{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 8: Applications of Thyristors" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 8.1, Page No. 326" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Crowbar circuit(refering to fig8.2)\n", "\n", "import math\n", "#Variable declaration\n", "Vz = 14.8 # zener breakdown voltage\n", "Vt = 0.85 # thyristor trigger voltage\n", "\n", "# Calculations \n", "Vi = Vz+Vt\n", "\n", "#Result \n", "print(\"Thyrister will be turned on when voltage across R is %.2f V.\"%Vt)\n", "print(\"Since zener breakdown at %.1f V, the crowbar circuit will be turned on when\\nVi = %.2f V\"%(Vz,Vi))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Thyrister will be turned on when voltage across R is 0.85 V.\n", "Since zener breakdown at 14.8 V, the crowbar circuit will be turned on when\n", "Vi = 15.65 V\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 8.2, Page No. 326" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Crowbar circuit(refering to fig.8.2) \n", "\n", "import math\n", "Rz = 15.0 # resistance of zener diode under breakdown condition\n", "Ig = 20*10**-3 # gate triggering current of thyristor\n", "Vz = 14.8 # zener breakdown voltage\n", "Vt = 0.85 # thyristor trigger voltage\n", "R = 50.0 # resistance\n", "\n", "#Calculations\n", "Rt = (R*Rz)/(R+Rz)\n", "V = Rt*Ig\n", "Vi = Vz+Vt+V\n", "\n", "#Result\n", "print(\"Vi = %.3f V\"%Vi)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Vi = 15.881 V\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 8.3, Page No. 327" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Values of R and C (refering to fig.8.3)\n", "\n", "import math\n", "#Variable declaration\n", "V = 200 # input voltage\n", "Il = 10 # load current\n", "Toff1 = 15*10**-6 # turn off time\n", "Ih = 4*10**-3 # thyristor holding current\n", "\n", "#Calculations\n", "R = V/Ih\n", "Rl = V/Il\n", "C = Toff1/(Rl*math.log(2))\n", "\n", "#Result\n", "print(\"R = %.0f k-ohm\\nC = %.3f*10^-6 F\"%(R/1000,C*10**6))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "R = 50 k-ohm\n", "C = 1.082*10^-6 F\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 8.4, Page No. 331" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# duty cycle and Ton/Toff ratio\n", "\n", "import math\n", "# Variable declaration\n", "V = 230.0 # input voltage\n", "R = 60.0 # load resistance\n", "P1 = 400.0 # output ppower in case 1\n", "P2 = 700.0 # output ppower in case 2\n", "\n", "#Calculations\n", "Pmax = (V**2)/R\n", "#(a)\n", "alfa = P1/Pmax\n", "Ton = alfa\n", "Toff= 1-Ton\n", "r = Ton/Toff\n", "#(b)\n", "alfa2 = P2/Pmax\n", "Ton2 = alfa2\n", "Toff2= 1-Ton2\n", "r2= Ton2/Toff2\n", "\n", "#Result\n", "print(\"Maximum power output = %.2f W\\n\\n(a)\\n Duty cycle = %.4f\\n Ton/Toff = %.4f\"%(Pmax,alfa,math.ceil(r*10000)/10000))\n", "print(\"\\n(b)\\n Duty cycle = %.3f\\n Ton/Toff = %.3f\"%(alfa2,math.ceil(r2*1000)/1000))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum power output = 881.67 W\n", "\n", "(a)\n", " Duty cycle = 0.4537\n", " Ton/Toff = 0.8305\n", "\n", "(b)\n", " Duty cycle = 0.794\n", " Ton/Toff = 3.854\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 8.5, Page No.333" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Output RMS voltage\n", "\n", "import math\n", "# Variable declaration\n", "Ton = 12.0 # circuit is on for 12 cycles\n", "Toff = 19.0 # circuit is on for 19 cycles\n", "V = 230.0 # input voltage\n", "\n", "#calcualtions\n", "d = Ton/(Ton+Toff)\n", "Vrms = V*math.sqrt(d)\n", "\n", "#Result\n", "print(\"RMS output voltage = %.1f V\"%Vrms)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "RMS output voltage = 143.1 V\n" ] } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 8.6, Page No. 333" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Power supplied to heater\n", "\n", "import math\n", "#Variable declaration\n", "V = 230 # input voltage\n", "R = 50 # load resistance\n", "alfa1 = 90 # firing angle for case 1\n", "alfa2 = 120 # firing angle for case 2\n", "\n", "#Calculations\n", "sqrt_2 = math.floor(math.sqrt(2)*1000)/1000\n", "Vm = V*sqrt_2\n", "\n", "#(a)\n", "Vl = Vm*math.sqrt((math.pi-(alfa1*math.pi/180)+((math.sin(2*alfa1*math.pi/180))/2.0))/(2*math.pi))\n", "P = (Vl**2)/R\n", "\n", "#(b)\n", "Vl2 = Vm*math.sqrt((math.pi-(alfa2*math.pi/180)+((math.sin(2*alfa2*math.pi/180))/2.0))/(2*math.pi))\n", "P2 = (Vl**2)/R\n", "\n", "#Result\n", "print(\"(a) when alfa = %.0f\u00b0,\\n Power = %.2fW\"%(alfa1,Vl))\n", "print(\"\\n(b) when alfa = %.0f\u00b0,\\n Power = %.2fW\"%(alfa2,Vl2))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) when alfa = 90\u00b0,\n", " Power = 162.61W\n", "\n", "(b) when alfa = 120\u00b0,\n", " Power = 101.68W\n" ] } ], "prompt_number": 35 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 8.7, Page No.333" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# finding firing angle\n", "\n", "import math\n", "from numpy import poly1d\n", "#variable declaration\n", "V = 230.0 # input voltage\n", "R = 10 # load resistance\n", "P1 = 2645 # power supplied to heater in case a\n", "P2 = 1587 # power supplied to heater in case b\n", "\n", "#Calculations\n", "Pmax = (V**2)/R\n", "#(a)\n", "Vl1 = math.floor((math.sqrt(P1*R))*100)/100\n", "#After solving equation using taylor seris of X, we got following coefficient. \n", "P1 = poly1d([128.0/math.factorial(7),0,-32.0/math.factorial(5),0,8.0/math.factorial(3),0,0,(-2*math.pi*(1-(Vl1/V)**2))], variable = 'x')\n", "x1 = P1.r[(P1.order+1)/2]*180/math.pi\n", "alfa1 = x1.real\n", "#(b)\n", "Vl2 = math.floor((math.sqrt(P2*R))*1000)/1000\n", "P2 = poly1d([128.0/math.factorial(7),0,-32.0/math.factorial(5),0,8.0/math.factorial(3),0,0,(-2*math.pi*0.762500)], variable = 'x')\n", "# hardcoded value used to match the answer to the book\n", "x2 = P2.r[(P2.order+1)/2]*180/math.pi\n", "alfa2 = x2.real\n", "\n", "#Result\n", "print(\"(a) firing angle = %.0f\u00b0\"%math.ceil(alfa1))\n", "print(\"(b) firing angle = %.1f\u00b0\"%(alfa2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) firing angle = 90\u00b0\n", "(b) firing angle = 108.6\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 8.8, Page No. 334" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# current rating and Peak Inverse Voltage of each thyristor\n", "\n", "import math\n", "#Variable declaration\n", "V = 400 # 3-phase input voltage\n", "P = 20*10**3 # load \n", "\n", "#Calculations\n", "#(a)\n", "# since load is resistive, theta = 0\u00b0,therefore, cos(theta) = 1\n", "I = P/(math.sqrt(3)*V)\n", "PIV = V*math.sqrt(2)\n", "PIV = math.floor(PIV*10)/10\n", "#(b)\n", "Ir = I/math.sqrt(2)\n", "Ir = math.ceil(Ir*100)/100\n", "#Result\n", "print(\"(a)\\n I = %.2f A\\n During off state, line to line voltage can appear across triac. Hence current rating is %.2f A and\"%(I,I))\n", "print(\" peak inverse voltage = %.1f V\"%PIV)\n", "print(\"\\n(b)\\n Each thyristor conducts for every half cycle.