(X_L/R))\n", "b=0\n", "i=1\n", "while (i>0) :\n", " LHS=math.sin(math.radians(b-a))\n", " RHS=math.sin(math.radians(a-phi))*math.exp(-(R/X_L)*(b-a)*math.pi/180)\n", " if math.fabs(LHS-RHS)<= 0.01 :\n", " B=b\n", " i=2\n", " break\n", " \n", " b=b+.1 \n", "V_or=math.sqrt(2)*V*math.sqrt((1/(2*math.pi))*((B-a)*math.pi/180+(math.sin(math.radians(2*a))-math.sin(math.radians(2*B)))/2))\n", "\n", "\n", "#Results\n", "print(\"Extinction angle=%.1f deg\" %B) #answer in the book is wrong as formulae for RHS is wrongly employed\n", "print(\"rms value of output voltage=%.2f V\" %V_or) #answer do not match due to wrong B in book\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Extinction angle=156.1 deg\n", "rms value of output voltage=97.75 V\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.8, Page No 581" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "V_s=230.0\n", "V_m=math.sqrt(2)*V_s\n", "a=60.0\n", "R=20.0\n", "\n", "#Calculations\n", "V_or=math.sqrt((V_m**2/(2*math.pi))*(a*math.pi/180-math.sin(math.radians(2*a))/2)+(2*V_m**2/(math.pi))*(math.pi-a*math.pi/180+math.sin(math.radians(2*a))/2)) \n", "I_T1r=(V_m/R)*math.sqrt(1/math.pi*((math.pi-a*math.pi/180)+math.sin(math.radians(2*a))/2)) \n", "I_T3r=(V_m/(2*R))*math.sqrt(1/math.pi*((a*math.pi/180)-math.sin(math.radians(2*a))/2)) \n", "I1=math.sqrt(2)*I_T1r\n", "I3=math.sqrt((math.sqrt(2)*I_T1r)**2+(math.sqrt(2)*I_T3r)**2)\n", "r=V_s*(I1+I3) \n", "P_o=V_or**2/R\n", "pf=P_o/r \n", "\n", "#Results\n", "print(\"rms value of o/p voltage=%.2f V\" %V_or)\n", "print(\"rms value of current for upper thyristors=%.2f A\" %I_T1r)\n", "print(\"rms value of current for lower thyristors=%.2f A\" %I_T3r)\n", "print(\"t/f VA rating=%.2f VA\" %r)\n", "print(\"i/p pf=%.2f\" %pf)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "rms value of o/p voltage=424.94 V\n", "rms value of current for upper thyristors=14.59 A\n", "rms value of current for lower thyristors=3.60 A\n", "t/f VA rating=9631.61 VA\n", "i/p pf=0.94\n" ] } ], "prompt_number": 7 } ], "metadata": {} } ] }