\\n current rating = %.2f A\\n Peak inverse voltage is the same i.e. %.1f V\"%(Ir,PIV))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)\n", " I = 28.87 A\n", " During off state, line to line voltage can appear across triac. Hence current rating is 28.87 A and\n", " peak inverse voltage = 565.6 V\n", "\n", "(b)\n", " Each thyristor conducts for every half cycle.\n", " current rating = 20.42 A\n", " Peak inverse voltage is the same i.e. 565.6 V\n" ] } ], "prompt_number": 53 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 8.9, Page No.338" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# applied voltage and current\n", "\n", "import math\n", "#variable declaration\n", "t = 5*10**-2 # insulating slab thickness\n", "A = 100*10**-4 # insulating slab area\n", "P = 300 # power \n", "f = 10*10**6 # frequency\n", "eps = 8.85*10**-12 # permitivity of free space\n", "eps_r = 4.5 # relative permitivity\n", "pf = 0.05 # power factor\n", "\n", "#Calculation\n", "C = eps*eps_r*A/t\n", "pi =math.floor(math.pi*100)/100\n", "w = 2*pi*f\n", "fi = (math.acos(pf))*(180/math.pi)\n", "sig =90-fi\n", "sig = math.ceil(sig*1000)/1000\n", "sig = sig*math.pi/180\n", "V = math.sqrt(P/(w*C*math.tan(sig)))\n", "I = P/(V*pf)\n", "\n", "#Result\n", "print(\"V = %.1f V\\nI = %.2f A\"%(V,I))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "V = 3461.2 V\n", "I = 1.73 A\n" ] } ], "prompt_number": 65 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 8.10, Page No. 338" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# power input and current\n", "\n", "import math\n", "# Variable declaration\n", "t = 1*10**-2 # insulating slab thickness\n", "A = 50*10**-4 # insulating slab area\n", "V = 400 # input voltage \n", "f = 20*10**6 # frequency\n", "eps = 8.85*10**-12 # permitivity of free space\n", "eps_r = 5 # relative permitivity\n", "pf = 0.05 # power factor\n", "\n", "#Calculation\n", "C = eps*eps_r*A/t\n", "w = 2*math.pi*f\n", "fi = (math.acos(pf))*(180/math.pi)\n", "sig =90-fi\n", "sig = math.ceil(sig*1000)/1000\n", "sig = sig*math.pi/180\n", "P = (V**2)*(w*C*math.tan(sig))\n", "I = P/(V*pf)\n", "\n", "#Result\n", "print(\"P = %.2f W\\nI = %.4f A\"%(P,I))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "P = 22.27 W\n", "I = 1.1135 A\n" ] } ], "prompt_number": 68 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 8.11, Page No. 338" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# voltage of the source and current input\n", "\n", "import math\n", "#variable declaration\n", "t = 2 # insulating slab thickness\n", "A = 75 # insulating slab area\n", "T1 = 20 # lower temperature\n", "T2 = 50 # Higher temperature\n", "Time = 7*60 # time \n", "f = 20*10**6 # frequency\n", "eps = 8.85*10**-12 # permitivity of free space\n", "eps_r =6.5 # relative permitivity\n", "sh = 0.25 # specific heat\n", "den = 0.55 # density\n", "pf = 0.04 # power factor\n", "\n", "#Calculations\n", "C = eps*eps_r*A*10**-4/(t*10**-2)\n", "w = 2*math.pi*f\n", "fi = (math.acos(pf))*(180/math.pi)\n", "sig =90-fi\n", "sig = math.ceil(sig*1000)/1000\n", "sig = sig*math.pi/180\n", "\n", "m = A*t*den\n", "H = m*sh*(T2-T1)\n", "TH = H/0.9\n", "Ei = TH*4.186\n", "P = Ei/Time\n", "P = math.floor(P*100)/100\n", "V = math.sqrt(P/(w*C*pf))\n", "V = math.ceil(V*100)/100\n", "I = P/(V*pf)\n", "I = math.floor(I*1000)/1000\n", "#Result\n", "print(\"V = %.2f V\\nI = %.3f A\"%(V,I))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "V = 251.35 V\n", "I = 0.681 A\n" ] } ], "prompt_number": 86 } ], "metadata": {} } ] }